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Abstract
It is well reported that long commutes have a large detrimental effect on people’s
health and on the economy of cities. Interestingly, despite the strong impact on our
daily lives, a simple way to measure the quality of urban transportation is still
unknown. We performed data analysis on the transportation network of two large
cities (Fortaleza and Dublin). By dividing each bus trajectory into equal pieces of
space, we determine the distribution of time intervals for each trip, and we propose
that the heterogeneity of the time distribution can be used to characterize the quality
of that trip. Inspired by the use of the Gini coefficient to quantify the inequality level
of income distribution, we used the Gini in order to characterize the heterogeneity
level of the time distribution. We demonstrated that Gini coefficients are strongly
correlated with peak usage of the mobility system, as well as the schedule delays in
the system. Finally, our method can be used to find highly heterogeneous trips which
have a large negative effect on the urban mobility and can help find new directions
for new public planning strategies.
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1 Introduction
A long commute has become one of the major problems of modern urbanization. In the
largest cities in Brazil the average commuting time is 41 minutes [1]. In these areas, the
poorest travelers spend almost 20% more time commuting than the richest and 19% of
the poorest commute for more than one hour, while for the richest it is only 11% [1]. This
increased time has a large health and economic impact. Studies in the U.K. show that a
20 minute increase in a commute is as bad as a 19% pay cut in regard to job satisfaction
[2]. While car users are the majority of the population, bus commuters feel the negative
impacts of a longer commuting time more strongly than users of other modes of transport
[2].

The study of mobility is an active area of research in the statistical physics community.
Models first applied on transport problems in fluid dynamics were later used to under-
stand animal and human mobility [3]. Random walks and reaction–diffusion models were
first studied in fluid dynamics and dynamical systems [4]. However, certain special classes
of random walks, like Lévy flights, where the lengths of steps are chosen from a power–
law tail distribution, are proposed as the mechanism behind animal foraging and human
mobility [5–7]. An initial study on human mobility used bank note dispersal as a proxy
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for human movement and verified that the distribution of distances between consecu-
tive sightings of bank notes is fat tailed [7]. Recent studies using mobile phone calls show
similar results [8].

This pervasive heterogeneity in mobility distribution is not a privilege of human and
animal mobility. Fat tailed distributions are a well known characteristic of natural and
economic systems. The Pareto Principle states that roughly 80% of the wealth is owned by
20% of the population [9]. This principle came about directly from the power–law tail dis-
tribution of incomes [10]. The level of income inequality or heterogeneity is measured by
the Gini which is a measurement of statistical dispersion that can range from 0 (complete
equality) to 1.0 (complete inequality) [11].

Here we used a dataset of bus trajectories in order to study the time distribution among
them. We investigated if the Pareto Principle still holds for urban transportation mobility,
namely, does the bus in order to complete its journey, use 80% of the total time with only
20% of the space of its trajectory? We found that this proportion varies for different lines,
going from more homogeneous bus routes with 35% of time for 20% of space, to more het-
erogeneous with 65% of time. We then calculate the Gini coefficient as a heterogeneity and
show that it is correlated with schedule delays. We also see that the high heterogeneity of
time is a consequence of a power–law distribution, with different exponents for each trip.
Since there is a mathematical connection between the Gini and the power–law exponent,
we show that when the exponent of a bus trip is close to –2.0 we also have a high proba-
bility of schedule delays. These highly heterogeneous trips have a large detrimental effect
on urban mobility. However, this also gives us the opportunity for a micro–intervention
approach, where we can change a small fraction of the bus routes to have a high impact
on the final quality of transportation.

2 Methods and data
This research is based on data analysis from Fortaleza and Dublin. Fortaleza is a Brazilian
metropolis in which the main form of public transportation is via bus, counting on about
350 bus routes spread throughout the city, which covers an area of 314 km2. In order to
adapt the Gini coefficient for a transport application, two datasets were used regarding the
Fortaleza bus system, namely, the GPS positions of the buses and the passenger validation
records (VAL). The data were obtained through the Fortaleza’s city hall and refer to the
period between the 12th and the 17th of April 2016, from Tuesday to Sunday. These data
have been noteworthy used in several studies in the last few years [12–16]. The first is the
largest dataset of the two and consists of about 21M GPS points. It is possible to recover
the route of the vehicles throughout the day, because the location of the bus is recorded
over a period of time approximately every thirty seconds. In addition to the georeferenced
location, this data has the time at which the GPS point was recorded and which vehicle is
located at that particular point.

The second dataset is the VAL. The bus travelers in Fortaleza can use a smart card as
a ticket to pay for their trips. Thus, every time a passenger uses their smart card, a vali-
dation is recorded. Fortaleza city hall stores, together with this information of the user’s
validation, the time of departure and arrival of vehicles for each bus route. That is, every
time a journey starts and ends, an employee of the bus company takes note of the time
the journey began and finished. However, as this work is concerned with analyzing only
the journey performed by the bus, from this data, only the information when the journeys
begin and end will be utilized.
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Because the vehicle id is present in both datasets, they can be cross referenced to gen-
erate another dataset (TRIP) containing the route made by each vehicle on the several
bus routes. This process is done by obtaining the GPS points of a particular vehicle that
has performed a journey within the range identified in the chronologically ordered VAL
data. As a consequence, TRIP contains information of the variation of distance (�s) and
time (�t) between pairs of consecutive GPS points of each journey. About 238.000 bus
journeys were generated.

In order to remove noise, a filter was applied to the TRIP data. It was found that either
there were no GPS points for a particular trip or the vehicles were traveling at certain
moments at a very high speed or traveling for a very short distance or taking too much or
too little time to travel. Therefore, the following criteria were adopted to exclude trips from
the analysis: trips in (1) at some point, the vehicle traveled at speeds greater than 120 km/h;
(2) trips that have a route of a distance of less than 5 km and lastly, (3) trips that required
less than 30 minutes or more than 3 hours. After the filtration process, approximately 91
thousand trips remained to be analyzed.

Data from Dublin were obtained from Ireland’s open data page [17]. There is a file with
GPS positions of the city bus from January 1st to January 31st, 2013. Altogether, there
are about 37 million GPS points. The data contain the geographical positions (latitude
and longitude), the date and time that such positions were recorded, the vehicle identifier,
the bus route identifier and the trip identifier. Therefore, to reassemble the trips it was
necessary to separate the GPS points by the id of the trip and to order them by the date and
time, generating the dataset TRIP for Dublin. This TRIP dataset also contains the distance
(�s) and time (�t) variations between each pair of consecutive GPS points, similar to what
was done with the Fortaleza TRIP dataset. In order to remove the noises of the data the
same 3 filters used in the Fortaleza data were applied. In the end, the travel archive was
left with 65.000 records.

The Gini coefficient, used for income distribution, measures the distribution of wealth of
a community, a value that varies between 0 and 1. In the calculation of the Gini, the fraction
of the accumulated wealth of a given fraction of population is considered. From these
values one can construct a graph with a characteristic curve, called the Lorenz curve. This
curve represents the relative distribution of one variable in relation to another, which in
this case is the distribution of wealth in the population. It is common to visualize, together
with the Lorenz curve, the function y = x (identity function or line of equality), which
represents a situation of perfect equality in the distribution of income of the population,
that is, everybody earns an equal amount. Therefore, the area between the Lorenz curve
and the line of equality represents the Gini coefficient. Inspired by the concept of Gini
index in economics [11], we applied it to the TRIP datasets in order to measure the level
of heterogeneity in the traveling times of the vehicles. For this, the original path, shown in
Fig. 1(a), is recovered, which is then divided into pieces having an associated �s and �t.
However, it is necessary to analyze the distribution of times demanded in equal distance
variations, therefore we divide every path into constant lengths �s∗. The time value �t∗

for each new piece is obtained by linear interpolation between each consecutive two values
of the original data, as shown in Fig. 1(b). Once the values of �t∗ for each �s∗ of a trip are
calculated, we performed a cumulative sum on the descending order values of �t∗. Each
value of the cumulative sum is normalized by the total sum of �t∗ (total duration of the
bus trip). The same is done for the values of �s∗. In Fig. 1(c), we show an example of the
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Figure 1 Model and processing of bus travel data. (a) Conceptual representation of the trajectories of a trip
performed by a bus. On the route, in relation to the original data, the variation of time (�t) and distance (�s)
between each consecutive GPS point is illustrated. (b) The same path in (a) is shown, however, it is divided
into constant lengths (�s∗) and the new time values (�t∗) between each constant length are calculated
from a linear interpolation. (c) The Lorenz curve L(s) generated artificially to follows the Pareto Principle is
illustrated. This curve is constructed by performing the cumulative sum of the constant distances (�s∗) all
divided by total length on the x-axis. On the y-axis we have the cumulative sum of the descending order time
values (�t∗) normalized by the total time. The function y = x (dashed line) is the equality line E(s) and two
times the area defined between the Lorenz curve and the equality line is numerically equal to the Gini
coefficient. The Gini value accounts for the heterogeneity of travel times distribution. The continuous vertical
line points to the 80/20 ratio of the Pareto Principle

relation between the cumulative �t∗ and the cumulative �s∗. As already mentioned, this
is the so-called Lorenz curve L(s), which indicates, in its original application in economics,
what percentage of people hold a given percentage of a country’s wealth. In the context
of transportation, it would indicate the percentage of the trajectory traveled as a function
of the percentage of the time for the trip. This is the reason for using constant distance
variations (�s∗), since each value �s∗ would represent one person and each �t∗ associated
with a �s∗ would represent the wealth of the person in question.

Also in Fig. 1(c), we can see a dashed line which represents the line of equality E(s). If
a vehicle travels the whole trajectory at a constant speed, for example, the Lorenz curve
of that trip will coincide with the equality line, indicating the maximum equality of the
values of �t∗. The other extreme is the case where all the time demanded in the whole
course was spent on only one piece of �s∗. In the analogy of the initial study of income
distribution of people in a country, it is as if the whole wealth of a country belonged to
only one person. The value of the Gini coefficient G is then calculated by measuring the
area between the Lorenz curve and the equality line, that is

G = 2
∫ 1

0

(
L(s) – E(s)

)
ds, (1)

with 0 ≤ G ≤ 1.
This measures whether a vehicle is taking too much time from the total trip time to

travel the distance necessary to end the trip. We verified if the Pareto 80/20 proportion
exists, which would indicate whether it is necessary to travel 20% of the total trip length
in 80% of the trip time. If at least a similar behavior to this is found, a certain imbalance in
the execution of the trip is pointed out. Thus, the Gini coefficient can be a good indicator
of the quality of the transport journey.

Figure 2(a) shows a heat map of several trips made from 7:00 AM to 9:00 AM for Fort-
aleza. The variable analyzed in this map is �t∗ and the logarithmic scale is indicated inside
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Figure 2 Map of time in logarithmic color scale. (a) Several morning bus trips are shown in Fortaleza. The
trips were divided into constant spaces of �s∗ = 10 m and the colors plotted on the map are the values of
log10 �t∗ , with their values indicated in the scale. (b) One trip from the several in (a) is selected and
highlighted on the map (a). The start and end locations of this trip are also illustrated. The route of this trip is
performed by the 75 bus route with �s∗ = 10 m and the colors shown in (b) correspond to the values of �t∗
in a logarithmic scale. (c) Time series of �t∗ of the interpolated path of the trip em (b). Each value of the series
represents the amount of time demanded to go through each respective piece of 10 m

the map. In Fig. 2(b) one trip is selected that belongs to the map in Fig. 2(a) and its time
series is illustrated in the Fig. 2(c), representing the values of �t∗ for this particular trip.

3 Results
The aim here is to use the Gini coefficient as an indicator to characterize the level of het-
erogeneity in urban transportation. For this, it is necessary to analyze the �t∗ values of
each trip. Here we initially investigate the presence of the Zipf ’s law in the distribution
of �t∗. This law was originally applied to the field of linguistics [18] and states that the
frequency of a word in a language is inversely proportional to its occurrence in a given
text, such that the highest occurring word will be ranked 1, the second ranked 2, and so
on. Generally, the frequency f of a word is given by: f = 1/rs, where r is the rank of the
word and s is an exponent that characterizes the distribution. In Fig. 3(a) we illustrated
Zipf curves of various trips, a curve built from the rankings of each �t∗ value. The values
of �t∗ are ordered from highest to lowest and assigned a rank for each one, in which the
highest time has rank 1. If the axes are placed in a logarithmic scale it is noticed that a
straight line is formed, demonstrating that �t∗ follows a Zipf distribution. In Fig. 3(b) the
Lorenz curves of each trip indicated in Fig. 3(a) are shown. We can compare the 80/20
Pareto Principle ratio to the proportion indicated on our Lorenz curve. For example, the
most heterogeneous trip has a Lorenz curve that uses about 70% of the time to travel 20%
of the space. Such disproportion may reinforce the concept that the Gini clearly indicates
an inefficiency in the trip execution.

Another way to understand the usefulness of these methodologies in transport applica-
tions is to calculate the Gini coefficient of each bus trip in Fortaleza and Dublin. Figure 4(a)
shows the behavior of the average Gini per time of the day. The mean (μgini) and the stan-
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Figure 3 Zipf and Lorenz curve of some trips. (a) Zipf plots of several trips of different bus routes. The Zipf
plot is constructed by sorting decreasingly the values of �t∗ . The values of �t∗ are obtained dividing the
course of each trip into constant spaces of �s∗ = 10 m. Thus, in (a), the y-axis corresponds to the values �t∗
and the x-axis is the rank of each �t∗ both in logarithmic scale. It has ranking 1 the highest value �t∗ ,
ranking 2 the second highest value �t∗ and so on. The Zipf plot shows a pervasive fat-tail characteristic for
the interpolated time values �t∗ , where the dashed line corresponds to the line with slope equals –0.5 in
log–log space. (b) The Lorenz curves L(s) of the trips shown in (a), where each color represents the same trip.
The equality line E(s) is shown as a dashed line and is used to calculate the Gini coefficient values for each trip,
namely, being twice the area between E(s) and L(s). Each curve gives a Gini coefficient, one for each trip,
representing the heterogeneity of the interpolated times. The continuous vertical line indicates where the
80/20 ratio of the Pareto Principle occurs

Figure 4 Gini coefficient by time of day and delay. (a) The variation of the Gini coefficient with time during
the day. The continuous lines (blue for Fortaleza and red for Dublin) represent the average Gini (μgini) for bins
equally spaced for all trips of the workdays of a week in Fortaleza and Dublin. The shaded area around the
average represents μgini ± σgini , in which σgini is the standard deviation of the Gini for bins equally spaced.
The plot corroborates the expectation that the largest values of Gini are in the rush hours. (b) The correlation
between Gini coefficient and fraction of time delay for Fortaleza. Each point represents a trip and for each one
a delay value D is calculated. The Dmeasures the deviation of the expected value for the total time of that bus
trip. The continuous line represents the Nadaraya–Watson non-parametric regression and the dashed line is
the linear regression. The linear regression shows a relation of G = 0.38 + 0.24 ∗ D and the inset is the
distribution of travel delay values. (c) The same correlation as (b) for Dublin. The linear regression shows a
relation of G = 0.44 + 0.13 ∗ D and the inset is the distribution of travel delay values

dard deviation (σgini) of Ginis were computed for bins of same sizes. The dashed areas
around the average represent μgini ± σgini. As depicted, the two peaks present in Fig. 4(a)
illustrate the rush-hour periods, one peak in the morning and the other in the evening,
where there is a high amount of commuting of people/vehicles. Thus Fig. 4(a) ratifies the
expectation that higher Gini values are concentrated in the rush hour, showing that the
Gini captures this information.

Here we compare the Gini coefficient with the schedules programmed for each trip, in
order to analyze if it correlates with the travel delay. For a vehicle Vi performing a specific
route, we define the travel delay D as the deviation fraction of the average time to finish
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Figure 5 Characterization of the distribution times of bus route 650I. (a) The time series (�t∗) for five
different trips of the bus route 650I shown in a logarithmic color scale. The largest values of �t∗ are
approximately concentrated in the same regions. (b) The distribution of the values �t∗ for the same five trips
are illustrated in logarithmic scale. We performed a power–law fitting for each distribution. We see that each
trip has a different value for the power–law exponent α . The dashed lines are a visual guide with slope –3.0
and –2.0. In (c) we have the relation between the α exponent and the total time that the bus used to finish
the scheduled trajectory. Each point represents a trip of line 650I and the dashed line represents the average
behavior obtained from the Nadaraya–Watson regression. The large values of time trips for low values of α
corroborates the correlation between Gini and time delay D (Fig. 4(b)), since distributions with α → 2.0 must
have Gini close to 1.0

that bus route,

D(Vi) =
Ti – 〈T〉

〈T〉 , (2)

where Ti is the total time of the trajectory of Vi and 〈T〉 is the average travel time for
all vehicles on the same bus route. In Fig. 4(b) the plot of the delay versus the Gini for
Fortaleza shows a clear correlation between these two variables, suggesting the possibility
that the Gini can encode information about schedule delays. Figure 4(c) shows the same
information for Dublin.

As an illustrative case, we analyzed a specific bus route from Fortaleza (650I). In Fig. 5(a)
we show the time series �t∗ in a logarithmic color scale for five different trips (see supple-
mentary material for more details of other routes). We can observe that the largest values
of �t∗ (yellow on the color scale) usually occur in the same places. As shown in Fig. 5(b),
the distributions of �t∗ obtained from the time series in Fig. 5(a) for each trip can be well
fitted by a power–law p(�t∗) = a(�t∗)–α . These distributions show that there are several
different travel profiles even for the same bus route, each one with a different value of ex-
ponent α. It is known that the power–law exponent α is mathematically related to the Gini
index [19], and limα→2.0+ G = 1.0. This mathematical property lets us to plot in Fig. 5(c) the
exponent α against the total travel time for the bus line 650I. We see that as the α → 2.0
the total travel time increases, which corroborates the result of Fig. 4(b), where trips with
large Gini values also have large time delays. This is a direct consequence of the average di-
vergence for power–law distributions when α = 2.0 [20]. In fact, this behavior is observed
for all the trips considered in our data set, as can be seen in the compilation in Fig. 6(a)
for Fortaleza and Fig. 6(b) for Dublin, where we plotted the time delay fraction against
the α exponent. The Nadaraya–Watson non-parametric regression [21, 22] shows that as
α → 2.0 the time delay fraction increases. Therefore, from a public planning perspective,
a good bus line needs to have a value of α much larger than 2.0.

In Fig. 6(c) we show the distribution for Gini values of all the bus trips calculated from
our data sets. The Kolmogorov–Smirnov test [23] was used to check whether or not the
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Figure 6 Characterization of all bus trips. In (a) we show, for each small circle, the relation between the
fraction delay in function of the α exponent for Fortaleza. As we see, when α → 2.0 the average fraction
delay, calculated by the Nadaraya–Watson (red dashed line), grows fast. In (b) the same is shown for Dublin. In
(c) we show the probability distribution for the Gini for Fortaleza (in blue) and Dublin (in red). One can see
that the PDFs appear Gaussians, despite a slight assimetry when compared to the statistical fit (in dashed
lines). To confirm that hypothesis we apply the Kolmogorov–Smirnov test. It obtained p equals 0 for Fortaleza
and Dublin. Therefore the hypothesis that the distribution is normal is rejected. The kurtosis and skewness
[31] were also computed. The kurtosis for Fortaleza is 1.9493 and the skewness is 0.5485. For Dublin, the
kurtosis is 1.450 and the skewness is –0.0282. These results indicates that, despite the fact that one visually
appears the normal fit, the PDF of Fortaleza is more asymmetric than Dublin’s one

distributions of Gini index for Fortaleza and Dublin follow a normal distribution. Since the
values of the p are approximately zero, then the hypothesis of the normality of the curves
was rejected.

4 Discussion
Urban mobility and public transport systems have been extensively studied over the years
[14–16, 24–28], however, even considering such vast literature, there is still no consensus
on how to describe in the best way the efficiency of vehicle routes in large metropolises
[29]. Here we propose that the level of heterogeneity of the distribution of time during the
trajectory of a bus can be a measurement of the overall quality of the trip.

In order to quantify heterogeneity, we used the Gini coefficient, an index that has its
origin in Economy and has been extensively used to quantify the inequality level of the
income distribution of a social system. We show that the Gini coefficients are strongly
correlated with peak usage of the mobility system, as well as the schedule delays in the
system. More precisely, a large value of Gini is an indication of a bus line that has a more
unpredictable time schedule. We also see that Dublin has a slightly higher Gini than Fort-
aleza, which can indicate that Fortaleza has a better urban traffic movement than Dublin
and opens up the possibility to use the Gini to compare different cities.

The findings described in this article introduce alternatives for the implementation of
innovative practices for decision makers within cities. Since we have shown that the time
series follows a power–law distribution, this allows for the opportunity for a microinter-
vention approach, in which we could change a small fraction of the bus trajectory in order
to achieve a large improvement. Finally, the Gini can also be used to classify fuel consump-
tion and pollution, since an increase of these factors is well known to be closely related to
velocity variations [30].
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