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Abstract

The cryptocurrency economy provides a comprehensive digital trace of human
economic behavior: almost all cryptocurrency users• activities are faithfully recorded
in transactions on public blockchains. However, the user identi“ers in the transaction
records, i.e., blockchain addresses, are anonymous. That is, they cannot be associated
with any real •o�-chainŽ identify of actual users. Nonetheless, identifying the
economic roles of the addresses from their past behaviors is still feasible. This paper
analyzes Ethereum token transactions, characterizes key economic agents• behavior
from their transaction patterns, and explores their identi“ability through interpretable
machine learning models. Speci“cally, six types of most active economic agents are
considered, including centralized cryptocurrency exchanges, decentralized
exchanges, cryptocurrency wallets, token issuers, airdrop services, and gaming
services. Transaction patterns such as trading volume, transaction tempo, and
structural properties of transaction networks are de“ned for individual blockchain
addresses. The results showed that cryptocurrency exchanges and online wallets
have signature behavior patterns and hence can be accurately distinguished from
other agents. Token issuers, airdrop services, and gaming services can sometimes be
confused. Moreover, transaction networks• features provide the richest information in
the economic agent•s identi“cation.

Keywords: Cryptocurrency; Ethereum; Deanonymization; Network analysis; Machine
learning

1 Introduction
The cryptocurrency economy is a complex yet transparent socioeconomic system. Bitcoin,

Ethereum, and more than 270,000 other cryptocurrencies and tokens have been issued on

dedicated or host blockchains as of June 2020 [1]. The most common ways for users to ob-

tain cryptocurrencies are through coin mining and trading in cryptocurrency exchanges

or over the counter. Individual investors and venture capital institutions can also purchase

tokens from business teams in exchange for shares of their projects or companies. The

cryptocurrencies obtained by users can be further used as money, merchandise, equity,

and gaming tokens in various economic activities.
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The cryptocurrency economy not only replicates real-world economic systems but also

further records every economic activity in public databases. A blockchain network is a de-

centralized computer system comprising a number of computers that independently ver-

ify, store, compute, and synchronize information generated by their end users [2]. Each

record takes the form of a transaction, i.e., the transfer of cryptocurrency from one set

of blockchain addresses to another, with an optional piece of auxiliary information. As of

June 2020, Bitcoin blockchain network stored more than 500 million transactions among

600 million addresses [3], and Ethereum blockchain network stored more than 700 mil-

lion transactions among 100 million addresses [1]. Because the blockchain networks are

publicly accessible, the transaction records can be downloaded, audited, and analyzed by

any interested party.

However, an obstacle to understanding the cryptocurrency transaction records is the

anonymity of blockchain addresses. Compared to the user of a traditional online service

who has to register and obtain an identity from a service provider, a cryptocurrency user

can generate their identity, i.e., a pair of public and private keys, using ellipse encryption

algorithms purely o�ine [ 2]. In this case, since the public key is not obtained from any

party apart from the user, it is impossible to associate this •usernameŽ with any other

information that can be used to infer the user•s real identity, e.g., their IP address.

Nonetheless, Satoshi Nakamoto warned in his proposal of the Bitcoin system that due

to the transparency of the transaction records, repeatedly used blockchain addresses may

reveal user behavior and hence user identity [4]. Although end users can create a new

address for each transaction, the service providers, e.g., exchanges and wallets, typically

cannot because they have to maintain stable service portals. As a result, the activeness

of the millions of blockchain addresses is highly uneven. The cryptocurrency holdings of

and the numbers of transactions initiated and received by the addresses all follow long tail

distributions [5, 6]. The most active addresses, therefore, are naturally the entry points

towards a comprehensive understanding of the cryptocurrency transaction records.

This research examines the most active blockchain addresses. Speci“cally, six types of

most visible cryptocurrency economic agents are considered, including centralized and

decentralized cryptocurrency exchanges, cryptocurrency wallets, token issuers, airdrop

services, and gaming services. Transactional patterns such as volume features, temporal

features, and structural features of the transaction network of blockchain addresses are

used to characterize and di�erentiate agents in di�erent roles.

The remainder of the paper is organized as follows: Sect.2 provides a retrospect of the

existing research on the identi“cation and classi“cation of blockchain addresses; Sect.3

introduces the data sources, feature extraction methods, and machine learning models

used to study the addresses; Sect.4 presents the signature transactional features and the

identi“ability of the key agents; and Sect.5 concludes the research and discusses future

perspectives.

2 Related work
Early e�orts of cryptocurrency address de-anonymization mainly based on heuristic ad-

dress clustering on Unspent Transaction Output (UTXO) blockchain data models, e.g.,

Bitcoin. Two typical examples are multiple input and change address heuristics [7]. Mul-

tiple input heuristics consider that in a Bitcoin transaction with more than one input ad-

dress, the input addresses are highly likely to belong to the same user. Change address
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heuristics consider that when a transaction has multiple outputs, one of the outputs could
be a change address, which belongs to the initiator of the transaction. With the addresses
clustered, the addresses inside the same cluster can be considered to bear the same iden-
tity [ 7]. Heuristic methods are useful but prone to error. For example, 156,722 addresses
were successfully associated with the largest cryptocurrency exchange, Mt. Gox, using Bit-
coin transactions up to 2012 [5]. However, only approximately 69% of the addresses can
be correctly associated with individual end users [8].

Another line of e�ort toward cryptocurrency address de-anonymization takes address
identi“cation as a classi“cation problem. Machine learning algorithms are used to derive
computational models from patterns extracted in transaction records. Transactional pat-
terns used to describe a blockchain address include the amount, time, and frequency of its
transactions; the cryptocurrency/token balance; and the active days [9…11]. Transaction
networks can also be constructed among blockchain addresses, in which nodes are indi-
vidual addresses or sets of addresses clustered by heuristics, and edges are transactions be-
tween addresses. The structural features of nodes in the networks include various central-
ity measures [10], motifs [12], and network representation learning derived embeddings
in vector spaces [13, 14]. For smart contracts in Ethereum-like blockchains, their codes
and bytecodes are also useful features [15, 16]. The above mentioned features are e�ec-
tive in binary classi“cation tasks, e.g., determining whether an address is a Ponzi scheme
[15, 17, 18], phishing address [14], or other kind of scam [19, 20], and multi-classi“cation
tasks, e.g., di�erentiating between cryptocurrency exchanges, gambling services, mining
pools, and darknet markets [9…11, 21].

This paper follows the latter research direction, in which we systematically de“ne a spec-
trum of features in transaction patterns and explore the identi“ability of several key agents
in the cryptocurrency economy. In contrast to the previous multi-classi“cation tasks, we
not only report the precision of classi“cation but also elaborate the transactional patterns
of the blockchain addresses with regards to their economic roles and explain in-depth the
reasons for their identi“ability or lack thereof.

3 Data and methods
3.1 Blockchain data
As of June 2020, Ethereum blockchain network stored the largest number of cryptocur-
rency transactions among all public blockchains. These transactions can be brie”y clas-
si“ed into three types: ether (the original Ethereum currency) transfers, token transfers,
and smart contract calls. The transactions of the more than 270,000 tokens account for
56% (414 million) of the total transactions (745 million). As many of the cryptocurrency
economic activities, such as fundraising, deal only with tokens rather than ether, we use
token transactions to study economic agent behaviors in this research.

A token transaction from one address to another is accomplished by invoking the
transfer() function, in the token smart contract, with three parameters, namely
from_address, to_address, andvalue, which stands for the sender, receiver, and
amount of this transaction, respectively (Fig.1). The token sender and receiver can be ei-
ther a user-owned address (Externally Owned Account, EOA) or a contract address (CoA).
ERC20 is the most common standard for creating customized tokens on Ethereum. ERC
20 tokens are fungible; that is, a token can be divided into small proportions, which can
circulate in the economy independently. All ERC 20 tokens• transactions up to June 2019
were obtained using an Ethereum blockchain client.
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Figure 1 A schematic of ERC20 token transaction. An invoker, i.e., token sender, calls the transfer function in a
token contract and passes three parameters, i.e.,from_address,to_address, andvalue. This
transaction is recorded on the blockchain if valid. The timestamp of the transaction is the height of the block
in which it is logged. Addresses A and C are usually identical

3.2 Known key agent identities
Although technically anonymous, the identities of cryptocurrency addresses are some-

times publicly disclosed online. For example, some forum users, e.g.,Reddit and Bit-
cointalk users, post personal Bitcoin or Ethereum addresses in their forum pro“les. Ad-

dresses owned by cryptocurrency exchanges, wallet services, and gambling services can

be identi“ed by proactively trading or interacting with them [7]. Online intelligent plat-

forms, such asWalletexplorer.com [22] and Etherscan.io [1], post known labels for Bitcoin

and Ethereum addresses and allow users to tag addresses that they can recognize. We col-

lected 3364 labels from Etherscan.io and retained addresses that belong to six key agent

roles: centralized cryptocurrency exchange, decentralized exchange, wallet, token issuer,

airdrop service, and gaming service, and that have participated in more than 100 transac-

tions as of June 2019 as the study samples.

Centralized and decentralized exchanges are both cryptocurrency exchanges in which

users can buy and sell di�erent types of cryptocurrencies with “at money or other cryp-

tocurrencies. However, they bear a signi“cant di�erence. In centralized exchange, a seller

“rst deposits tokens into the exchange•s addresses and open a sell order. The sell order is

then matched with a buy order, either by the exchange or by the users themselves (over

the counter). After clearing and settlement, the buyer can withdraw the token from the ex-

change. In this case, the exchange address serves as an escrow between the buyer and seller.

Typical examples of centralized exchanges areBinance and Kraken. However, decentral-

ized exchange users deal with the exchange directly. A decentralized exchange maintains

a pool of di�erent cryptocurrencies and sets the listing prices algorithmically. Buyers buy

tokens from the pool, and sellers sell tokens to the pool. Typical examples of decentralized

exchanges areBancor, KyberNetwork, andUniswap.

For the remaining types,wallet stands for online cryptocurrency banking services in

which users deposit their cryptocurrencies and tokens,token issuer stands for the ad-

dresses that were used to sell tokens to investors through fundraising activities, e.g., Ini-

tial Coin O�ering, Initial Exchange O�ering, and Security Token O�ering, airdrop service
stands for the addresses that disseminate tokens freely to cryptocurrency users for ad-

vertisement purposes, andgaming service stands for the addresses used by gambling or

recreational gaming organizers.

As shown in Table1, the transactions of the selected addresses span three years and have

exchanged billions of USD worth of tokens. Therefore, we believe that these addresses
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Table 1 Six key agent roles and their basic transaction statistics

Type Number of
addresses
(EOA/CoA)

Average
number of
transactions

Average total
transaction
volume (in USD)

Time span of transactions

Centralized exchange 124 (118/6) 166,110 17,173,430 May 2, 2016 to Jun 29, 2019
Decentralized exchange 201 (0/201) 17,877 665,844 Jun 10, 2017 to Jun 29, 2019
Wallet 316 (0/316) 1316 290,995 Aug 13, 2017 to Jun 29, 2019
Token issuer 210 (14/196) 14,269 801,416 Apr 18, 2017 to Jun 29, 2019
Airdrop service 149 (1/148) 35,158 66,996 Sep 11, 2017 to Jun 29, 2019
Gaming service 25 (3/22) 35,018 1 Nov 23, 2017 to Jun 29, 2019
Total 1025 (136/889) 32,895 2,471,780 May 2, 2016 to Jun 29, 2019

Table 2 Four groups of transaction pattern features for each blockchain address

Group Symbol Description

Volume Min
min Minimum dollars received in a transaction

Min
max Maximum dollars received in a transaction

Min
mean Average dollars received in a transaction

Min
std Standard deviation of dollars received in all transactions

Min
sum Total dollars received in all transactions

Mout
min Minimum dollars sent in a transaction

Mout
max Maximum dollars sent in a transaction

Mout
mean Average dollars sent in a transaction

Mout
std Standard deviation of dollars sent in all transactions

Mout
sum Total dollars sent in all transactions

Mbalance Min
sum …Mout

sum

Temporal Iinmin Minimum interval of received transactions
Iinmax Maximum interval of received transactions
Iinmean Average interval of received transactions
Iinstd Standard deviation of received transaction intervals
Iout
min Minimum interval of sent transactions
Iout
max Maximum interval of sent transactions
Iout
mean Average interval of sent transactions
Iout
std Standard deviation of sent transaction intervals

Network size Tin Number of received transactions
Tout Number of sent transactions
Nin Number of transaction recipients, i.e., out-degree
Nout Number of transaction senders, i.e., in-degree
Nego Number of nodes in the ego network

Network structure R Reciprocity of the current address
C Cluster coe�cient of current address
Dego Density of the ego network
Rego Reciprocity of the ego network

with disclosed identities can be considered representatives in the Ethereum ecosystem.

Evidently, these six types are a non-exhaustive list of the key economic roles in the cryp-

tocurrency economy. Some other major roles are also of interest. For example, the mining

pools coin all the new original cryptocurrency in the blockchain system. However, they

are not included in the current study because of their obvious marks, i.e., the addresses

are stated explicitly in each mined block and thus do not need further characterization.

3.3 Transaction feature extraction
Four groups of transaction features (Table2) are considered when characterizing

blockchain addresses. Volumes and temporal features capture the patterns of transactions

in which the addresses directly participate. Transaction network•s structural features cap-

ture the higher order interaction patterns among the address and its counterparties.
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Volume features include the mean, maximum, minimum, and total value of token trans-

actions initiated and received by the node, respectively (giving eight variables), as well as

the balance on an address. Token values are measured in US dollars using their daily ex-

change rates published on the online cryptocurrency market intelligence platformCoin-
marketcap.com. If a token is not listed at the time of the transaction, its price is treated

as 0. Temporal features include the mean, maximum, minimum, and standard deviation

of the time intervals between the consecutive edges connecting to an address, i.e., the

transactions initiated and received, giving another eight variables.

We use directed networkG = (V ,E) to denote the transaction network constructed from

token transfers. The set of nodesV represents blockchain addresses.E = {e|(Vs,Vt,t),Vs,

Vt ∈ V } is the set of directed edges, in which eache represents an ERC20 token transfer

from addressesVs to Vt in a block with heighth. The block height can also be considered

as the timestamp when the transaction occurs.

Network size features of a node include the numbers of incoming and outgoing edges,

i.e., transactions,Tin and Tout, in-degreeNin , out-degreeNout, and the sizeNego of its 2-

depth ego network. For each nodev, its 2-depth ego networkGego
v = (V ego

v ,Eego
v ) is de“ned

as the collection of nodesV ego
v , including the center nodev and its direct and indirect

neighbors that can be connected to within a distance of 2, by the edge setEego
v . Duplicated

edges between nodes are combined, i.e., there is at most one edge connecting a pair of

nodes in the ego networks.

Network structural features of a nodev include the reciprocity between the node and

its neighbors, i.e., the existence of bi-directional edges between two adjacent nodes,

Rv =
|(u,v)|(u,v) ∈ Eego

v and (v,u) ∈ Eego
v |

|(u,v)|(u,v) ∈ Eego
v or (v,u) ∈ Eego

v | ;

the clustering coe�cient, i.e., the existence of edges between the nodes• neighbors,

Cv =
1

degtot (v)(degtot (v) … 1) … 2deg↔(v)
T(v),

whereT(v) is the number of triangles that contains nodev, degtot (v) is the summation of

its in-degree and out-degree, anddeg↔(v) is its reciprocal degree; the density of its 2-depth

ego network

Dego
v =

m
n(n … 1)

,

wheren is the number of nodes in the ego network andm is the number of edges in the

ego network; and the reciprocity of its 2-depth ego network

Rego
v =

|(u,w)|(u,w) ∈ Eego
v and (w,u) ∈ Eego

v |
m

.

3.4 Training process of machine learning models
Five classi“ers are trained:Logistic Regression (LR),Support Vector Machine (SVM),Mul-
tilayer Perceptron (MLP), Random Forest (RF), andLightGBM. These algorithms are the
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most common choices and best performing ones in previous blockchain addresses iden-

tity classi“cation tasks (mostly on Bitcoin addresses) [23]. The choices and tuning of the

algorithm parameters are given in Sect. 1 of Additional “le1.

We train the model for “ve times and use the average accuracy, macro-precision, macro-

recall, and macro-F1 as the “nal results. In each iteration, 100 addresses are randomly se-

lected from each of the centralized exchange, decentralized exchange, wallet, token issuer,

and airdrop services type, and all 25 gaming services addresses are used as the training

sample. The 2-depth ego networks are constructed using the transactions in the active

period of the center nodev. The samples are further divided into a 80% training set and a

20% testing set. Models are trained, using strati“ed four-fold cross validation on the train-

ing set, i.e., 60% training and 20% validation, and further tested on the test set.

Considering that the number of gaming service nodes are far smaller than other types

of key agents, cost-sensitive learning is used to solve the class imbalance problem. Specif-

ically, we calculate the weight of each node aswi = k/pi, wherek = 1/no. of types, andpi

is the proportion of the number of samples in the type to which samplei belongs in the

entire sample set used to train the model, e.g., 15/315 = 1/21 for gaming services.

4 Results
In this section, we “rst explore the signature features of di�erent types of key economic

agents and then use machine learning models to test the identi“ability of the agents using

their transactional behavior. Finally, we explore the importance of di�erent features in

identifying the agents.

4.1 Key agents’ transaction patterns
The comparison of feature di�erentiability is shown in Fig.2. Each of the data points is

a min-max normalized logged median (marked with ã·) feature value for each type of

economic agents. We have also provided the plots of feature value distributions using their

original scales in Additional “le1 Sect. 3. Some obvious di�erentiation between di�erent

types of agents are discussed in the following paragraphs, though more subtle di�erences

can be inspected by naked eyes from the “gure.

Centralized exchanges (red lines) show distinctions in the total volume of tokens trans-

ferred into the centralized exchanges, e.g.,M̃in
max, M̃in

std, andM̃in
sum, their balancesM̃balance,

the maximum time interval between transactions̃I in
max and Ĩout

max, and the number of in-

coming edgesÑin , i.e., the number of received transactions. These patterns indicate that

centralized exchanges accept many incoming transactions from many users, and the re-

ceived tokens tend to stay in the exchanges• addresses. However, the deposits to and with-

drawals from the centralized exchanges distribute unevenly over time, implying that ex-

change users• activities might be driven by rare market events.

Decentralized exchanges (orange lines) have large incoming transactionsT̃in and the

total volume of withdrawalsM̃out
sum. These features indicate that the users of decentralized

exchanges tend to sell their tokens in many small transactions and buy in large bulks. De-

centralized exchanges are particularly distinguishable in terms of their network structural

features: the reciprocitỹR, densityD̃ego, and reciprocityR̃egoof their 2-depth ego networks

are signi“cantly larger than other types of agents. These features indicate that decentral-

ized exchanges are more popular among sophisticated users who are likely to store tokens

in their own blockchain addresses and regularly transfer tokens among themselves.
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Figure 2 Distribution of the six key cryptocurrency economic agents in four groups of transaction features.
Each of the data points is a min-max normalized logged median (marked with a·̃) feature value for each type
of economic agents. Some types of agents have obvious distinct feature values. Plots of feature distributions
with their absolute values can be found in Additional “le1 Sect. 3

Wallets (green lines) have also shown distinguishable features, such as large incoming

and outgoing transaction time intervals, e.g.,Ĩ in
mean, Ĩout

min , and Ĩout
mean, and large minimum

valuesM̃in
min and M̃out

min of tokens transferred in and out of the wallet addresses, respec-

tively. These features indicate that cryptocurrency wallets are used as traditional banks:

they do not have a high transaction frequency, but on average have larger transaction vol-

umes. Like banks, wallet services usually serve as proxies for users and deal with other key

economic agents directly and, therefore, have a large clustering coe�cientC̃ and larger 2-

depth ego networksÑego.

Token issuers (cyan lines) and airdrop services (blue lines) are both economy agents that

disseminate tokens to investors. However, they exhibit di�erent characteristics in their

transaction behaviors. For token issuers, the level of activities, even in their most active

period, are low. But for airdrop services, since they give out tokens for free to a larger user

group rather than sell tokens to investors, the standard deviation of received transaction

intervalsI in
std, initiated transactionsT̃out, and the out-degreeÑout, i.e., the number of trans-

action recipients, are signi“cantly larger than other key agents. Notably, the median values

of volume features of both token issuers and airdrops addresses collected in our dataset

are close to 0, which is largely because most of the tokens that had been disseminated did

not reach cryptocurrency exchanges and hence were never priced.

Gaming addresses (purple lines) do not show any distinctive features from other key

agents. Their network size features are similar to decentralized exchanges, while the net-

work structural features and the volume features are close to airdrop services and token

issuers.
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Table 3 The prediction of “ve classi“ers to the sample dataset

Model Accuracy Macro Precision Macro Recall Macro F1

LR 0.771 0.756 0.740 0.738
SVM 0.750 0.636 0.657 0.636
MLP 0.840 0.804 0.780 0.785
LightGBM 0.890 0.879 0.853 0.858
Random Forest 0.893 0.888 0.862 0.865

Table 4 The identi“ability of each type of key agent using the random forest classi“er

Type Precision Recall F1

Centralized exchange 0.938 0.910 0.924
Decentralized exchange 0.990 0.980 0.985
Wallet 1.000 0.950 0.974
Token issuer 0.750 0.780 0.765
Airdrop service 0.843 0.910 0.875
Gaming service 0.727 0.640 0.681

4.2 Model classification
The “ve models yield considerably high prediction power to the collected dataset; see Ta-

ble3. The random forest classi“er achieved the highest scores in accuracy (89.3%), macro

precision (88.8%), macro recall (86.2%) and macro F1 (86.5%).

For each type of key agent, Table4 shows the precision, recall, and F1 from the ran-

dom forest classi“er. Centralized exchange, decentralized exchange, and wallet addresses

can all be accurately distinguished from other types of key agents with precisions >90%.

Airdrop services, preserving a certain extent of particular transactional features, can be

identi“ed with >80% probability. However, token issuers and gaming services can only be

identi“ed with 70% precision due to the lack of distinguishable transactional features.

More speci“cally, Fig.3 shows the confusion matrix of the random forest classi“er pre-

dictions. Token issuer addresses are confused with airdrop services with 15% probability,

while gaming services are misinterpreted into token issuers 36% of the time.

4.3 Analysis of informing features
Interpretable models such as RF provide quantitative descriptions of the importance of

features (e.g., predictive power) in classi“cation tasks. Figure4 shows the feature impor-

tance in the random forest classi“er based on the permutation importance. The permu-

tation feature importance is de“ned to be the decrease in a model score when a single

feature value is randomly shu�ed [24]. The larger the decrease, the higher the predictive

power a feature can hold.

Network size features, especially the out-degreeNout and the size of the ego network

Nego, are ranked highest. Temporal feature average interval of sent transactionsIout
mean is

also ranked high. Moreover, transaction network structural features, such as the density

Dego and reciprocityRego of the 2-depth ego networks and the reciprocityR of the target

addresses, are also ranked high. Volume features did not show high feature importance in

the model.

Following the similar logic of permutation feature importance, we adapt a forward and

backward feature selection-like process to investigate the importance of groups of fea-

tures. Table5 shows the prediction results of the random forest classi“er using di�erent

combinations of feature groups, with the same hyper parameter settings. It can be seen
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Figure 3 The confusion matrix of the random forest classi“er predictions. Rows are the labels of samples and
columns are the predicted identities. Exchanges and wallets can be perfectly distinguished from other agents
while token issuers may be confused with airdrop services, and gaming services may be confused with token
issuers

that using all groups of features achieved the highest macro F1 score. When using a sin-
gle group of transaction features, network sizes have the highest predictive power. When
using two groups, the combination of network size and temporal features achieves the
highest identi“ability. When using three groups, that is, emitting one group of features,
the combination that leaves out temporal features provides the lowest prediction, which
indicates that the temporal features provide the most uncorrelated information to other
groups of features in identifying key agents in the cryptocurrency economy.

5 Conclusion and discussion
Key agents are the most signi“cant parties in the cryptocurrency economy. These very few
addresses deal with most of the transactions stored in the blockchains. A full understand-
ing of these entry points could lay a solid ground for future exploration of the behavior of
other economic agents, such as marketplaces, merchandisers, and various illicit activities.

Cryptocurrency transactions that are publicly stored in blockchains o�er a unique
data source to the study of cryptocurrency economy user behaviors. In this article, we
have extracted transaction patterns, e.g., transaction volumes, transactions time interval,
and transaction network structural features, e.g., the connectivity among blockchain ad-
dresses, to characterize and identify six types of key economic agents, namely, centralized
exchanges, decentralized exchanges, cryptocurrency wallets, token issuers, airdrop ser-
vices, and gaming services, in the cryptocurrency economy.

Centralized exchanges, decentralized exchanges, and online cryptocurrency wallets all
show distinctive features. Centralized exchanges act as escrow between the buyers and
sellers, and hence receive large amounts of deposit and hold large balances. Decentralized
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Figure 4 The means and variances of feature importance in the random forest model. The features are
ranked by their permutation importance scores. Network size and structural features and temporal features
scored highest while volume features do not provide much added information in the model

Table 5 Prediction results of the random forest classi“er using di�erent combinations of features

Groups of features Accuracy Macro Precision Macro Recall Macro F1

Volume 0.488 0.675 0.552 0.469
Temporal 0.804 0.767 0.728 0.730
Network size 0.813 0.752 0.737 0.737
Network structure 0.665 0.610 0.612 0.605

Temporal + Volume 0.844 0.827 0.813 0.814
Size + Volume 0.851 0.820 0.820 0.811
Size + Temporal 0.857 0.854 0.820 0.827
Size + Structure 0.848 0.816 0.787 0.789
Structure + Volume 0.790 0.759 0.752 0.749
Structure + Temporal 0.834 0.839 0.765 0.775

Size + Temporal + Volume 0.867 0.853 0.848 0.845
Structure + Temporal + Volume 0.872 0.867 0.833 0.841
Size + Structure + Volume 0.861 0.828 0.813 0.814
Size + Structure + Temporal 0.882 0.889 0.847 0.850

All groups of features 0.893 0.888 0.862 0.865
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exchanges trade with users automatically and, therefore, show signi“cantly higher reci-

procity in their transaction network structure. Online wallet services can be considered

cryptocurrency banks and, therefore, have a higher minimum value of withdrawal trans-

actions. Token issuers and airdrop services both disseminate tokens to investors. However,

since airdrop services give out tokens to a larger user group, they have a much larger num-

ber of outgoing transactions than token issuers. Gaming services typically receive many

incoming transactions but did not show distinctive features compared to the other types

of key agents.

Machine learning algorithms trained on the extracted features showed strong predic-

tive power for the six types of key agents, e.g., macro F1 = 0.865. The prediction results

are robust to di�erent sampling criteria and model hyper parameter settings. However,

even though the exchanges and wallet services can be di�erentiated accurately from other

types of key agents, token issuers, airdrop services, and gaming services can sometimes be

confused with each other. Feature importance analysis has indicated that network size and

structural features possess the highest predictive power for the key agents, while transac-

tion temporal features provide the most independent information from all other groups

of features.

However, the categorization of key cryptocurrency economic agents into six types can

be further discussed. For example, decentralized exchanges and online wallets can be eas-

ily divided further among themselves, probably corresponding to di�erent business mod-

els that the services adopt (see Sect. 4 in Additional “le1 for an exploratory plot).

The signi“cance of blockchain technology is that all user activities are faithfully stored

and accessible to the public, enabling any illicit activities, such as market manipulation

in cryptocurrency exchanges, the hacking of online wallets, and cheating in games, to be

immediately exposed to the public. Though many newly developed cryptocurrencies, e.g.,

Zcash and Monero, see this nature as a weak link in the original Bitcoin design and try to

conceal the traceability of transactions by cryptography designs, we argue that the identi-

“ability of cryptocurrency economy agent roles does not jeopardize the privacy and secu-

rity feature of cryptocurrency but rather reinforces the trustworthiness of the entire cryp-

tocurrency economy. Understanding the economic roles associated with each blockchain

address promotes con“dence in their transaction counterparts and is thus the “rst step

toward creating a fully transparent and self-regulated decentralized economy.
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