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Abstract
Many times the nodes of a complex network, whether deliberately or not, are
aggregated for technical, ethical, legal limitations or privacy reasons. A common
example is the geographic position: one may uncover communities in a network of
places, or of individuals identified with their typical geographical position, and then
aggregate these places into larger entities, such as municipalities, thus obtaining
another network. The communities found in the networks obtained at various levels
of aggregation may exhibit various degrees of similarity, from full alignment to
perfect independence. This is akin to the problem of ecological and atomic fallacies in
statistics, or to the Modified Areal Unit Problem in geography.
We identify the class of community detection algorithms most suitable to cope

with node aggregation, and develop an index for aggregability, capturing to which
extent the aggregation preserves the community structure. We illustrate its relevance
on real-world examples (mobile phone and Twitter reply-to networks). Our main
message is that any node-partitioning analysis performed on aggregated networks
should be interpreted with caution, as the outcome may be strongly influenced by
the level of the aggregation.
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1 Background
One of the most efficient way to analyze a complex network is by partitioning the nodes
into blocks, shedding light on the internal structure of the network. For example, com-
munity detection seeks to decompose a network into blocks of nodes with many internal
edges, and few edges falling between the blocks. This approach allows analyzing large
networks as a sum of dense but weakly interconnected subnetworks. In the last couple of
decades, the wider and wider availability of various large network-shaped data has pushed
the need for new formalisations to the task of community detection, and more efficient al-
gorithms [1].

Often, one same situation can be modelled by several networks of interests, where nodes
represent entities at different levels of abstractions. For example, at one level a node may
represent an individual person, and at another level it may represent the aggregation of
several persons sharing an attribute, for example belonging to the same age class or living
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in the same municipality. In this case, the edge between two aggregation classes is typically
weighted as the sum of the weight of all edges linking the individuals across the two classes.
The reasons for considering an aggregated network rather than a disaggregated one are
many. For instance only the aggregated network may be available to the researcher due to
privacy reasons, or due to limited resources (e.g. only aggregate flows may be accessible
to the measurement, or the disaggregated network may be too large to handle for a given
community detection algorithm). The aggregated network may also be more relevant for
a given analysis, because the aggregation removes possible noise present at the individual
level, and creates statistically robust entities.

In all these situations, it is natural to wonder whether the communities computed on
different levels of aggregation will be comparable in any way. This is the question that we
explore in this article.

That some statistical patterns, for instance correlations, may differ starkly when com-
puted either on a dataset or on an aggregated version of the same dataset is well known
in statistical sciences. Extrapolating observations on categories of individuals to the indi-
viduals themselves is generically called an ecological fallacy, with Simpson’s paradox [2, 3]
or Robinson’s paradox [4] as well-known examples. In geographical sciences, a particular
form of such fallacy is called the Modifiable Areal Unit Problem (MAUP). In the earliest
detected occurrence of MAUP, Gelhke and Biel [5] showed that the value of the correla-
tion coefficient of geolocalised features was influenced by the size of the spatial units used
in their analyses. Openshaw further showed that the results of quantitative spatial models
and statistics may depend highly on the size and shape of the basic spatial units used [6].
This problem has been broadly studied and is the object of extensive literature, see [7] for
a review. The atomic fallacy can be seen as the bias generated by extrapolating patterns
present at the individual level to the level of the group to which those individuals or their
geographical entities belong.

To the best of our knowledge, however, the impact of atomic and ecological fallacies on
community detection has not been considered in the literature, despite its high relevance
in practical applications. This is a gap that we aim to fill in the present paper, by measuring
quantitatively the impact of node aggregation on the community structure in networks.
We first bring a theoretical argument showing that some community detection methods
are more robust than others to node aggregation, in that whenever the communities found
optimal by the method on the finer network happen to be unambiguously aggregated,
the aggregated communities are also found optimal by the community detection method.
Then, we introduce the aggregability index, a quantitative proxy for the robustness of the
community structure of a given network with respect to given node aggregation classes.

We illustrate our considerations on two real-life examples. Both compare networks of
places, where the nodes are geographical areas, and the edges represent interactions be-
tween areas. In these examples it is easy to generate a series of aggregated networks by
merging the places into larger and larger areas, either according to an administrative hier-
archy (districts, municipalities, counties, etc.) or according to coarser and coarser square
grids. In the first real-life example, each node is the mean position of a Twitter user in Bel-
gium, and edges count the reply-to tweets between two such users. Aggregated versions
of this network are produced by merging the positions into larger and larger administra-
tive units or grid cells, and merging the edges accordingly. In the second example, the
nodes are mobile phone towers in and around Brussels (the capital city of Belgium), and
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the edges count the number of phones calls between two towers. Aggregated versions
of this network are also produced by successive merging of the nodes and edges simi-
larly to the Twitter case. The quantitative tools we introduce allow to observe that the
Twitter networks exhibit significantly different community structures at different levels of
aggregation, while the mobile phone networks’ communities are relatively insensitive to
aggregation.

2 Edge-counting objective functions for optimal partitioning
Partitioning the nodes of a network is often performed through optimising an objective
function, and assigning a real number to each partition. We characterise a class of ob-
jective functions that preserve optimality of the community partition under aggregation
whenever possible, as we now define.

Assume we want to detect communities in a weighted, undirected graph G, understood
as a (non-overlapping) partition C of the nodes of G. Let us assume that we are also inter-
ested in optimising a certain criterion, capturing structural patterns of interest, typically
high density of edges inside the communities and low density across communities. Some
other criteria are also possible as, for instance one may want to detect core-periphery
structure or general stochastic block models [8–10]. We want to underline here that there
is a variety of possible criteria whose relevance is strongly dependent on the network and
the application. For instance, some methods integrate a resolution parameter that imposes
a preference for small or large communities [11, 12]. Some methods based on comparison
with a generative model for the graph are highly dependent on the choice of the model
[13]. Even more broadly, different goals for community detection may lead to entirely dif-
ferent objective functions [14, 15]. As many of those methods proceed by optimising a
‘goodness’ criterion, we talk of “the optimal partition”to denote the communities found
to be optimal for the criterion of interest—we suppose for simplicity that the partition is
unique and can be discovered effectively, although in practice most algorithms are only
heuristics.

Assume moreover that a graph G′ is obtained from the aggregation of the nodes and
edges of G, following a partition P of the nodes of G. In other words, if P partitions nodes
of G into k “aggregation classes”, then G′ has k nodes. The weight of the edge (if any)
between node i and node j of G′ is the sum of the weights of all edges of G, between nodes
in the corresponding aggregation class I and aggregation class J of the partition P . In
particular, node i of G′ has a self-loop aggregating the weight of all the edges inside the
corresponding aggregation class I , representing the interactions between different nodes
of the same class. In summary, the weights in G′ are given by

wij =
∑

u∈I,v∈J ,u�=v

wuv, (1)

where wuv is the weight of the edge between nodes u and v, in the initial disaggregated
network G. In all cases, we insist that node aggregation as considered in this paper leads
to weighted aggregated graphs, even when the original graphs are unweighted.

In general, we want to understand the relationship between the communities of G and
G′. Those communities takes place on different graphs, thus a direct comparison is not
possible. We can nevertheless “lift” the communities of G′ back to G, by replacing each
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node in C′ with its aggregation class in G. Indeed a community of G′ is a set of nodes
of G′, each of which represents an aggregation class of G. To state it more formally, if
fP : Nodes(G) → Nodes(G′) is the aggregation function relating every node of the original
graph G to its corresponding node in the aggregated graph G′, then a community C′ ⊂
Nodes(G′) is lifted back to f –1(C′), which is a notation for the set {x ∈ Nodes(G) : f (x) ∈ C′}.
Doing so for each community of G′, we obtain a partition of the nodes of G, which we
denote f –1(C ′), and which we call the “lifting” of C ′. This partition can now be compared
to C .

A specific case of interest is when we want to know the communities of G while we only
have access to G′. Clearly the best scenario is when the aggregation classes are subsets of
the optimal communities in G, i.e. when each community is a union of aggregation classes.
In this case, the aggregation transforms unambiguously the optimal community partition
C of G into a (possibly non-optimal) community partition C ′ of G′. From the knowledge
of the community partition C ′ of G′, it is then possible to recover C as f –1(C ′), the lifting
of C ′. If, moreover the community structure C ′ is also optimal in G′ then we have a natural
way to recover the community structure of the original G: first compute C ′ as the optimal
community structure of G′ then lift it to C . However, whether C ′ is indeed optimal for G′

depends on the criterion used to define ‘(optimal) communities’.
This can be guaranteed if the objective function, evaluated on a given graph G and a

proposed community partition C , only depends on the graph G′′, defined as the graph
obtained by aggregating G with respect to the partition C of the nodes. In other words,
we require that the objective function depends only on the total weight of all edges be-
tween any pair of communities (including from a community to itself ), but not on the way
those edges are distributed inside a community or between communities. We call such a
function an edge-counting function.

This natural result is proved simply. Since we assume that G′ is obtained from G by
aggregation with respect to a partition P , and that the partition C is coarser than P , then
the aggregation of G′ with respect to C ′ coincides with the aggregation of G with respect
to C . Therefore, the edge-counting objective function takes the same value for (G,C) and
(G′,C ′). Thus if C is optimal for G then C ′ is also optimal for G′.

Despite its simplicity, this first result suggests that some methods of the literature are
more appropriate than others in presence of node aggregation. Such edge-counting crite-
ria include modularity [16], the Hamiltonian given by Potts models [17], linearised parti-
tion stability [12], Infomap’s description length [18], conductance [19], Normalised Cuts
[20], and their natural extension to weighted graphs.

On the other hand, methods based on counting paths rather than edges depend on the
way edges are distributed inside a community and not only the number of edges or total
weights. Such methods include Markov clustering [21], Walktrap [22], partition stability
[12], etc., and should be used with the greatest caution in case of aggregated data.

3 Different aggregations lead to different community structures
Even an edge-counting objective function cannot preserve the community structure in
the context of arbitrary aggregation classes. Assume for instance, that the aggregation
classes are chosen randomly, every node being attributed uniformly randomly to one of
the classes. Then, it is reasonable to assume that the aggregated graph will behave like a
complete graph with all edges of similar weight. Such a graph is expected to exhibit either
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Figure 1 Community detection over two examples
of aggregations of a same 4-node network.
Self-loops in aggregated networks are omitted for
clarity. We assume that the community detection
criterion is such that each aggregated network
admits the trivial two-community partition as
optimal (which typically occurs when the self-loops
are heavy enough for the community detection
criterion to split the nodes into separate
communities). The community structure on each
aggregated network lifts to two possible partitions
on the 4-node network, communities based on the
same colour and on the same shape

no community structure, or communities created only by the small random fluctuations
in the weights, retaining no information from the optimal communities of G.

One can also generate examples where well chosen classes generate a graph with en-
tirely different, yet relevant, community structure. See Fig. 1 for an illustration on a toy
4-node network, and two aggregated 2-node networks, whose communities lift back to
different community structures on the fine-scale network. These partitions may or may
not coincide with the community structure computed directly on the fine-scale 4-node
network—depending on the criterion for detecting communities. Here we do not spec-
ify an explicit community detection criterion, but it is reasonable to assume that if the
self-loop (omitted for clarity in Fig. 1) on each node of a 2-node aggregated network is
heavy enough compared to the internode link, then the criterion will find the two 1-node-
community partition as optimal. Suppose for example that on each aggregating partition
(either by colour or by shape) of the figure, the community detection criterion is such that
the 2-community partition is optimal. Suppose as well that the community partition cri-
terion finds the same-colour communities to be optimal on the 4-node network. We see
that this partition is ‘orthogonal’ to the partition that would be lifted from the commu-
nities on the (bottom) same-shape aggregated network. Yet all community partitions are
‘correct’ and relevant for their respective networks: one should refrain from thinking that
the aggregation leads to the ‘wrong’ communities.

A more general example is built with the Kronecker product of an n1-node graph G1

and an n2-node graph G2. In the product graph G1 ⊗ G2, whose node set is the Cartesian
product of the two individual node sets, a node (i, j) is connected to the node (i′, j′) if i and
i′ are neighbours in G1, as well as j and j′ in G2. If the graphs are weighted, then the weight
on an edge in the product graph is simply the product of the weights in the corresponding
edges in G1 and G2. The product graph can be aggregated in two natural ways, in one that
retrieves G1 as aggregated graph, and another one that retrieves G2. Assume that the fine-
grained network is G1 ⊗ G2. Both aggregated graphs G1 and G2 may have a significant
community structure, thus the community detection on both aggregations will provide
interesting, distinct insights on the underlying fine-grained network.

A real-life analogy would involve, for instance, aggregating a social network according
either to geographical location (e.g., counties), or to age class: both may exhibit relevant
community structures explaining on the one hand which counties interact together, and
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the other hand which age classes interact together. Both community structures can be
lifted back to the social network. If all age groups are equally present in each location,
then those two partitions of the social network, although both interesting in their own
rights, are ‘orthogonal’ to each other as in the examples above. Thus at least one of them
will differ sharply from communities found directly on the social network.

In summary, different aggregations of the original network may induce community
structures on the original network that are completely disaligned with one another, with-
out necessarily being ‘wrong’, and that are either similar or dissimilar to the community
structure computed directly on the original graph.

4 The aggregability index
Between the two extremes situations where the aggregating partition is completely aligned
with the community structure in G, or completely orthogonal to it, one finds intermediate
situations where node aggregation is expected to perturb more or less the community
detection.

We propose a metric capable of capturing to what extent node aggregation will preserve
community detection by introducing the aggregability index, η, as the fraction of infor-
mation required to identify the community of a randomly chosen node, that is provided
by the knowledge of its aggregation class:

η =
I(C;P)
H(C)

. (2)

Here H(C) is the Shannon entropy of the community partition, defined in the following
way. As a thought experiment, pick a node uniformly at random in G. The community of
the node is a random variable with Shannon entropy H(C) � –

∑
C∈C P(C) log P(C), with

probability P(C) of a community C being proportional to its number of nodes. Similarly,
I(C;P) is the Shannon mutual information between the community in the partition C and
the random aggregation class in P of a randomly picked node of G.

Our newly-defined aggregability index, η, ranges from 0 to 1. In the η = 0 limit, the ag-
gregation classes are independent from the communities in C , which implies that each
node is aggregated with nodes from other communities. In particular, the community
structure C ′ that we may compute in the aggregated network, once lifted back to the ini-
tial graph G, form communities which are unions of aggregation classes, thus also inde-
pendent from the communities in C . In short, using the notations above, we can write
I(C; f –1(C ′)) = 0.

In the η = 1 limit, the aggregation classes are subset of the communities, thus any edge-
counting criterion will preserve the community structure. In short, we write C = f –1(C ′).

Between these extreme situations, the lifted communities f –1(C ′) are neither indepen-
dent nor fully aligned with C ′. In this case, we observe, due to the fact that f –1(C ′) is a
coarser partition than the aggregation partition f –1(C ′), that I(C; f –1(C ′)) ≤ I(C;P) (in ap-
plication of the so-called data-processing inequality in information theory). In summary,
we have in all cases:

η ≥ I(C; f –1(C ′))
H(C)

, (3)
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which confirms η as a ‘best-case’ estimate of the closeness between the community struc-
ture on the original graph G and its aggregation G′.

We may relax (3) to make it more symmetric in C and C ′, by increasing the denominator:

η ≥ I(C; f –1(C ′))
H(C) + H(f –1(C ′))

, (4)

which can be written equivalently as

η ≥ 1
2

NMI
(
C, f –1(C ′)), (5)

where NMI denotes a popular way to measure the similarity between two partitions, ex-
plained in the Methods (see Eq. 9). Note that if the aggregating partition is very coarse,
with a few large aggregation classes, then we expect that H(f –1(C ′)) 
 H(C), and Eq. 4
is not more conservative than Eq. 3. If, on the other hand, we only have a few nodes
in each aggregation class and H(C) is relatively large then we may heuristically expect
H(C) ≈ H(C ′), and it is more relevant to write

η � NMI
(
C, f –1(C ′)). (6)

There is no reason that these inequalities should be always tight. Assume for instance
that exactly one aggregation class overlaps over two communities C1 and C2 (so that η < 1,
if only by a little). Then in the aggregated network, the node resulting from this aggregation
class will create edges whose weight typically depends on the density of the two communi-
ties C1 and C2. Thus if C1 and C2 are sparse enough, the links so created in the aggregated
network may be negligible so that the optimal community structure will not be modified,
and the ideal situation C = f –1(C ′) that holds for η = 1 and edge-counting criteria still holds.
If on the other hand, the aggregation class cuts into dense communities, this will result in
heavy weights in the aggregated that might disrupt significantly the overall community
structure. We expect therefore that a network that is heterogeneous in terms of density of
links may be potentially more fragile to aggregation, in terms of community structure. In
Section SA.2. of Additional file 1, we investigate the behaviour of the aggregability index
η in synthetic graphs with planted communities of heterogeneous densities.

In the next sections we show empirically how the aggregability index η correlates with
the NMI distance between the optimal partitions found for the original and aggregated
networks on two datasets. Albeit embedded in the same geographical area—Belgium—
these two case studies will reveal different behaviours with respect to aggregation. In both
cases, we know a network G, aggregate it according to administrative units or regular
squares, compute the aggregability index and observe the distorsion of the communities
found to be optimal in the new (aggregated) networks.

5 Methods
We now describe the datasets, the definition of community and the way to compare par-
titions in an empirical approach. Both datasets are localised on parts of Belgium. See Sec-
tion SA.1 of Additional file 1 for a visualisation and description of the territory.
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5.1 Twitter networks
Our first dataset is composed of 291,552 tweets geolocalised on the Belgian territory be-
tween 18,327 Twitter users, obtained as described in Additional file 1, Section SA.2. From
this dataset we build a network N0 as follows. The nodes are the users, and the weighted
edges count the number of reply-to tweets between the two users (without taking the di-
rectionality into account, in order to keep the graph undirected). Each node is associated
to a position, obtained as the barycentre of positions of the user recorded in each sent
tweet. In this way we see N0 as a network linking positions together. By the means of how
the dataset was collected, those positions are spread over the Belgian territory.

A list of aggregated networks was created from N0. The territory of Belgium is divided
into 589 municipalities, and used to be divided into 2,675 smaller municipalities until a
merge took place in 1979. We first build two aggregated versions, where nodes represent
former (Nfm) and current (Nm) municipalities, respectively, by merging all nodes of N0

positioned in the same (former or current) municipality. Edges are merged accordingly,
receiving a weight that aggregates the weights of all corresponding edges of N0.

We also applied a regular grid of 125 m square cells onto the Belgian territory, and
merged into a single node all nodes of N0 positioned in the same cell, creating the aggre-
gating network N125. Increasingly coarser square grids of cell size 250 m to 32 km, were
used in the same way to create the aggregated networks N250 to N32k respectively. The
number of nodes and edges are described in Table S1 of Additional file 1 (Section SA.3).

5.2 Phone networks
Our second dataset counts the numbers of phone calls between towers in the territory
of Brabant, a former administrative unit (province) of 111 municipalities including and
surrounding Brussels, the capital of Belgium. The derived undirected network, called M0,
is composed of 1,168 nodes (towers). A weighted edge between two towers counts the
number of communications between the towers in either direction, for a total of 13M
communications over the network. As each tower is associated with a precise position,
one may again consider M0 as a network between places. We may aggregate those places
into municipalities, thus forming the network Mm, or into cells of regular size 125 m to
32 km, creating the networks M125 to M32k , as for the Twitter dataset. See Table S2 of
Additional file 1, Section SA.3, for the number of nodes and edges of each network.

5.3 Linearised stability maximisation
Communities are intuitively meant here as sets of strongly interconnected nodes with
comparatively few connections between the communities. Among the many formalisa-
tions of this concept, one of the most popular is modularity [23], quantifying the goodness
of a given partition C of nodes as

QC =
1

2m
∑

C∈C

∑

i,j∈C

(
Aij –

kikj

2m

)
, (7)

where m is the sum of all weights of the networks’ edges, and ki represents the (weighted)
degree of node i. Aij is the weighted adjacency matrix of the network, and C (∈ C) repre-
sents a community of the partition.
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We use a generalisation, called linearised partition stability [12], or equivalently Potts
model [17], which introduces a resolution parameter ρ varying from 0 to ∞ as follows:

rlin(ρ,C) = (1 – ρ) + ρ
1

2m
∑

C∈C

∑

i,j∈C

(
Aij –

1
ρ

kikj

2m

)
, (8)

At ρ = 0, single nodes are optimal as communities, while partitions with larger commu-
nities emerge for increasing values of ρ , until a single community is optimal at ρ → ∞.
For ρ = 1, the linearised stability is the modularity, rlin(1,C) = QC . The resolution param-
eter ρ is hereafter called timescale, because linearised stability is formally derived in [12]
as capturing the ability of incumbent communities to retain the flow of a diffusion of ran-
dom walkers across the network for a timescale of the order of ρ . The original Potts model
[17] uses the parameter γ = 1/ρ . As most community detection criteria, linearised stabil-
ity is NP-hard to optimise except for extreme values of ρ , and we use the Louvain method
[24, 25] as a heuristic.

Whenever appropriate, we will use the linearised stability method to detect communi-
ties, because it is an edge-counting criterion, because it includes an extremely popular cri-
terion (modularity, for ρ = 1) as a special case, and because it allows adapting the timescale
parameter ρ in order to create partitionings on different networks with the same or simi-
lar number of communities. There are certainly many methods of merits sharing the same
properties. Our goal in the Results section is not to find the most sociologically relevant
Twitter or phone call communities in Belgium, but illustrate how partitions found with an
edge-counting criterion are modified in presence of aggregation. Therefore, the various
arguments in favor or against the practical significance of the communities delivered by
one or another method are not relevant here.

5.4 Normalised mutual information for comparing partitions
We compute the normalised mutual information [26], between the two partitions C and
D of the same set of nodes, to evaluate how similar they are, as

NMI(C,D) =
I(C;D)

(H(C) + H(D))/2
, (9)

where I(C;D) denotes the mutual information between the two partitions, i.e. between the
set in C and the set in D containing a randomly picked node of the graph. Note that in this
article, the sets of nodes belonging to a partition are either called ‘communities’ (if found
by community detection algorithm) or ‘aggregation classes’ (if defining a way to aggregate
the network).

Similarly, H(C) or H(D) denotes the Shannon entropy of each partition, i.e., the Shannon
entropy of the set of a randomly picked node of the graph. The NMI takes values between
0, for independent (thus maximally dissimilar) partitions, and 1, for identical partitions.

In our case, we also want to be able to compare community partitions at different levels
of aggregation, let us say for example the optimal partition C and D of networks N0 and
N125, respectively. In this case, we lift the communities of N125 into communities of N0,
replacing each node of N125 by its aggregation classes in N0. We call D′ this partition of the
nodes of N0. We now compare the two partitions C and D′ with the quantity NMI(C,D′),
which we will also sometimes denote NMI(C,D) by abuse of notations.
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6 Results
In the following, we illustrate on the two real-life datasets the concepts explained above
on toy networks. Specifically, we show how the aggregation process over the Twitter and
phone call networks strongly affects the community partition in the former case, and
mildly so in the latter. We also show how the magnitude of this distorsion, as the aggrega-
tion grid becomes coarser and coarser, correlates with the proposed aggregability index.

6.1 Twitter networks
Figure 2-a shows the communities extracted from the network Nm of municipalities, using
a timescale ρ = 1. Each figure from 2-b to 2-f shows the spatial footprint of one community
of individual Twitter users. We have used a timescale ρ = 10, in order to illustrate the
case with a number of communities (namely 5) comparable to the 7 communities of the
Nm network. The colour intensity in each municipality represents the proportion of users
positioned in this municipality who belong to the community being represented.

Some communities of N0 (for example those represented on Figs. 2-b and 2-c) show a
remarkable geographical dispersion, and in particular do not seem to match any commu-
nity of Nm (only community 4 in Fig. 2-e seems to match a community in the network of
municipalities in Fig. 2-a, namely the dark blue one).

In order to analyse quantitatively the effect of aggregating data, we systematically test
different levels of spatial aggregation, all at the same timescale parameter ρ = 1. In other
words, for the next analysis, we look at the maximum modularity communities, as approx-
imated by the Louvain method.

Figure 3 shows communities at different levels of aggregation: municipalities, former
(smaller) municipalities and square cells of size 1 km, 2 km, 4 km, 8 km. As the aggre-
gation classes become larger and larger they step over several communities forcing their
re-arrangement and giving rise to different partitionings.

We can see that as the nodes are increasingly aggregated, some communities gathering
distant places, such as the light green community in Fig. 3-a) to 3-c), are re-arranged into
geographically localised communities (light green in Fig. 3-f ).

White areas represent the physical space where no event has been recorded. At the finest
level (N0), nodes are represented as a single point (the average position of a user), thus al-
most all space is white. As the aggregation scale increases, the white space is progressively
removed, being merged with neighbouring space with non-zero activity. We observe that
this effect is more visible in areas with low levels of activity, as the southern part of the
country.

The normalised mutual information (NMI) between the disaggregated network N0 and
several aggregated networks is depicted on Fig. 5. Starting with the first level of aggrega-
tion (125 m), we observe that the NMI already drops rather steeply, even though there is
some fit (NMI ≈ 0.7) between the communities displayed by aggregated units of 125 m
and the non-aggregated ones. Values of NMI continue to decrease with the size of the
aggregation.

6.2 Mobile phone networks
Figure 4 shows the communities found at the disaggregated level of towers M0 (note that
although towers are characterised by a single point, for the visual depiction we represent
them by the Voronoi polygone associated to it), and the aggregated level of municipalities
Mm. The normalised mutual information, NMI, between community partitions found on
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(a) (b)

(c) (d)

(e) (f )

Figure 2 Communities detected in Twitter networks. In (a), the communities extracted from the network Nm

of municipalities, using a timescale ρ = 1. From (b) to (f ), each figure, shows the spatial regions belonging to a
different partition on a community detection performed with a value of scale parameter to give a partition
into 5 communities of individual (non-aggregated) Twitter users. We have used a timescale ρ = 10, in order to
illustrate the case with a number of communities (namely 5) comparable to the 7 communities of the Nm

network. The colour intensity in each municipality represents the proportion of users positioned in this
municipality who belong to the community being represented

networks M0 and Mm is 0.64. Thus, the similarity between the communities found on the
two levels of aggregation is higher than the similarity observed in the Twitter network
between the disaggregated network of users (N0), and the aggregated versions (see Fig. 5).
On Fig. 5 we also notice that the NMI between the communities found on M0 and versions
aggregated with larger and larger cells is consistently higher than in the case of the Twitter
dataset.
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(a) (b)

(c) (d)

(e) (f )

Figure 3 Communities detected in the Twitter network aggregated into grids of square cells of different sizes
(a–b, d, f ), aggregated at the level of former municipalities, Nfm , (c), and at the level of current municipalities in
Belgium, Nm , (e). The timescale parameter ρ is set to 1. As the aggregation classes become larger and larger
they step over several communities forcing a rearrangement of the communities, resulting in another
partition

6.3 Aggregability index and NMI

In Fig. 5, we compare for both datasets, the results of community detection on the origi-
nal network (N0 or M0) with communities found on the networks of square cells of sides
125 m, 250 m, 500 m, 1 km, 2 km, 4 km, 8 km, 16 km and 32 km. We also plot the aggrega-
bility indices, comparing the community structure found on the original networks (N0 or
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(a) (b)

Figure 4 Communities detected in the mobile phone networks, at the disaggregated level of towers M0

(note that although towers are characterised by a single point, for the visual depiction we represent them by
the Voronoi polygone associated to it), and the aggregated level of municipalities Mm . The normalised mutual
information, NMI, between partitions of networkM0 and Mm is 0.64. Thus, the similarity between the
communities found on the two levels of aggregation is higher than the similarity observed in the Twitter
network between the disaggregated network of users (N0), and the aggregated versions (see Fig. 5). The
timescale parameter ρ is set to 0.75, as suggested by another study on the same dataset [27]

Figure 5 In circles is shown the evolution of
normalised mutual information, NMI, between
communities found in the original network prior
aggregation, and communities found in
aggregated networks at several square sizes, and
lifted back to the original network (as explained in
Methods). In squares, the evolution of the
aggregability index, η, between communities and
aggregating partitions at the finest level compared
with the same sizes as before. For the Twitter
dataset (in blue) the initial level corresponds to
users centroids and the timescale is kept to ρ = 1.
For the mobile phone dataset (in pink), the initial
level corresponds to towers. The timescale ρ was
kept constant with a value of 0.75

M0) with the aggregating partitions into square cells of sides 125 m, 250 m, 500 m, 1 km,
2 km, 4 km, 8 km, 16 km and 32 km.

The aggregability index, η, requires the knowledge of the partition into communities
and of the partition into aggregation classes at the finest level, but not of the communities
that are deemed to be relevant to the aggregated graph. It measures to what extent every
aggregation class is a subset of a single community, which is a sufficient condition for
the community structure to be left invariant by the (edge-counting) community detection
method, as argued in this paper.

The shape of the η and NMI curves in Fig. 5 is in line with the following facts:
• If η = 1 then NMI = 1 (because we use an edge-counting criterion for detecting

communities),
• For a small aggregation scale we expect from Eq. 6 that η � NMI,
• For further aggregation scales, we know from Eq. 5 that η ≥ NMI /2.
Low values of η can be seen as a warning signal that communities on the aggregated

network (once lifted back to the original network) will necessarily be significantly different
than the original communities. In Fig. 5 we observe that the value of η for mobile phone
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calls stays remarkably steady until the aggregation scale of 1 or 2 km, while the η value for
the Twitter dataset dips comparably faster—and so does the NMI between the community
partitions at different scales, as expected.

The fact that the NMI curve of the Twitter dataset drops significantly faster than the η

curve shows that Eqs. 5 and 6 need not be tight. In line with the arguments we discuss
above (below Eq. 6), one reason for this discrepancy may be a strong heterogeneity of the
data in terms of density, as Figs. 2 and 3 suggest.

7 Discussion
In this paper, we have studied the impact of data aggregation on community detection in
networks. We have shown on theoretical and empirical examples that data aggregation can
preserve the community structure, destroy it, or highlight another relevant community
structure. We have identified a class of methods able to preserve the community structure
whenever it is aligned with the aggregation classes. We have defined an aggregability index
that measures how aligned the community structure is with the aggregation classes.

The article has been structured as a proof of concept. The examples have focused on the
most standard notion of communities, as highly interconnected set of nodes. Communi-
ties were computed with one of the most popular quality functions, namely modularity
and its multiscale extension. We focused on aggregating geographical coordinates into
spatial units of increasing size, in line with the well-known Modified Areal Unit Problem
in geography.

Nevertheless, from the theoretical considerations, we see that the conclusions may be
potentially relevant for different notions of partitioning (e.g. stochastic block modelling)
with various aggregation criteria, according to any node metadata such as age, school, etc.

Therefore, broadly speaking, we see our investigation as a warning to data scientists
grappling with networks on several levels of aggregation. Our message being that the re-
sults of their analyses may depend starkly on the level and nature of the aggregation.

We chose two datasets behaving differently with respect to aggregation, as an illustra-
tion for our proposed parameter, the aggregability index. The fact that these two datasets
are geographic in nature is incidental in our study, whose scope includes in principle any
kind of network and their aggregations. Nonetheless, this might indicate a potential privi-
leged applicability to space-embedded networks. Example of networks embedded in space
abound, and the interaction between their structure and the way they unfold in space has
triggered some interesting developments, see for example [28, 29]. As to explaining why
the two datasets behave differently with respect to a same aggregation strategy, one can
only formulate hypotheses, whose investigation is beyond the scope of this paper, and may
involve the analysis of other datasets with other community detection methods on the
same geographical area [30]. While the mobile phone calls dataset is shaped by the con-
dition of previous social interaction, this constraint is not present, or to a lesser extent,
in the Twitter dataset. Further differences between the datasets include the heterogenous
density of events in the Twitter network, and the different geographic area (Belgium or
surroundings of Brussels). Even more importantly, the mobile phone network’s nodes at
the finest scale are towers, which already aggregate a large number of users.

The present study is certainly not without caveats. For instance in many cases it may
be that the full network is inaccessible to the measurement (such as in the human brain
connectomes, only available under aggregated form), or too large for most community
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detection algorithms. In this case, a computation of the aggregation index η may not be
available. Also, in many cases the aggregated network is available with weights on the
edges that do not represent the sum of all interactions between all nodes of the aggregation
classes, but only a tresholded version of it, for instance. Ways to cope with this may be a
focus of further research.
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