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Abstract

In real-world complex networks, understanding the dynamics of their evolution has
been of great interest to the scientific community. Predicting non-existent but
probable links is an essential task of social network analysis as the addition or removal
of the links over time leads to the network evolution. In a network, links can be
categorized as intra-community links if both end nodes of the link belong to the
same community, otherwise inter-community links. The existing link-prediction
methods have mainly focused on achieving high accuracy for intra-community link
prediction. In this work, we propose a network embedding method, called NodeSim,
which captures both similarities between the nodes and the community structure
while learning the low-dimensional representation of the network. The embedding is
learned using the proposed NodeSim random walk, which efficiently explores the
diverse neighborhood while keeping the more similar nodes closer in the context of
the node. We verify the efficacy of the proposed embedding method over
state-of-the-art methods using diverse link prediction. We propose a machine
learning model for link prediction that considers both the nodes’ embedding and
their community information to predict the link between two given nodes. Extensive
experimental results on several real-world networks demonstrate the effectiveness of
the proposed method for both inter and intra-community link prediction.

Keywords: Network embedding; Link recommendation; Feature learning

1 Introduction

In online social networks (OSNs), nodes are organized into communities, where a commu-
nity represents a group of nodes having similar characteristics, such as similar interests,
opinions, or beliefs [1, 2]. The links between the nodes belonging to the same community
are referred to as intra community links, and the links between the nodes belonging to
different communities are referred to as inter community links. In social networks, intra-
community links are driven by the effect of homophily [3] as similar nodes prefer to con-
nect with each other. The formation of inter-community links is still not well explored in
the literature; however, it can be explained by different complex phenomena, such as tri-
adic closure and weak ties [4]. In real-world networks, it is observed that the number of
intra-community links is more than the number of inter-community links [5]. The evolu-

tion of social networks is regulated by the formation of new links in the network.
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In OSNs, we recommend more probable, but not existing links as promising connec-
tions to help users in making new friends, and a user having more friends will be more
loyal towards the website [6, 7]. However, forming the right kind of links is very impor-
tant as the opinion of a user is highly influenced by the opinion of its neighbors [8]. In
the recent era, scientists have focused on increasing the diversity in the network so that
the users receive information on a topic from different viewpoints before making their
opinion [9]. It is very crucial that a user receives the information from other users having
different perspectives to mitigate the negative impact of fake propaganda, false informa-
tion, or fake news spreading on the network [10]. Hence, it is required that a user has a
diverse neighborhood by having connections with different communities. In social net-
works, more inter-community links should be promoted to increase diversity. The link
recommendation system plays an important role in forming new links and transforming
the network evolution. Besides this, an improved link prediction method can also be used
for anomaly detection by better identifying suspicious links in newly formed intra and
inter-community links.

Initially, researchers proposed link prediction methods based on the similarity of the
nodes [11]. These methods compute the similarity of a pair of nodes based on network
structure, and more similar nodes are more likely to form a link. These methods are also
often referred to as classic or heuristic link prediction methods. The well known classic
methods include Jaccard coefficient [12], Adamic Adar index [13], resource allocation in-
dex [11], preferential attachment index [14], and so on. These methods were extended to
include community structure to improve the link prediction accuracy; however, most of
the methods improved the total accuracy by improving intra-community link prediction
accuracy [15, 16].

In recent works, network characteristics have been studied using network embedding
where the network is represented in a low dimensional latent space [17]. In network em-
bedding techniques, the aim is to embed similar nodes closer to each other. Most of the
existing network embedding methods [17-19] focus on embedding the nodes closely if
they belong to the same community and therefore have high accuracy for the node classi-
fication task and intra-community link prediction.

In our work, we propose a network embedding method, called NodeSim embedding,
which considers both the nodes’ similarity and their community information while gener-
ating the network embedding. In the learned embedding, the nodes belonging to the same
community will be embedded closely, and the nodes belonging to different communities
will be embedded closer based on their neighborhood similarity. Therefore, the generated
embedding preserves the structural properties of the network and is efficient in predicting
diverse promising links. Next, we propose a link prediction method that trains a logistic
regression model using node pair embedding and their community information to predict
both the inter and intra-community links with high accuracy. This is the first work that
uses community information for learning the link prediction model and achieves higher
accuracy for both types of links. The experiments are performed to show the accuracy
and efficiency of the proposed method on real-world networks. The results show that
the proposed method outperforms the state-of-the-art methods on all the datasets. We
further show the application of the proposed method in anomalous link detection, and
the NodeSim embedding provides the best results compared to the baseline methods on
medium to large-size networks.
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The paper is structured as follows. In Sect. 2, we discuss the state of the art literature
on link prediction by focusing on network embedding techniques. In Sect. 3, we discuss
the proposed methods, including (i) NodeSim network embedding method and (ii) link
prediction method. In Sect. 4, we discuss experimental results on real-world networks,
including the performance, sensitivity, scalability, robustness analysis, and application of
the proposed method. The paper is concluded in Sect. 5 with future directions.

2 Related work

Link prediction is a very well-known problem in network science and has been applied to
predict missing links in different types of networks, such as friendship networks, collabo-
ration networks, and chemical networks. Initially, researchers proposed heuristic methods
that only considered the neighborhood information of the nodes for link prediction and
did not consider the network topology. These heuristic methods were further extended
that also considered the network structure properties like community structure to predict
the links [15, 16, 20, 21]. However, most of these methods improved the overall accuracy of
link prediction by improving the accuracy of intra-community link prediction. The main
benefit of using heuristic methods is that these methods do not need any training and are
comparatively faster.

Another class of link prediction methods uses machine learning models, such as proba-
bilistic graphical models [22, 23], matrix factorization [24, 25], supervised learning meth-
ods [26, 27], and semi-supervised learning methods [28, 29]. These machine learning
methods provide good accuracy though they suffer from the class imbalance problem as
the number of existing links in a network are significantly fewer than the number of non-
existing links.

In recent years, network embedding techniques have been used to study networks and to
propose solutions for various network analysis problems. The network embedding meth-
ods can be categorized into three categories based on the structural proximity considered
while generating the embedding, (i) microscopic structure embedding, which considers
local proximity of nodes, such as first-order [30, 31], second-order [30] or high-order prox-
imity [17, 18, 32], (ii) mesoscopic structure embedding, which captures hierarchical and
community structural proximity [33—35], and (iii) network properties preserved embed-
ding, which captures global network properties, such as network transitivity or structural
balance [36, 37].

In the existing mesoscopic network embedding, the main focus has been either on the
hierarchical embedding where the users belonging to the same hierarchy should be em-
bedded together [33] or on the intra-community proximity where the nodes belonging
to one community should be embedded closely [34, 35]. In hierarchical or structural role
proximity, the nodes playing the same structural roles are embedded closely; for example,
the nodes having a similar degree or similar influential power should be embedded closer
[38—-43]. In this work, we propose the NodeSim network embedding method, which con-
siders both (i) high-order proximity by the similarity of the nodes and (ii) mesoscopic
structure by the network communities while generating the embedding. In NodeSim em-
bedding, the nodes belonging to one community are clustered together, and the similar
nodes belonging to different communities are embedded closer. The proposed embed-
ding captures a richer diverse neighborhood of the nodes that is further verified using the
link prediction.
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3 The proposed method

In this section, we first discuss the required network properties for our work. Next, we
discuss our proposed NodeSim embedding method to learn the feature representation of
the nodes and the proposed link prediction method.

3.1 Community structure

In real-world complex networks, nodes connect with each other if they have similar prop-
erties. A group of nodes that are densely connected with each other is referred to as a
community [44]. The community label of a node u is denoted by C,,. If both end nodes of
alink (u, v) belong to the same community, it is referred to as an intra-community link, and
Cluy) = 1 for an intra-community link. If both end nodes belong to different communities,
then the link (u,v) is referred as an inter-community link and Cg,,) = 0.

In most real-world networks, the ground truth community information is not avail-
able. In literature, several community detection methods have been proposed to identify
communities using network structure if the ground truth information is not known. In
this work, we apply the highly used community detection method, known as the Louvain
method [45], to identify the communities if the ground truth information is not known.

Louvain Community Detection Method: The Louvain method [45] uses two-step
greedy optimization to optimize the modularity of a community partition of the network.
First, the method optimizes the modularity locally to find small communities. In the sec-
ond step, it merges all nodes belonging to the same community and creates an aggregated
network where each node represents a community. These steps are performed iteratively
until we achieve the maximum modularity and the obtained communities are returned.

3.2 Node-pair similarity

In a network, two nodes connect with each other if they have some common interest or
characteristics, and therefore, a link between a pair of nodes is the first indication that they
are similar. However, these binary/unweighted connections cannot capture the complete
information of the system as each connection is not equally important. A better way of
representing the network is with weighted edges, where edge-weight denotes the strength
of the connection. For example, in a friendship network, the weight of an edge can be
computed based on the intimacy of the relationship or frequency of the communication
[46]. The similarity of a node pair (u,v) is denoted as Sim(x, v).

In most real-world networks, the edge-weight data is not available as it is not feasible
to collect all the required information for computing the strength of each connection.
In network science, there have been proposed methods to compute the similarity of a
node-pair based on their neighborhood connectivity in the network structure. Some of
the well-known methods are the number of common neighbors [47], Jaccard coefficient
[12], Adamic Adar [13], Resource Allocation [11], and so on, which compute a node-pair
similarity based on their local-neighborhood proximity.

In this work, we will use the Jaccard coefficient to compute a node pair’s similarity in

unweighted networks. The Jaccard coefficient for a node pair (u, v) is defined as, JC(u, v) =
IF@)NC )|

ORI where I'() is the set of neighbors of node u.

3.3 NodeSim network embedding
For a given graph G(V/, E), the network embedding method learns the mapping ®: V —
R¥, where d is the dimension of the embedding space. In recent works, the Skip-gram
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model has been used to generate the network embedding by representing the network as
a document where the nodes are corresponding to the words [18]. In a network, a sampled
sequence of nodes is considered the same as an ordered sequence of words in a document.
The simplest way to generate the ordered sequence of nodes is by using random walks.
In the random walk [48], if the random walker is at node u, the probability that the

random walker will move to node v is defined as,

1/deg(u), if (u,v)€E,

uv —

0, otherwise.

The random walk method does not consider the network structure properties while
sampling the nodes. In recent works, different sampling methodologies have been ex-
plored to sample the network to learn feature representations of the network [17, 49].
However, the proposed methods do not consider the meso-scale properties, such as com-
munity structure, while exploring the network. In this work, we propose a random walk
based sampling method, called NodeSim Random Walk, that captures the neighborhood
of the node by considering both the nodes’ similarity as well as the meso-scale community

structure of the network.

3.3.1 NodeSim random walk
In network embedding, the focus is to embed similar nodes closer. The simplest way to
capture the node similarity during the random walk would be to bias the edge probability
based on the similarity of its end nodes. However, this will ignore the meso-scale property
of the network that is captured through the community structure. In NodeSim random
walk, the edge-probabilities are assigned based on both the similarity of the nodes and
community structure.

In NodeSim Random walk, the unnormalized probability p,, to move from node « to

node v is defined as,

o - (Sim(u,v) + 1/deg(u)), if (u,v) € E and Cy,,) = 1,
Puw = B+ (Sim(w,v) + 1/deg(n)), if (u,v) € E and Cy,y) =0, (1)

0, otherwise.

The probabilities are normalized for each node u with respect to all of its neighbors. So,
the probability to move from node u to node v is computed as, Py, = p,, - w,, where w,, is
the normalizing factor for node u.

In this work, the similarity of the nodes is computed using the Jaccard Coefficient. Fig-
ure 1 explains edge-probabilities for NodeSim random walk, where the network has two
communities shown by red and blue nodes, and the edges (¢, v) and (u, w) are inter and
intra-community edges, respectively, which are labeled with p,, and p,,,, respectively.

Intuitively, parameters o and B control how the random walker explores the neighbor-
hood. A higher value of @ shows that the walker will prefer to sample more similar nodes
from the same community, and a higher value of 8 shows that the walker will put a higher

weight to explore the inter-community neighborhood of the node.
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Figure 1 NodeSim Random Walk probabilities for inter and intra community nodes

3.3.2 Learn embedding

Once the ordered sequences of nodes are generated using NodeSim random walk, the
network embedding is learned using the Skip-gram model [50]. The network embedding
method learns a mapping for each node u € V to a d-dimension embedding space that
represents the d-dimensional feature representation of node u based on its structural role.
The network embedding is denoted as ® : u € V —> R!VI*4 where ® can be considered a
|V| x d size matrix that is learned by solving a maximal likelihood optimization problem.

In the skip-gram model, given the corpus, the neighborhood of a word is defined using
a sliding window over the consecutive words. In networks, we generate the ordered se-
quence of nodes using sampling methods. For example, if NodeSim random walker visits
the following nodes {u1, uy, ... u;,...u;}, they will be referred to as an ordered sequence of
nodes. In our method, we generate ordered sequences of nodes by taking y NodeSim walks
of length / from each node. The neighborhood of a node u; will be defined by considering
k — 1 nodes visited before and after node u; during the sampling, where & is the window
size or context of the node. For every node u; € V, Nys(#;) C V denotes the neighborhood
of node u; in the network that is generated through the NodeSim sampling method with
the given context k.

In the skip-gram model, the network embedding is learned based on the likelihood of a
node u; co-occurring with other neighborhood nodes within the context k in the NodeSim
random walk. We, therefore, optimize the following optimization function that aims for
maximizing the probability of observing a node in the neighborhood of node u;, given its

feature representation ®(;),

maxzbmize Z log Pr(NNS(ui)|CI>(ui)). 2)

u;eV

The optimization problem is solved using two assumptions. The first assumption is con-
ditional independence, that the probability of observing a node in the neighborhood of the
source node is independent of observing any other node in its neighborhood given the fea-

ture representation of the source node, so,

Pr(Nivs ()| D (14:)) = Tigenystu) Pr(] P (242) ). 3)



Saxena et al. EPJ Data Science (2022) 11:24 Page 7 of 22

The second assumption is the symmetry that considers the pairwise similarity of a
source node and its neighborhood node in the feature space. Therefore, we estimate the
probability of a node #; co-occurring with node u; using the softmax function,

exp(P(u)) - D(u;))
> ey exp(P(V) - D(u;)

Pr(u,'|CI>(u,')) = (4)
Finally, using both assumptions, the objective function given in Equation (2) is computed

as,

maxzbmize Z (— logZ,, + Z b () - <I>(u,')>, 5)

u;eV ”jENNS(W)

where Z,, = )" ., exp(®(u;) - ©(v)) is expensive for large-scale networks and it is ap-
proximated using negative sampling method [51]. Equation (5) is optimized using SGA
(stochastic gradient ascent) over the features @ [17].

3.3.3 Complexity

The complexity of the proposed network embedding method depends on two major steps,
(i) identify the communities and (ii) NodeSim embedding learned using the Skip-gram
model. The complexity of the community detection method and Skip-gram model is well
defined in the literature, so we briefly discuss the complexity of our method. In our im-
plementation, we have used the Louvain community detection method having complex-
ity O(n - logn) where # is the total number of nodes in the network. Once the commu-
nity structure is identified, the complexity to generate the probability distribution for
NodeSim random walk is O(m1) where m is the total number of edges in the network. The
complexity for learning embedding using the skip-gram model is O(nkly (d + dlog(n))),
where d denotes the number of dimensions, / denotes the walk length, k denotes the
window size, and y denotes the number of random walks. So, the overall complexity is
O(nlogn + m + nkly (d + dlog(n))).

3.4 Link-prediction method
The link prediction method first generates the feature representation of given node pairs
and then train a logistic regression model using the feature representation of node pairs

and their community information.

3.4.1 Feature representation of node pair
The feature representation of a pair of node (i, v) is generated by applying a binary op-
erator on the feature representation of node u# and v. The most common operators are
mentioned below.

1. Average: e;(u,v) = M

2. Weighted-L1: e;(,v) = |®;(u) — O;(v)]

3. Weighted-12: e;(,v) = |®;() — ®;(v)|?

4. Hadamard: e;(u,v) = ®;(u) * ®;(v)

®;(u) denotes the iy, feature of node u, and e;(, v) denotes the iy, feature of a node pair
(&, v). In this way, a d-dimension feature vector is generated for each node-pair using the
d-dimension feature representation of the corresponding nodes.
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3.4.2 Link prediction model

For link prediction, a logistic regression model is trained using features of the node-pair
and their community information, with the output having the existent/non-existent infor-
mation of the link between the given node-pair. The input features for a node pair (x,v)
is generated as, f(u, v) = (e(u, v)||C,y)), where || is concatenation operator and C,,) is 1 if
both nodes u and v belong to the same community, otherwise 0. The output parameter is
1 or O if there exists a link between the given pair of nodes or not, respectively. We have

shown results for all four operators applied on e(u, v).

4 Experimental analysis

In this section, we discuss baseline methods, datasets, and experimental results.

4.1 Baseline methods
The proposed method is compared with both types of link prediction methods (i)
similarity-based heuristic methods and (ii) network embedding based methods.

We compare with the following three heuristic methods based on network structure.

1. Jaccard Coefficient (JC) [12]: JC(u,v) = %

2. Adamic Adar (AA) [13]: AA(w,v) = 3 e runro)) m

3. Resource Allocation (RA) [11]: RA(x,v) = Zwe([‘(u)ﬁf‘(v)) m

We compare our method with the following network embedding based link-prediction

methods.

4. DeepWalk [18]: Deepwalk method learns the network embedding using the skip-gram
model on the ordered sequence of nodes generated using random walk.

5. Node2Vec [17]: Node2Vec is an extension of DeepWalk where the walker has different
probabilities for moving to its neighbors, and the probability to move to the next node
depends on its distance from the previously visited node. Once the nodes are sampled,
the network embedding is learned using the skip-gram model. We have used the code
provided by the authors at https://github.com/aditya-grover/node2vec.

6. NECS [35]: Network Embedding with Community Structural information (NECS)
uses nonnegative matrix factorization to generate nodes’ embedding, which pre-
serves the high-order proximity. The final network embedding is learned by jointly
optimizing the consensus relationship between the nodes’ representation and the
community structure. We have used the implementation provided by the authors at
https://github.com/liyu1990/necs.

For DeepWalk, Node2Vec, and NECS methods, the node-pair embedding is gener-
ated using the Hadamard operator, and then the logistic regression model is trained
for the link prediction as mentioned in these works.

7. Splitter [19]: This network embedding method learns multiple embedding of each
node based on the principled decomposition of the ego-network. These multiple rep-
resentations of a node denote its embedding with respect to the local communities
it belongs to. The implementation is provided by the authors at https://github.com/
google-research/google-research/tree/master/graph_embedding/persona. For link pre-
diction, we used the method discussed in their paper. For each node pair (u,v), the
similarity score is computed using the dot product of their embedding. In the per-

sona graph, each node has multiple embedding, so we compute the similarity score
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Table 1 Datasets

Network #nodes #edges #fcommunities  Ref
Facebook 4039 88,234 16 [52]
GrQc 4158 13422 42 [53]
Hep-th 8638 24,806 50 [53]
Hep-ph 11,204 117,619 38 [53]
Astro-ph 17,903 196,972 37 [53]
Enron 33,696 180,811 178 [54]
Twitter 81,306 1,342,296 77 [52]
DBLP 317,080 1049866 216 [55]

for each combination of their embedding, and the maximum score is returned as the
final similarity score.
The implementation code of NodeSim method is available at https://github.com/
akratiiet/NodeSim.

4.2 Datasets

We perform experiments on real-world networks, and their details are mentioned in Ta-
ble 1. Facebook and Twitter are snapshots from online social networking websites, Enron
is an email communication network, and GrQc, Hep-th, Hep-ph, Astro-ph, and DBLP are
co-authorship networks. In all the networks, the communities are detected using the Lou-
vain Method, and a community label is assigned to each node based on which community
it belongs to. A node pair is referred to as intra-community node pair if both the nodes
belong to the same community; otherwise, it will be referred to as inter-community node
pair.

To generate the training and testing data, we follow the same methodology as used in
[17, 19]; however, we maintain the ratio of inter and intra-community links that is not con-
sidered in previous studies. First, we remove 10% of inter-community and 10% of intra-
community edges from E uniformly at random and put them in set Ej, that will be used
for link prediction. While removing the 10% edges, it is ensured that the network remains
connected. The remaining 90% edges are referred to as E,., and G(E,,, V) will be used to
generate network embedding.

For link prediction task, the same number of inter and intra-community node pairs for
non-existent links are chosen uniformly at random, as we have in Ej,. These sampled links
will work as negative cases and are added to set Ej,. If a link is formed between a given
node pair, then it is referred to as a positive case; otherwise, it will be referred to as a
negative case. To create train and test data, the node pairs in Ej, are split into Eain and Egeg,
and while splitting, we ensure that the ratio of intra and inter-community node pairs is
maintained for both positive and negative cases. The default train and test ratio is (0.5 : 0.5)
if it is not mentioned explicitly. In heuristic and Splitter link Prediction methods, a node
pair is predicted positive if the similarity score for this pair is higher than the similarity
score of 50% positive train cases.

4.3 Performance study

First, we compare NodeSim method with baselines, and ROC-AUC value is computed for
all test cases, intra-community and inter-community test cases as shown in Table 2. The ta-
ble shows the best results observed for different parameter settings used in different meth-
ods, and each experiment is repeated five times to compute the average. The dimension
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Table 2 ROC-AUC for link prediction

Method/Datasets Facebook GrQc  Hep-th Hep-ph Astro-ph  Enron  Twitter DBLP
JC Total  0.713 0.756  0.735 0.741 0.750 0.731 0.743 0.750
Intra  0.721 0.788  0.782 0.801 0.827 0709 0.774 0.749
Inter 0.5 05 0541 0502 0578 0752 0527 0751
AA Total  0.747 0.766  0.752 0.746 0.749 0.746  0.748 0.754
Intra~ 0.751 0790 0785 0772  07% 0745 0767 0755
Inter  0.642 0568 0617 0.643 0.641 0746 0612 0.753
RA Total  0.751 0.770 0.752 0.744 0.751 0.747 0.747 0.752
Intra  0.754 0.795 0.782 0.786 0.799 0.748  0.765 0.753
Inter 0677 0568  0.625 0.575 0.643 0.745 0627 0.751
DeepWalk Total  0.796 0.793  0.797 0.886 0.838 0762  0.842 0.862
Intra  0.804 0819 0832 0.906 0.876 0721 0.858 0.831
Inter  0.587 0582 0652 0.807 0.754 0804 0.735 0.893
Node2Vec Total  0.829 0820  0.830 0.900 0.865 0769  0.860 0.883
Intra  0.834 0849  0.864 0916 0.897 0.731 0.877 0.854
Inter  0.619 0582 0691 0.834 0.793 0806  0.742 0911
Splitter Total  0.752 0806 0729 0865 0847 0746 * *
Intra  0.765 0823  0.733 0.902 0.905 0744 % *
Inter 0433 0666 0712 0718 0718 0748 * *
NECS Total  0.548 0544 0.549 0.581 * * * *
Intra  0.550 0546  0.553 0.581 * * * *
Inter  0.509 0527  0.533 0.580 * * * *
NodeSim (Average) Total  0.758 0836  0.596 0.837 0.690 0818  0.696 0.717
Intra 0.758 0.838  0.591 0.839 0.694 0777  0.722 0.702
Inter  0.756 0829 0617 0.826 0.681 0858 0513 0.732
NodeSim (Wtd.-L1) Total 0.824 0816 0.784 0.876 0.829 0676  0.808 0.658
Intra  0.833 0.845 0.827 0911 0.866 0619 0831 0.632
Inter  0.581 0582 0607 0.740 0.747 0.733 0650 0.683
NodeSim (Wtd.-L2) Total  0.827 0833 0783 0.875 0.831 0.691 0.808 0.654
Intra 0834 0.863  0.820 0.908 0.864 0632 0828 0.628
Inter  0.651 0589 0628 0.745 0.758 0.750  0.667 0.680
NodeSim (Hadamard)  Total 0.857 0.864 0.849 0.924 0.883 0.835 0.901 0.904
Intra  0.862 0.874 0.884 0.937 0.907 0.794 0914 0.884
Inter  0.736 0.706 0.749 0.872 0.828 0.877 0.809 0.924

of network embedding is d = 128. The results show that the proposed NodeSim method
with Hadamard operator for node pair embedding outperforms all baseline methods. The
bold faced values show the best ROC-AUC obtained for the total link prediction and the
best results also provide better Intra and Inter link prediction results as compared to all
the baselines. The *’ value for NECS and Splitter methods show that the code execution
was not completed in 48 hours on the server, and therefore, the values are not mentioned.
The NECS method uses matrix factorization and therefore has high computational com-
plexity. The Splitter method generates multiple embedding of each node corresponding to
its local communities, and therefore, the execution time is manyfold based on the density
of the network and connectivity of the nodes.

We further study the performance of our method by varying the ratio of train and test
set. The results are shown in Fig. 2 for Hep-ph and Astro-ph networks. Results show that
the performance of the proposed method is better compared to baselines, even if the train-
ing ratio is 0.1; however, the best results are achieved when the ratio of training size is at
least 0.5 and 0.3 for Hep-ph and Astro-ph networks, respectively.
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Table 3 Default and varied range values of different network embedding parameters

Parameter Default  Range
o 1 1,15,2,25,3
B 1.5 1,152,253
Dimension (d) 128 4,8,16,32,64,128,256
Context (k) 5 57,9,11,13,15
Number of Walks (y) 10 6,8,10,12,14,16,18, 20
Walk Length (/) 80 40, 50, 60, 70, 80, 90, 100
NE B & & A 0.900 A . * . *
0.92{ * R
* * * 0875 * . .
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4.4 Parameter sensitivity

The NodeSim embedding method depends on a number of parameters, and we examine
the impact of different parameters on the performance of link prediction. In Table 3, we
have shown the default values of different parameters that has been decided based on the
preliminary analysis and their range that we have considered. The results are shown on
two networks, Hep-ph and Astro-ph.

Figure 3 shows the impact of varying « on inter and intra-community link prediction.
The results show that o ~ 1-1.5 achieves the best results. In Fig. 4, the results show that
B ~ 1.5-2 achieves the best results. The results confirm that the inter-community edges
should be weighted higher than the intra-community edges during the sampling to predict
inter-community links with high accuracy, as expected.

Next, we analyze the impact of embedding parameters on link prediction accuracy. Fig-
ure 5 represents that the performance of link prediction methods improves with the em-
bedding dimension. In Fig. 6, we observe that the performance reduces with the window
size as the larger window size considers distant nodes while generating the local context
of the nodes, and these nodes might not be similar. In real-world networks, most of the
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new links are driven by the triad closure phenomenon, and it is less probable that a node
will be connected to a distant node.

Figures 7 and 8 show results for varying the number of walks and the walk-length. As
observed in Fig. 7, the intra-community results are less affected by the number of walks
than the inter-community links as the ratio of inter-community context pairs decreases
with more number of walks; as we expected. Similarly, the inter-community accuracy also
decreases with the walk-length even if the total accuracy is improved, as shown in Fig. 8

(b).

4.5 Scalability

We compare the running time of different network embedding based methods on syn-
thetic networks generated using SCCP (Scale-free networks with Community and Core-
Periphery) model [56, 57]. The network generator first creates a seed graph, i.e., a complete
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Figure 9 Running time for different embedding methods versus network size

graph of m nodes for each community, where m is the average degree of nodes. Next, in
each iteration, a new node is added to each community, and the added node builds m
connections using preferential attachment law [14] while ensuring the intra and inter-
community edge ratio. The running time is compared on synthetic networks so that the
ratio of intra and inter-community edges are maintained as we increase the network size.
In our experiments, the ratio is (intra : inter = 0.75 : 0.25), and the average degree of the
network is 8. The total number of communities is 10 in the network having 100 and 1000
nodes and 100 in the network having 10,000 and 100,000 nodes. All communities in a
network are of the same size.

Figure 9 show the running time of different methods. All experiments are performed
on the server having 384 GB RAM and 2x Intel Xeon 4110 @ 2.1 GHz CPU. For 100,000
nodes network, the Splitter code was not finished in 48 hours, and the NECS code was
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Figure 10 ROC-AUC for link prediction corresponding to different community detection methods for Hep-ph
network

killed due to the memory error on the server. The results show that the proposed method
executes faster than all the baselines except deepwalk as the network size grows. The run-
ning time of NodeSim and Node2Vec is almost equal. The deepwalk method is the fastest
as it creates node context using a simple random walk and does not consider the structural

properties of the network.

4.6 Robustness for identified communities

There have been proposed several community detection methods in the literature that
consider different network properties while identifying the communities. Therefore, the
communities identified by different methods might vary. For some methods, such as Lou-
vain or greedy method, if the same method is applied many times, the returned community
structure might differ each time.

We, therefore, study the efficiency of the NodeSim embedding method corresponding
to different community detection methods. We apply five different community detection
methods (including Louvain): (i) Louvain method [45]. (ii) Fluid Communities Algorithm
[58], (iii) Greedy Modularity Maximization [2], (iv) Semi-synchronous Label Propagation
[59], and (v) Asynchronous Label Propagation [60]. The details of community detection
methods are explained in Appendix A. After identifying the communities using different
methods, the training and testing data is created, as discussed in Sect. 4.2. Next, we gen-
erate network embedding by applying different embedding methods and apply the link
prediction method. Each method is executed five times, and the average ROC-AUC value
for the Hep-ph network is shown in Fig. 10.

The results show that the performance of different methods is relatively maintained ir-
respective of the community detection method. The NodeSim method outperforms in
all the cases as the method considers both the similarity of nodes and their communities

while generating the network embedding.

4.7 Case study

For visualization, we show the NodeSim embedding of the Zachary Karate Network [61]
in 2-dimension and 3-dimension space. The network and its embeddings are shown in
Fig. 11, where the nodes having the same color belong to one community. The embed-

ding shows that the nodes belonging to different communities are well separated; however,
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(c)

Figure 11 (a) Zachary Karate Network with three communities, (b) and (c) 2-dimensional and 3-dimensional
embedding of Zachary Karate Network using NodeSim Method, respectively

more similar nodes are embedded closer. For example, node 12 is more likely to form inter-
community links with nodes 4, 5, 6, and 10, so, as observed, they are embedded closer but
still well separated. The embedding of the nodes improves with high dimension, as we also
observed in Sect. 4.4 that the accuracy increases with a higher dimension. We have also
shown embeddings for Dutch School Friendship Network [62], and Illinois Highschool
Friendship Network [63] in Appendix B.

4.8 Application in anomaly detection

The one well-known application of link prediction is to detect anomalous links. We briefly
analyze the performance of the proposed method for anomalous link prediction. For this
analysis, we use four real-world anomaly datasets and three synthetic datasets generated
using real-world network; the details are provided in Table 4. The German Boys network
[64] is a friendship network of a German school class from 1880-1881, and students are
labeled as outliers based on their characteristics and behavior. The Disney and Books net-
works are co-purchase networks extracted from Amazon [65]. Enron-Anomaly [66] is an
email communication network having spammers labeled as anomalous users. In all real-
world anomaly datasets, nodes are labeled as anomalous and non-anomalous. To create
synthetic anomaly network datasets, we follow the method used in previous anomaly de-
tection works [67, 68]. We first add 0.4% nodes as anomalous nodes to the given network
G. Each anomalous node picks its degree (k) from the degree-distribution of network G
and will make k connections uniformly at random from the nodes of network G. The
synthetic anomalous networks corresponding to Hep-ph, Astro-ph, and DBLP networks
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Table 4 Datasets for anomaly analysis

Datasets #Nodes #Edges #Anomalous Edges #Regular Edges Ref
German Boys 48 149 82 67 [64]
Disney 124 335 17 318 [65]
Books 1418 3695 229 3466 [65]
Enron-Anomaly 13,533 176,987 28 176,959 [66]
Hep-ph Anomaly 11,248 118,969 1350 117,619 [53]
Astro-ph Anomaly 17,974 198,346 1374 196,972 [53]
DBLP Anomaly 318,348 1,058,175 8309 1,049,866 (55]
Table 5 ROC-AUC for anomalous link detection
Methods/Datasets German-Boys Disney Books Enron Hep-ph Astro-ph DBLP
Anomaly Anomaly Anomaly Anomaly
DeepWalk 0.741 0.799 0.941 0.884 0.906 0.789 0.647
Node2Vec 0.635 0.793 0.941 0.884 0.905 0.800 0.658
NECS 0.864 0.768 0.796 0.877 0.800 * *
NodeSim 0.606 0.865 0.944  0.960 0.932 0.835 0.774
Table 6 Micro-F1 for anomalous link detection
Methods/Datasets German-Boys Disney Books Enron Hep-ph Astro-ph DBLP
Anomaly Anomaly Anomaly Anomaly
DeepWalk 0.740 0.843 0.927 0.999 0.935 0.831 0.668
Node2Vec 0.644 0.831 0.927 0.999 0.932 0.846 0.681
NECS 0.863 0.898 0.909 0.907 0.637 * *
NodeSim 0.603 0.855 0.941 0.998 0.939 0.876 0.801

are referred to as Hep-ph Anomaly, Astro-ph Anomaly, and DBLP Anomaly, respectively.
In all networks, each edge that is connected with any anomalous node is labeled as an
anomalous edge, and the rest of the edges are considered regular edges (also referred to
as non-anomalous edges).

For anomalous like detection, we create network embedding using Deepwalk,
Node2Vec, NECS, and NodeSim methods. For German Boys school, we create 32 di-
mension embedding as it is a small network, using the following parameters: 5 number of
walks of length 10, 3 window size, p = 0.25 and g = 0.25 for Node2Vec,anda =1and f =1
for NodeSim embedding method. For other networks, we create 128 dimension embed-
ding using default parameter settings for the number of walks, walk-length, and window
size as used for link prediction. Please note that the Splitter method generates multiple
embedding of each node based on its local persona, and therefore, this can not be used
directly for anomaly detection.

To create train and testing data, we uniformly split 50% anomalous and non-anomalous
edges as training dataset and the rest 50% as testing data. Given that the training data is im-
balanced due to a very small number of anomalous edges, we use SMOTE (Synthetic Mi-
nority Oversampling Technique) oversampling [69] to create a balanced dataset using two
nearest neighbors. Then, we train a logistic regression model on the balanced dataset for
different network embeddings. The ROC-AUC and Micro-F1 values for the testing data
are shown in Table 5 and 6, respectively. We observe that for very small networks, such
as German boys, the NECS method provides better results. However, the performance of
NECS is the worst for medium-size networks, and the method has a very high compu-
tational complexity for large-size networks. The results show that the NodeSim method
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provides promising results for anomalous link detection for medium to large-scale net-
works.

We have shown detailed experiments for anomalous link detection as this is a more
suitable application of link prediction; however the NodeSim embedding can also be used
for detecting anomalous nodes. For anomalous nodes detection, one can use any of the
following two approaches, (i) directly train a machine learning model on the network em-
bedding to identify anomalous nodes, or (ii) first classify the edges as anomalous and non-
anomalous, and then use this information further to classify anomalous nodes. One of the
main limitations in anomalous link prediction is the availability of real-world datasets.
In our analysis, we consider that each link connected to an anomalous node is anoma-
lous; however, in real-world applications, there might be a case where an anomalous node
can have both types of connections, anomalous as well non-anomalous. In the proposed
method, we only use network structure, and the method provides good results compared
to baselines with the limited information of the network where no additional information
is available due to the privacy concerns of the users. Given the promising performance
of the NodeSim method, one can use it further for designing improved anomalous links
and nodes detection methods using the additional information of the nodes and network.
For example, in attributed networks, the anomaly link detection method can use network
embedding and nodes’ attributes to achieve improved performance.

5 Conclusion

In this work, we have proposed the NodeSim network embedding method, which con-
siders both the nodes’ similarity and their community membership while learning the
feature representation of the nodes. The NodeSim embedding method efficiently learns
the embedding of diverse nodes that is further verified using the link prediction. We
proposed a link prediction method that trains a logistic regression model using nodes’
features and their community information. The results showed that the proposed link-
prediction method outperforms baseline methods for both intra-community as well as
inter-community link prediction. We further studied the impact of different parameters
and showed that a higher value of 8 provides higher inter-community link prediction ac-
curacy as the NodeSim method embeds the more similar diverse nodes closer than the
others. We further show the application of the proposed method in anomaly detection
and network visualization.

In the future, we would like to extend the proposed method to generate embedding of
dynamic networks to predict inter and intra-community links with high accuracy to in-
crease diversity. Such embedding can be used for several downstream tasks in dynamic
networks, such as anomaly detection, network visualization, and recommendation sys-

tems for suggesting content, posts, or advertisements.

Appendix A: Community detection methods
Here we discuss the details of community detection methods other than the Louvain
method that we have applied for studying the robustness of NodeSim network embed-
ding.
1. Asynchronous Label Propagation [60]: In this method, each node is initialized with
a unique community label. In every iteration, each node will update its community
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label based on its neighbors’ community label at that time. Thus, the nodes belonging
to a strongly connected group will be assigned the same community label with their
consensus through this iterative process.

. Semi-synchronous Label Propagation [59]: This method is similar to the asynchronous
Label propagation method, and it combines the advantages of both synchronous and
asynchronous method. In this method, each node is assigned with a community label
initially, and at each iteration, a node updates its community label based on the most
used label by its neighbors. However, the ties are broken randomly, and the method is
stopped when no node changes its label.

. Fluid Communities Algorithm [58]: Fluid communities are based on the idea of fluids
interacting with each other, such as expanding or pushing each other in an environ-
ment. In this method, first, each of the initial c communities is initialized by a random
node in the network. Then, in each iteration, each node’s community label is updated
based on its community and the community of its neighbors. Once no node changes its
community in an iteration, the method is stopped. In our implementation, we set the
number of communities approximately close to the number of communities identified
by the Louvain method.

4. Greedy Modularity Maximization [2]: This method is a well-known method to identify

communities by maximizing the modularity in the network. In this method, each node
is assigned with a community label, and in each step, two communities are merged that
most increases the modularity. The method is stopped when the modularity can not
be further increased by merging two communities.

Figure 12 (a) Dutch School Friendship Network with 2 communities, (b) and (c) 2-dimensional and
3-dimensional embedding of the Network using NodeSim Method, respectively
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Figure 13 (a) lllinois Highschool Friendship Network with three communities, (b) and (c) 2-dimensional and
3-dimensional embedding of the Network using NodeSim Method, respectively

Appendix B: Embedding visualization

For a better understanding, we further show the 2-dimensional and 3-dimensional
NodeSim embedding of the Dutch School Friendship Network [62], and Illinois High-
school Friendship [63] in Fig. 12 and 13, respectively. The Dutch School Friendship net-
work has 26 nodes and 63 edges, and the Highschool network has 70 nodes and 274 edges.
In both the figures, the nodes having the same color belong to the same community. In
Fig. 13, we can observe that node 57 is well connected with both grey and blue commu-
nities, and that is also evident from its embedding. Similar observations can be made for
other nodes in both figures.

One another important point to note is that in Fig. 11 for Zachary-Karate network, the
2-dimension embedding is linear; however, this is not the case with Dutch School and
Highschool Friendship networks, as the embedding depends on the network connectivity
and the proposed method performs well for all kind of networks as we also observed in
Sect. 4.3.
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