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Abstract

Since 2008 the number of individuals living in urban areas has surpassed that of rural
areas and in the next decades urbanisation is expected to further increase, especially
in developing countries. A country’s urbanisation depends both on the distribution of
city sizes, describing the fraction of cities with a given population (or area), and the
overall number of cities in the country. Here we present empirical evidence
suggesting the validity of Heaps' law for cities: the expected number of cities in a
country is only a function of the country’s total population (or built-up area) and the
distribution of city sizes. This implies the absence of correlations in the spatial
distribution of cities. We show that this result holds at the country scale using the
official administrative definition of cities provided by the Geonames dataset, as well
as at the local scale, for areas of 128 x 128 km? in the United States, using a
morphological definition of urban clusters obtained from the Global Rural-Urban
Mapping Project (GRUMP) dataset. We also derive a general theoretical result
applicable to all systems characterised by a Zipf distribution of group sizes, which
describes the relationship between the expected number of groups (cities) and the
total number of elements in all groups (population), providing further insights on the
relationship between Zipf's law and Heaps' law for finite-size systems.
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1 Introduction

The increase of urbanisation rates, generally defined as the increase of the proportion of
people living in urban areas or the proportion of buildings belonging to urban agglomera-
tions [1], is a trend that has happened in waves throughout human history, with a dramatic
acceleration in the last 300 years [2]. In 2015, 56% of China’s population lived in cities, a fig-
ure that has more than doubled compared to 26% of 1990. The Ministry of Housing and
Urban-Rural Development estimates that by 2025 300M Chinese now living in rural areas
will move into cities. State spending is planned on new houses, roads, hospitals, schools,
which could cost up to 600 billion US dollars a year. A great rate of urbanisation is also
expected in Sub-Saharan African countries. As a result, by 2030 it is estimated that the
world’s population will have increased by over 1 billion people most of whom will dwell
in the rapidly growing cities of Asia and Africa [3]. Recent studies show that, on average,
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urban land is expanding at twice the urban population growth rate, resulting in a decrease
of urban population density with time [4].

A quantitative understanding of the mechanisms that drive urbanisation is important
for helping governments and decision makers to plan investments in order to achieve sus-
tainable urban planning and growth. These decisions will have a huge impact on the lives
of millions of people, the economy and the environment. Urbanisation can happen in two
ways: diffusion (or sprawl) and aggregation. Diffusion corresponds to existing cities grow-
ing and increasing in size because of either net migration from rural areas or a greater
rate of natural increase (i.e. birth rate minus death rate) in urban areas. Aggregation cor-
responds to new villages and towns being created in rural areas that were previously con-
sidered non-urbanised. In order to properly characterise urbanisation patterns we should
consider both aspects: the distribution of city sizes, describing the size and growth of ex-
isting cities, and the overall number of cities, describing the abundance and formation of
new urban areas.

The distribution of city sizes is a broad and heterogeneous distribution. Ranking cities
by population, it has been observed [5-7] that the population of the i-th largest city of a
country is approximately equal to the population of the largest city divided by i, i.e. a city’s
rank is inversely proportional to its population. In other words, the fraction of cities with
population larger than x follows Zipf’s law, P(> x) ~ x~%, with o > 1. Previous studies have
shown how Zipf’s law can originate from various models based on cluster growth and ag-
gregation [8—11], the interplay between multiplication and diffusion processes [12], pref-
erential migration to large aggregates [13], pairwise interactions between individuals [14]
and proportionate random growth [15-17], or Gibrat’s law [18, 19].

Compared to the great efforts made to characterise the distribution of city sizes both
empirically and theoretically, much less work has been done to answer the other funda-
mental question about the urbanisation process: What determines the number of cities in
a country? In this paper we empirically investigate the relationships between the number
of cities in a region and some of the region’s properties, such as the region’s total popu-
lation and built-up area. In particular, we consider how the total population (or the total
built-up area) of a region affects the number of cities. This is analogous to Heaps’ Law in
linguistics [20, 21], which describes the empirical scaling relationship between the num-
ber of distinct words, W, in a document and the total number of words in the document
(or text length), N: W ~ NV, where y <1 is the Heaps exponent.

Previous research has shown that Zipf’s law and Heaps’ law often appear together, sug-
gesting that the presence of Zipf’s law implies Heaps’ law. Considering the probability
density function (PDF) corresponding to Zipf’s Law, P(x) ~ ™17, it can be shown [22]
that Heaps’ exponent y is related to Zipf’s exponent o: y = @ if ¢ < 1, and y = 1 otherwise.
However, this relationship does not necessarily hold for spatially extended systems, such
as cities, because evidence of Zipf’s law at the country (global) scale does not necessarily
imply the presence of Zipf’s law and Heaps’ law at the regional (local) scale. In fact, even if
Zipf’s law for the distribution of city sizes holds globally at the level of countries, it might
not hold locally at smaller spatial scales if correlations in the spatial distribution of urban
clusters are present. This would be the case, for example, if urban clusters were spatially
aggregated by size, so that it is more common to find clusters of similar sizes close to each
other compared to the case in which clusters are randomly distributed among the regions,
irrespective of their size. The overall (global) distribution of cluster sizes would not change
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and still be a power-law, but the size distributions in the regions would not follow Zipf’s law
anymore and as a consequence Heaps’ law would not hold. Indeed, this is what happens
in ecological systems, where macro-ecological statistical patterns of species distribution
and abundance display a strong dependence on the spatial scale considered [23]. One of
the most relevant statistics used to characterise the degree of biodiversity of ecosystems
is the species-area relationship (SAR), which measures the number of different species
expected to be found in areas of increasing size. Since the density of individuals per unit
area is constant, the SAR is the equivalent of Heaps’ law for ecosystems, as it measures
the relationship between a region’s total population and the expected number of differ-
ent groups of individuals in the region, where here groups correspond to species instead
of cities. Empirical measurements of the SAR show a different functional behaviour as
the region’s area increases, and this is due to the fact that the shape of the distribution of
species sizes, called the relative species abundance, depends on the spatial scale consid-
ered. While there are various studies on Heaps’ law in linguistics and SAR in ecology, to
the best of our knowledge there is no thorough empirical analysis of Heaps’ law in urban
systems. The aim of this paper is to precisely fill this gap and to investigate the validity of
Heaps’ laws for cities.

There is another reason to investigate the relationship between Zipf’s and Heaps’ laws
for cities. Zipf’s law for the distribution of city sizes usually holds only for the tail of the
distribution, however the fact that in a region the distribution of city sizes has a power-law
tail does not give any information regarding the relationship between the number of cities
in the region and its total population. In other words, when Zipf’s law holds only for large
cities, there is no guarantee that Heaps’ law holds as well. To understand this, consider a
region in which city sizes follow Zipf’s law. If the population of each city is doubled and
hence the total population of the region is also doubled, yet no new cities are created, Zipf’s
law will still be present, albeit with a larger scale parameter (i.e. the minimum city size is
doubled). However, Heaps’ law will not hold in this case, because the total population, N,
is doubled, but the number of cities, C, has not changed.

In this paper, we use a dataset on the population and location of cities globally to as-
sess if Heaps’ law holds for all countries in all continents (except Australia and Antartica),
and to test the predicted relationship between Heaps’ and Zipf’s exponents. Cities can be
defined in many different ways and various relevant properties of urban agglomerations,
including the scaling relationships between population size and urban indicators such as
area of roads and number of patents, depend on the method used to define cities [24, 25].
In particular, the relationship between the number of cities in a region and the region’s
total population, i.e. Heaps’ law, can also depend on the definition of city considered. To
understand how Heaps’ law depend on the definition of city, we use a second dataset of the
spatial distribution of population in the United States that allows us to consider various

definitions of urban clusters and provide additional support to our results.

2 Analytical results

Our aim is to measure the relationship between the distribution of city sizes and the ex-
pected number of cities in various regions worldwide in order to understand if these pat-
terns can be described by a simple null model which assumes that cities are independently
and randomly distributed in space. The only assumption of this null model is the global
distribution of city sizes, i.e. Zipf’s law, which is used to populate an initially empty region.
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Figure 1 Theoretical prediction. Relationship 10t
between the expected number of cities and the
total population for the null model, which assumes a
Zipf law with exponent o = 0.75 and minimum city
size m = 10 for the distribution of city sizes and no
spatial correlations between cities. The thin blue
lines are 100 realisations of the model and the blue
circles denote the average number of cities, (C|N),
for a fixed value of the total population, N. The solid
red line is the theoretical prediction of Equation (1)

Number of cities, (C|N)
=)

and the dashed black line is Heaps' law, (CN) ~ N¥, 0 100 107 108 108 107
which holds in the limit of very large population Total population, N
N> m

One realisation of the model consists in drawing cities from this global distribution until
a given target total size of the region, N, is reached. As soon as the sum of the city sizes
becomes larger than N the drawing stops and the number of cities, C, corresponds to the
number of drawings in this realisation. Repeating this process and averaging over many
realisations it is possible to estimate the expected number of cities for a fixed target total
population N, (C|N). Varying N, one can study the dependence of the expected number
of cities on the region’s total population and assess the validity of Heaps’ law.

A simple calculation shows that, under the assumptions of this null model, Heaps’ law
holds asymptotically for very large populations, as reported in the literature [22]. Addi-
tionally, our calculation allows us to derive a more accurate formula for the relationship
between the number of cities and the total population, which is valid for smaller popula-
tions as well. Let us consider the probability to find a city with population x within a group
of C cities with total population N, p(x|C, N). We can use this probability to compute the
average population of such a group of cities, which is equal to N/C: N = C - (x|C,N),
where (x|C,N) denotes the conditional expectation of x given C and N. Multiplying by
the probability to find C cities in a region with total population N, p(C|N), on both sides
and integrating with respect to C we get N = [ dCp(CIN)C [ dxxp(x|C,N). If the prob-
ability p(x|C, N) can be considered independent of the number of cities when C > 1, i.e.
px|C,N) ~ p(x|N) and thus (x|C, N) =~ (x|N), then the expected number of cities in a re-
gion with population N is (C|N) =~ N/(x|N). Using the assumption that city sizes follow
Zipf’s law with exponent « < 1 and given that the maximum city size cannot be larger than
the region’s total population, we can write p(x|N) = a/(m™* — N"*)x 1" *®(N — x), where
m is the minimum city size and © is the Heaviside step function. From this, we obtain the
following equation relating the average number of cities and the total population:

(CIN) ~ l-« N (m*-N9)
o (N1-« _ml—a)’

1)

where m represents the minimum city size. Note that (C|N) is a function of the ratio N/m.
When the region’s population is very large, N >> m, Equation (1) can be approximated as
(CIN) ~ (N/m)%, i.e. we obtain Heaps’ law. Figure 1 shows 100 realisations of the null
model and the theoretical prediction given by Equation (1) for « = 0.75.

3 Heaps' law for countries
Our first goal is to assess if Heaps’ law holds for all countries in the four most populated
continents. To this end, we analyse the relationship between the number of cities in each
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Figure 2 Heaps' law for countries. (a), Zipf's Law: PDF (y-axis) of city sizes X (x-axis) for all cities in Europe,
America, Asia and Africa. The darker regions correspond to cities with population X > 10°, above which the
distributions are a power law with exponent 8 = 1+« given in Table 1. The dashed lines correspond to

y =x"P_ Distributions have been shifted in the y-axis for clarity.(b)-(c) and (e)-(f), Heaps' law for America,
Europe, Africa and Asia. The following information is displayed for each country: population (x-axis), number
of cities with more than 100 k inhabitants (y-axis), logarithm of the area (marker size) and population density
(color). The black line is a power law fit of the scaling relationship between the number of cities and the total
population; Heaps exponents y are reported in Table 1. (d), The exponent of the Zipf PDF, B (y-axis) and the
corresponding exponent y of Heaps' law for Europe, America, Asia and Africa. Marker size corresponds to the
minimum city population used in determining the values of y and B: values used are 10,5 x 10%,10% and
10%, where 103 is represented by the smallest marker and 10° by the largest. Increasing the minimum city
population corresponds to a decrease in the amount of data used to fit y and f: for a given continent, each
point represents the same data set but restricted to a different range of X values. The black dashed line
corresponds to the relationship between the exponents, B =y + 1

country and the country’s total population. Since most countries have large populations,
we expect that data should follow the asymptotic form of Heaps’ law, C ~ N, if the as-
sumptions of our null model hold. To test this prediction, in Fig. 2(a) we fit a power law
to the tail of the empirical distribution of city sizes for each continent, obtaining the Zipf
PDF exponent 8 = « + 1. Then we fit a power law to the scatter plot between the number
of cities in each country and the country’s total population, Figs. 2(b)—(c), 2(e)—(f), obtain-
ing the Heaps exponent y. Finally, we check if the value of « is equal to y for each of the
continents, Fig. 2(d).

The dataset used to perform this analysis is the Geonames dataset [26], which consists
of the population and geographic location of all cities with more than 1000 inhabitants
worldwide. Data on the area and population of all countries was obtained from World-
bank [27].

Zipf's law We consider four continents: Africa, Asia, Europe and America (North and
South). We find that the distribution of city sizes follows Zipf’s Law for cities above a
minimum population of ~ 10° as shown in Fig. 2(a), where the darker points correspond
to points where population is larger than 10°. The exponents of the PDFs, 8 = 1 + «, for all
continents are displayed in Table 1, along with their errors. We observe that while America
and Europe both satisfy Zipf’s law with exponents compatible with « = 1 within errors,

Asia and Africa have exponents significantly smaller than 1.

Page 5 of 13
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Table 1 Exponents of Zipf's Law and Heaps' Law. Column 1 displays B8 = 1 + «; the PDF exponent of
Zipf's Law with corresponding standard deviation displayed in column 2 for each of the four
continents. Values were calculated by fitting a line to the PDF of city sizes X for each continent,
starting from a minimum population of X = 10° (see Fig. 2(a)). Column 3 displays y; the exponent of
Heaps' Law with corresponding standard deviation displayed in column 4 for each of the four
continents. Values of y and the error were obtained by fitting a line to the logarithm of Heaps' Law;
log(C) =y log(N), for each continent (see Figs. 2(b)-(c) and (e)-(f)). Exponents B and y were fit to the
data using non-linear least squares

Continent B og y oy

Africa 177 0.05 0.78 0.09
Asia 1.94 0.04 0.85 0.05
America 1.96 0.04 0.97 0.07
Europe 2.02 0.05 1.01 0.06

Heap’s law We analyse the relationship between the number of cities in a country, C,
and the country’s population, N, for all African, Asian, American and European countries
(Fig. 2(b)—(c) and (e)—(f)). We fit a power law to these data and obtain the Heaps exponents
y reported in Table 1. To test the validity of Heaps’ Law for cities, we assess the extent to
which Heaps’ exponents y are equal to the exponents« = f—1 from Zipf’s Law. In Fig. 2(d)
we plot y (x-axis) vs B (y-axis) for different values of the minimum city population, where
the exponents are fit to cities with population greater than this minimum population. The
best fit values of Heaps exponent y and Zipf PDF exponent 8 = « + 1 are compatible with
the relationship y = « for all the continents (see Table 1), supporting the validity of the
null model. The theoretical relationship y = 8 — 1 (black dashed line) is better satisfied
when we consider large cities (> 10°), whereas there are significant deviations for small
values of minimum population. This is explained by the fact that the distributions of city
sizes are not pure power laws, but there are deviations from Zipf’s law for small cities (see
Fig. 2(a)).

Heaps’ law in the United States Heaps’ law is further confirmed by considering more
homogeneous sets of regions, like the United States in Fig. 3(a). There is clear evidence that
the number of cities grows proportionally with the state population, whilst there is a small
or indirect relationship between the number of cities and the state’s area or population
density: in the United States, the cities-population, cities-area, cities-density correlation
coefficients are 0.95, 0.04, and —0.08 respectively. In Fig. 3(b) we plot the number of cities
with more than X inhabitants in each United States state, C(N,X), as a function of the
ratio N/X for values of X ranging from 5000 to 5,000,000 inhabitants. All points collapse
on a straight line, confirming that the equation C(N, X) ~ N/X holds for several orders of
magnitude of N and X. This is confirmed for the four continents as well (see see Additional
file 1). We also find evidence of the validity of Heaps’ law throughout time in the state of
Iowa, United States. Historical data shows that between 1850 and 2000 the number of
incorporated places (i.e. self-governing cities, towns, or villages) grew at the same rate as
the state population (Fig. 3(c)).

Spatial distribution of cities 'We use the Geonames database to test another assumption
of the null model about the absence of spatial correlations in the distribution of city sizes. If
cities are randomly and uniformly distributed in space, it follows that the average distance
to the closest city for cities with more than X inhabitants, (d,), is proportional to the square
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Figure 3 Consequences of Heaps' law. (@), The number of cities with more than 5000 inhabitants in the
Unites States is proportional to the state’s population, corr(C, N) = 0.95. The correlations with area (0.04) and
population density (-0.08, see inset) are negligible, as illustrated by the following pairs of states with similar
area or density and very different number of cities: Alaska (A = 1.5M km?Z, C(5k) = 22) vs Texas (A = 0.7M km?,
C(5k) = 392), and Rhode Island (o = 393 km~2, C(5k) = 35) vs New Jersey (p = 467 km™2, C(5k) = 316). (b),
Combining the result from panel (a) with Zipf's law it is possible to estimate the number of cities with more
than X inhabitants in a country with population N as C(N, X) ~ N/X; Heaps' law. As a consequence, the
scattered cloud of points resulting when plotting C(N, X) against N for various X's in the range 5 - 103 =5 - 10°
(inset) collapses on a straight line when C(N, X) is plotted against the ratio N/X. (c), Historical records of the
number of incorporated places (C, red triangles) and the state population (N, blue circles) in lowa from 1850
t0 2000 (source: State library of lowa, state data center). The similar growth rates of C and N entail the validity
of Heaps' law C ~ N during the 150-year period (inset). (d), The average distance to the closest city in the
United States scales as the inverse of the square root of the state’s population density (here all cities with more
than 5000 inhabitants are considered). The asymmetric error bars denote the standard deviations above and
below the average. (e), lllustration of the relationships between total population, number of cities, and their
average distance in lowa and Connecticut. In agreement with Heaps' law, C ~ N%, lowa and Connecticut have
similar populations and a similar number of cities with more than 5000 inhabitants, despite Connecticut
having one-twelfth the area of lowa. In agreement with Equation (2), cities in Connecticut are closer than
cities in lowa because of the higher population density in Connecticut. By rescaling distances such that
Connecticut’s area becomes equal to lowa’s area, the two states would have the same population density and
consequently the same average distance between cities

root of X and inversely proportional to the square root of the region’s population density,
po=N/A:

(de) ~ v XIp. 2)

In fact, when cities are randomly and uniformly distributed in space, the average num-
ber of cities in a region with uniform population density (if measured on a length scale
larger than the average distance between cities) is proportional to the region’s area, or
equivalently the density of cities scales as x ~ C/A. Combining this result with Heaps’
law, C ~ N/X, and observing that the average distance to the closest city, (d.), scales as
the inverse of the square root of the density of cities, we obtain the result of Equation (2):
{de) ~ 11X ~ NAIC ~ JX(AIN) ~ /XTp.

Figure 3(d) shows the average distance to the closest city with more than X = 5000 inhab-
itants for the United States’ states as a function of the state population density, and con-

firms the scaling behaviour predicted by Equation (2). An identical analysis using African,
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Asian, American and European countries provides further support for this scaling behav-
ior (see see Additional file 1).

This finding supports some of the conclusions of the Central Place Theory of human
geography [28, 29], whilst disproving others. On the one hand, it is true that for regions
with a given population density the larger the cities are, the fewer in number they will be,
and the greater the distance, i.e. increasing X in Equation (2) results in a greater average
distance (d.). On the other hand, the average distance between cities of a given size X is
not the same for all the states, but depends on the state’s population density: cities of a
given size are closer in densely populated states than in sparsely populated ones, i.e. for
a fixed city size X and state area A the distance between cities decreases as the inverse
square root of the state population, N (see Fig. 3(d)).

4 Heaps’ law at short spatial scales

To understand how Heaps’ law depends on the definition of city, we analyse data from
the Global Rural-Urban Mapping Project [30] (GRUMPv1) consisting of estimates of the
residential population of the United States for the year 2000 at a resolution of 30 arc-
seconds (~ 1 km).

Extraction of urban clusters In the GRUMP data the spatial distribution of population
is represented as a matrix, whose elements denote the estimated number of individuals
resident within each of the grid cells. We apply a city clustering algorithm [10] (CCA) to the
GRUMP data and define cities as spatial clusters of neighbouring grid cells with population
over a given threshold, 71, which also corresponds to the minimum cluster population. We
vary the parameter m over the interval [10-600] persons per km?, clustering adjacent cells
with population above the threshold m. As a reference, the official definition of urban area
adopted by the United States census considers values of m between 193 and 386 people
per square kilometer [31]. In the range of m considered, the numbers and sizes of clusters
obtained with the CCA are very different. Panels b-d of Fig. 4 show the clusters within a
square region in the Midwestern United States (Fig. 4(a)) for m = 28,129, and 599. Both
the number and areas of clusters decrease as m increases and some large clusters split into
multiple smaller clusters.

Global distribution of areas and populations of urban clusters Additionally, the gridded
population data allows us to consider the area of urban clusters [32—34], a, as the rele-
vant size variable, alternatively to population, x. Indeed, the distribution of urban areas
is also known to follow Zipf’s law with exponent o >~ 1, hence our null model predicts
that the number of clusters is given by Equation (1), where N now denotes the total ur-
banised area and « the exponent of the distribution of city areas. The area and population
of urban clusters are strongly correlated variables. The expansion of urban areas can be
characterised by measuring the scaling relationship between the area, 4, and population,
x, of the clusters. We use the gridded population data to measure urban sprawl for dif-
ferent definitions of city, i.e. different values of the CCA parameter m (see Fig. 4(e)). We
observe that the scaling relationship between a and x has the following dependence on
the minimum population parameter m:

a~ (x/m)®". (3)
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Figure 4 Scaling properties of urban clusters. (a), Portion of the GRUMP dataset representing the distribution
of population in a region of the Midwestern United States. The color denotes the logarithm of the population:
light yellow for high population, dark blue for low population. (b)-(d), Urban clusters in the region depicted in
panel (a) obtained applying the City Clustering Algorithm for different values of the minimum population
parameter: m =28 in (b), 129 in (c), 599 in (d). (e), Scaling relationship between area and population of
clusters. The different colors denote different values of the CCA parameter m (see the legend of panel (f) for
the m values). The points indicate the average area of clusters with a given rescaled population. Data are fit to
the power law in Equation (3) and the legend reports the values of the scaling exponent w for the various m.
(f), Counter Cumulative Distribution Functions of cluster areas. The different colors denote different values of
the CCA parameter m (see the legend for the m values). The grey line is a power law with exponent -1 as a
guide for the eye. (g), Counter Cumulative Distribution Functions of cluster populations, x (dashed curves),
and rescaled populations, (x/m)®™ (solid curves). The grey line is a power law with exponent -1 as a guide
for the eye

Note that the area of a cluster scales with the ratio x/m, which represents the maximum
area that a cluster of population x can have, given m. The scaling exponent @ depends
on m. In particular, w(m) is an increasing function of m, which grows from 0.66 to 0.88.
The sublinear scaling (w(m) < 1 for all m) between a cluster’s area and population implies
an increase in the population density of large clusters: the population density scales as
x/a = x1~®, which is a growing function of x when w < 1. This result may support the
hypothesis on the economies of scale in the use of urban space. In fact, in large clusters
space is organised more efficiently than in small clusters, so that each square kilometre
of land can host a larger number of individuals, hence increasing the cluster’s population
density [24]. Urban sprawl happens when the exponent w has a large value, indicating a
reduced efficiency in the utilisation of space as the size of clusters grows. The fact that w
increases with m means that the estimated urban sprawl is bigger when clusters are defined
using a large m and smaller when m is small. The scaling relationship between area and
population of clusters, Equation (3), implies that the Zipf exponents of the distributions
of cluster areas and populations, &, and o, respectively, are not independent, but related
by the equation «, = «, - w(m).

The empirical distributions of cluster areas for different values of the CCA parameter m,
shown in Fig. 4(f), indicate that the Zipf exponent for the areas is &, >~ 1, independent of m.
The distributions of cluster populations, instead, have exponents that depend on . If the
populations are rescaled by m and elevated to the power of w(m), the curves for different
m collapse on the same power law with exponent «, = 1, verifying the relationship o, =
a, - w(m) (see Fig. 4(g)).
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Figure 5 Zipf's law and Heaps' law for urban clusters. (a), Counter Cumulative Distribution Functions of areas
of the clusters in all United States regions of 128 x 128 km? having urbanised area up to 5%. Regions are
grouped in six groups according to their total urbanised area, Ng, and the CCDFs of each group are computed
separately for the different values of the CCA parameter m (see the legend in Fig. 4(f) for the m values). (b),
The CCDFs of panel (a) collapse on the same curve when the axes are properly rescaled. The dashed grey line
is a power law with exponent -1 as a guide for the eye. (c), Average number of clusters as a function of the
total urbanised area, Ng, for the 128 x 128 km? United States regions (circles). The lower and upper values of
the dashed areas denote the 10th and 90th percentile of 100 realisations of the null model. For clarity, curves
have been shifted by m? along the x-axis. (d), Counter Cumulative Distribution Functions of populations of
the clusters in all United States regions of 128 x 128 km? having urbanised area up to 5%. Regions are
grouped in six groups according to their total population, Ny, and the CCDFs of each group are computed
separately for the different values of the CCA parameter m. (e), The CCDFs of panel (d) collapse on the same
curve when the axes are properly rescaled. The dashed grey line is a power law with exponent -1 as a guide
for the eye. (f), Average number of clusters as a function of the total population, Ny, for the 128 x 128 km?
United States regions (circles). The lower and upper values of the dashed areas denote the 10th and 90th
percentile of 100 realisations of the null model. For clarity, curves have been shifted by m? along the x-axis

Local distributions of areas and populations of urban clusters To understand how the
number, areas and populations of clusters depend on the CCA parameter m, we perform
a systematic analysis of the GRUMP data, considering regions at a smaller spatial scale.
Our first result is that the assumptions of the null model hold locally for small regions
of size 128 x 128 km?: the local distributions of city sizes are power laws with the same
exponent as the global distribution at the country scale, with cutoffs that account for the
finite sizes of the regions.

We divide the United States into non-overlapping square regions of size L = 128 km and
obtain the urban clusters in each region applying the CCA for all values of m between 10
and 600. We group together regions with similar total population, N, and built-up area,
N,, and compute the distributions of cluster sizes (i.e. populations and areas) separately
for each each group (see Fig. 5(a), (d)). In order to avoid finite-size effects, we only con-
sider regions with low urbanisation, having a percentage of built-up area smaller than 5%
(this condition is satisfied by 49% of the regions for m = 10 and up to 93% for m = 599).
If the assumptions of our null model hold, the Counter Cumulative Density Functions
(CCDFs) of cluster areas and populations should be truncated power laws and have the
forms P(> a|N,) ~ a=*f,(a/N,) and P(> x|N,) ~ (x/m)=**"f,(x/N,), where f, and f, are
scaling functions that rapidly go to zero when their argument is larger than 1, to account
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for finite-size effects. The scaling collapses shown in Fig. 5(b), (e) provide a validation to
the predicted functional forms of the CCDFs.

Heap’s law for urban clusters Our second result is that the average number of clusters is
related to the total size of the region as predicted by the null model and Equation (1). This
means that cities are randomly distributed among the regions, even at small spatial scales.

For each group of regions with similar total population, N, and built-up area, N,, we
compute the average number of clusters for all values of the CCA parameter m, (C|N,, m)
and (C|N,, m), and we check if these empirical values are compatible with the estimates
of the null model. To this end, we draw (with replacement) city areas and populations
from the respective empirical distributions, until given target total values, N, and Nj, are
reached. We repeat this procedure 100 times for increasing values of N, and N,. For each
value of total area and population, N, and N,, we compute the mean number of cities ob-
tained for those total values, (C|N,) and (C|N,), and the confidence intervals defined as
the 10th and 90th percentiles of the number of clusters obtained in the 100 realisations.
We observe that the empirical estimates of the average number of clusters lie within the
null model’s confidence intervals (see Fig. 5(c), (f)), confirming that empirical data is com-

patible with a random distribution of clusters within the regions.

5 Conclusion

We empirically verified that a null model of urbanisation where cities are randomly dis-
tributed in space produces correct estimates of the expected number of cities in regions
of various sizes worldwide. This fact does not mean that cities are non-interacting and
independent of each other. On the contrary, it is apparent that urban systems are strongly
interacting [35]: internal migrations, for example, create a dependency in the dynamics
of the population in various cities, with some cities increasing in size because others are
decreasing. However, our analysis demonstrates that such interactions do not produce
urbanisation patterns characterised by significant spatial correlations. It is important to
highlight that this result has been obtained for regions of 128 x 128 km? in the United
States, and further analysis on global urbanisation patterns at higher spatial resolution
is needed to test the validity of this conclusion in other countries and at smaller spatial
scales. Moreover, this result is expected to hold in regions where urbanisation is not too
high. In the analysis of gridded population data we only consider regions with low ur-
banisation, having a percentage of built-up area smaller than 5%. This is done because in
highly urbanised areas deviations from Zipf’s law and Heaps’ law are inevitable. In fact, in
regions with large population density, urban clusters start to merge and, as a result, when
population keeps increasing the number of clusters decreases instead of increases. Also,
the distribution of cluster sizes loses its characteristic power law tail because of the emer-
gence of one giant cluster. The characterisation of urban patterns in the regime of large
population density requires the development of a different theoretical framework, which
is a task left for future work.

Many empirical lists of cities, including the one we consider in this study, may suffer from
issues that can lead to inaccurate estimates of the number of cities in a country because,
for example, some cities may appear multiple times with different names whereas other
cities may be missing. To understand the impact of these issues, we performed numerical
tests where we randomly duplicated and removed cities and verified that the result of the
scaling relationship between number of cities and total population is not affected.
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The theoretical result relating the average number of cities to the total population, Equa-
tion (1), is completely general and applicable to all systems characterised by Zipf’s law for
the distribution of group sizes, including word counts, the size of biological genera, the
number of employees in firms and views/popularity of Youtube videos. Equation (1) is
particularly useful in the analysis of finite-size systems in order to account for deviations
from Heaps’ law.

Recently, Zipf’s law has been shown to be connected to Taylor’s law, which describes the
scaling between fluctuations in the size of a population and its mean [36]. This suggests the
presence of a general connection between the three laws, Zipf’s, Taylor’s and Heaps’ laws.
Further research is needed to determine how the three laws can emerge from processes
for the evolution of city sizes that incorporate birth, death and migration events.

Additional material
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