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Abstract
Recurrent interactions between agents play an essential role in the organization of a
dynamic complex system. While intensive researches have been done on social
systems formed by human interactions, dynamical rules are not well understood in
economic systems. Here we study the evolution of financial networks and show that
repeated interactions between financial institutions taking place at the daily scale are
characterized by social communication patterns of humans emerging at higher time
scales. The “social” dynamics of financial interactions are highly stable and little
affected by external shocks such as the occurrence of the global financial crisis.
A dynamic network model based on random pairwise matching accurately explains
the observed daily dynamical patterns. The observed similarity between social and
financial interactions gives us previously unknown stylized facts about a financial
system, which could lead to a deeper understanding of the fundamental source of
systemic risk.

Keywords: Financial networks; Systemic risk; Temporal networks; Scaling; Fitness
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1 Introduction
Financial systemic risk is one of the most serious threats to the global economy. The global
financial crisis of 2007–2009 showed that a failure of one bank can lead to a financial
contagion through a complex web of financial linkages, which are created by everyday
transactions among financial institutions [1–6]. Even after the crisis, many countries have
experienced a prolonged recession, the so-called Great Recession, showing that the so-
cial cost of a financial crisis can be enormous [7, 8]. Evaluating and controlling systemic
risk has therefore been recognized as one of the greatest challenges for interdisciplinary
researchers across different fields of science [9–12].

In the modern financial system, interbank markets play a fundamental role, in which
banks lend to and borrow from each other (hereafter, we refer to all types of financial
institutions as “banks” for brevity). Lending and borrowing in interbank markets are nec-
essary daily tasks for banks to smoothen their liquidity management [13], but at the same
time, they also form the center of a global web of interconnected risk; shocks to inter-
bank markets may spill over to other parts of the global financial system through the
financial linkages to which banks are connected [10, 14, 15]. Many previous studies at-
tempt to assess systemic risk by simulating different scenarios of cascading bank failures
on both real [16–20] and synthetic interbank credit networks [15, 21–26]. Studies of fi-
nancial cascades based on synthetic networks often assume a particular static structure,
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such as random [22, 23], bipartite [15, 27], and multiplex structures [25, 26], successfully
revealing that the structural property affects the likelihood of default cascades to a large
extent. However, since the great majority of real-world interbank transactions are in fact
overnight [13, 28], interbank networks should be treated as dynamical systems with their
structure changing on a daily basis. This temporal nature of real interbank networks in-
evitably limits the practical usefulness of the conventional static approach to systemic risk.
Nevertheless, we still have little knowledge about how the structural characteristics of
daily networks evolve over time. It has long been believed that the dynamics of interbank
networks is random and thus has no meaningful regularity at the daily scale [29]. How the
current network structure is correlated with the past structures, or more specifically, how
banks choose current trading partners based on their trading history, is still unknown.
The ambiguity of the structural dynamics of interbank networks itself may also become
a source of systemic risk by veiling the complexity of interconnectivity [30]. The current
lack of studies on the mechanics of real interbank networks is in stark contrast to the
abundance of research on their static property [16, 19, 31–34].

The main aim of this work is to uncover fundamental dynamics governing real interbank
networks at both local and system-wide scales. For this purpose, we first seek dynami-
cal regularities that would characterize interaction patterns between individual banks by
examining millions of overnight transactions conducted in the Italian interbank market
during 2000–2015 [35]. We discover that there exist explicit interaction patterns that rule
daily bank-to-bank transactions, which turn out to be essentially the same as the patterns
characterizing human social communication; that is, banks trade with each other in the
same way that people interact with friends through phone calls and face-to-face conver-
sations [36, 37]. In fact, those “social” interaction patterns of banks have been surprisingly
stable over time, even amid the global financial crisis. On top of local interactions between
banks, there emerges a system-wide scaling relationship between the numbers of banks
and transactions, just as the number of phone-call pairs scales superlinearly with the size
of population [38].

To explain the origin of social dynamics in interbank networks, we develop a model
that generates a sequence of synthetic daily networks from which the observed dynam-
ical patterns simultaneously emerge at both local and network scales. Our discovery of
the fundamental mechanism underpinning the daily evolution of interbank networks will
enhance the predictability of systemic risk and provide an important step toward the real-
time management of financial stability.

2 Results
The dataset to be analyzed in this work is the time series of daily networks identified from
the time-stamped data of interbank transactions conducted in the Italian interbank market
during 2000–2015 (see Methods for data description). The daily interbank networks have
directed edges originating from lending banks to borrowing banks. One may regard the
amount of funds transferred from a lender to a borrower as edge weights, but here we
regard the daily networks as unweighted, since we found that the dynamics of edge weights
can be understood independently from the edge dynamics themselves (see Methods for
the analysis of edge weights).

An important general observation regarding the dynamics of daily networks is that both
the network size N and number of edges M have followed downward trends (Fig. 1(a)
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Figure 1 Time series of daily networks. (a) Daily time series of the number of edges M (upper) and the
number of banks N (lower). Most of the downward spikes in N and M are due to the national holidays in Italy.
(b) Visualization of the largest (left), a middle-sized (middle) and the smallest (right) daily networks (visualized
by graph-tool [65]) (c) Time series of bipartivity. Bipartivity is a measure of bipartite structure defined as∑N

i=1 cosh(λ̂i)/
∑N

i=1 exp(λ̂i), where {λ̂i} denotes the eigenvalues of the adjacency matrix. The bipartivity
measure takes 1 if the network is fully bipartite and 0.5 if a complete graph [66]. Since the bipartivity is
defined for undirected graphs, we ignore the directionality of edges. Black line represents the moving average
with 20-day smoothing window

and (b)). This led the networks closer to a bipartite structure between pure lenders and
pure borrowers [39] (Fig. 1(c) and Table 1), entailing a non-negligible turnover in the set of
banks participating in each daily network (see the turnover rate in Table 2 and Fig. S1(a)
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Table 1 Fraction of each bank type in the data. “Pure lender” (“pure borrower”) denotes the banks
that lend to (borrow from) but never borrow from (lend to) other banks

All 2000–2006 2007–2009 2010–2015

Pure lender 0.556 0.553 0.571 0.558
Pure borrower 0.335 0.300 0.318 0.380
Others 0.110 0.147 0.111 0.062

Table 2 Summary statistics of the daily interbank networks. N andM denote the average numbers of
active banks and edges in the daily networks, respectively. The turnover rate is the average of the
Jaccard distance 1 – |It ∩ It–1|/|It ∪ It–1|, where It is the set of active banks on day t. See caption of
Fig. 1(c) for a description of bipartivity

All 2000–2006 2007–2009 2010–2015

# days 3922 1618 767 1537
N 94.23 129.69 98.92 54.56
M 266.40 409.75 268.40 114.51
Turnover rate 0.22 0.18 0.22 0.26
Bipartivity 0.77 0.64 0.78 0.92

and (b) in supplementary materials (SM)). Table 2 summarizes the basic statistics, in which
we divide the entire sample period into three subsample periods to observe whether a
structural change around the global financial crisis in 2007–2009 is present.

2.1 Dynamical patterns of daily networks
The downward trends in N and M, along with the intermittent spikes, left a broad range of
daily combinations (N , M), which allows us to reveal a superlinearity, M ∝ N1.5 (Fig. 2(a)).
This suggests that the average degree of a daily network increases with order

√
N , since

〈k〉 = M/N ∝ √
N . It should be noted that the fact that M is given as a power-law function

of N is similar to a widely observed phenomenon in social networks, called superlinear
scaling, in which the number of edges scales superlinearly with the number of nodes across
different locations [38, 40–42].

In addition to the macroscopic dynamics of N and M, we also find microdynamics of
individual edges: edge duration and interval time. We define duration τ as the number of
successive business days on each of which a lender and a borrower performs at least one
transaction (i.e., directionality is taken into account). Aggregated over all trading pairs, τ

follows a power-law distribution whose complementary cumulative distribution function
(CCDF, see Table 3 for the list of abrreviations hereafter) has an exponent between 2.5 and
2.9 (Fig. 2(b) and Fig. S2 in SM. The exponents are estimated using the method proposed
in Refs. [43, 44]). Similar power-law distributions are observed when we redefine τ as the
duration of individual banks’ successive trading activity either for lending, borrowing, or
both (Fig. S3 in SM).

On the other hand, the interval time �τ for a bank pair is defined as the interval length
between two consecutive transactions during which the bank pair performs no transac-
tions. In contrast to τ , �τ does not follow a power-law distribution while it still shows
a long-tailed behavior (Fig. 2(c)). The interval distribution fits well with a Weibull distri-
bution up to a certain cut-off level (Fig. 2(c), Inset. See Methods for details on the fitting
method [45, 46]).

We observe that the distributions of τ and �τ have been quite stable throughout the
whole data period. This observation is notable, not only because N and M continually
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Figure 2 Dynamical patterns of daily networks. (a) M is a power-law function of N. A dot corresponds to a
daily network, and solid line represents a log-linear regression estimated by the ordinary least squares.
(b) Distribution of consecutive trading days, τ , for a bank pair, aggregated over all pairs. Blue circles and red
triangles indicate the empirical distributions for 2000–2006 and 2010–2015, respectively. Solid and dotted
lines represent simulated distributions with NP = 300 and 100, respectively. (c) Distribution of interval time,
�τ , between two consecutive transactions for a bank pair, aggregated over all pairs. Inset: log-rank plot of
(�τ )c indicated by a Weibull distribution with estimated parameter c (symbols), and its theoretical values
(lines). (d) Time series of the empirical aggregate degree K (t) (averaged over all banks) normalized by its
terminal value K (T ) and (e) the simulated aggregate degree

fluctuate at the daily resolution over the course of the decreasing trends (Fig. 1(a)), but also
because a large fraction of the set of participating banks changes day to day (Fig. S1(a) and
(b)). The high metabolism of the interbank market suggests that the stationarity of τ and
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Table 3 List of abbreviations

ON overnight
ONL overnight large
CCDF complementary cumulative distribution function
OLS ordinary least squares

�τ is not necessarily attributed to the presence of steady relationships between particular
banks.

The fact that banks’ behavior is characterized by heavy-tailed distributions of duration
and interval time might imply that banks are social. Another property that reinforces the
social aspect of banks is found in the growth rate of aggregate degree K(t), denoted by the
average cumulative number of unique trading partners up to time t [37, 47]. The normal-
ized aggregate degree, defined by K(t)/K(T), grows sublinearly in time (Fig. 2(d)), mean-
ing that the rate at which banks find a new partner tends to decrease over time. Note that
such sublinear growth patterns have been reported for the mobility pattern of mobile-
phone users [47] and for contact networks of human individuals formed via face-to-face
interactions [37].

2.2 Model of daily network evolution
The above findings show that the dynamical patterns of interbank transactions are robust
across different periods, which leads us to consider that a universal mechanism gener-
ating daily interbank networks might exist. Here, we show that the emergence of these
regularities can be reconstructed by a dynamical generalization of the fitness model [48,
49].

First, we show that variations in the system size of a simple fitness model can explain the
empirical superlinear relation M ∝ N1.5. For ease of exposition, suppose for the moment
that the networks are undirected. In the fitness model, fitness value ai ∈ [0, 1] is assigned to
bank i (1 ≤ i ≤ NP), where NP represents the potential market size, given by the number of
banks that may perform transactions during a day. In the context of interbank transactions,
fitness value ai can be interpreted as the activity level, or willingness, of bank i to trade.
The probability that an edge is formed between i and j is given by pij = (aiaj)α (α ≥ 1). For
each network generated by this rule, N and M denote the number of active banks with at
least one edge (thus N ≤ NP) and the total number of edges, respectively.

By generating model networks with NP varying from 20 to 300 for a given α ∈ [2, 8], there
arises a scaling relation M ∝ Nβ with 1 < β < 2 (symbols in Fig. 3). In previous studies [48–
50], a theoretical analysis of the fitness model predicted M ∝ N2, which differs from both
our empirical observations (Fig. 2(a)) and numerical simulations (Fig. 3). In fact, this dis-
crepancy is explained by the presence of isolated banks. In this model, the probability of
a bank being isolated (i.e., no edges attached), defined by q0, is given by a function of NP:

q0(NP) =
1
α

(α + 1)
1
α

[

B
(

NP,
1
α

)

– B1– 1
α+1

(

NP,
1
α

)]

, (1)

where B(x, y) and Bz(x, y) are beta and incomplete beta functions, respectively (see Meth-
ods for derivation). Consequently, N and M are given by

⎧
⎨

⎩

N = (1 – q0(NP))NP,

M = 〈(aiaj)α〉NP(NP–1)
2 .

(2)
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Figure 3 Superlinear relation in the fitness model. Solid lines denote the theoretical values indicated by
Eq. (2), while symbols represent the corresponding simulation results (average of 500 runs). Scaling relation
M∝ Nβ with 1 < β < 2 emerges by varying NP when NP is small (approximately 20 ≤ NP ≤ 300). Inset:
increasing NP to 10,000 restores quadratic scaling M∝ N2 since q0 ≈ 0 and thereby the finite-size effect
disappears

Since q0(NP) → 0 as NP → ∞, N � NP and M � 〈(aiaj)α〉N(N – 1)/2 ∝ N2 hold true for
a sufficiently large NP, which recovers the quadratic scaling shown in the previous stud-
ies [48–50]. However, for the range of network sizes observed from the data, q0(NP) is not
negligible. A combination of (N , M) derived from (2) for given values of NP perfectly fits
the simulation result (lines in Fig. 3).

While the empirical superlinear relation M ∝ N1.5 can be explained by variations in NP,
this simple model is unable to reproduce the distributions of τ and �τ (Fig. 2(b) and (c))
and the sublinear growth of K(t) (Fig. 2(d)), because these characteristics come from the
effect of memory in the formation of links between banks [28]. To capture the memory
effect, we now introduce a fluctuation in fitness ai. The dynamic network formation in our
model proceeds by repeating the following two steps: (i) edge creation between banks and
(ii) update of each bank’s activity level ai,t . We consider three bank types: pure lenders,
pure borrowers, and bidirectional traders. Pure lenders (pure borrowers) are the banks
that may lend to (borrow from) but never borrow from (lend to) other banks. To take
into account the fact that the interbank structure is almost perfectly bipartite when the
network size is small (Fig. 1(c)), we assume that bidirectional traders may lend only to
pure borrowers and borrow only from pure lenders. The fraction of each bank type is
given as (fL, fB, fD) = (0.56, 0.34, 0.1) for pure lenders, pure borrowers, and bidirectional
traders, respectively, based on the empirical average (Table 1). The type assigned to each
bank is fixed throughout the simulation.

At the beginning of the edge-creation stage in day t, the interbank system comprises NP

isolated banks without any edges. Bank i lends to bank j on day t with probability pij,t ,
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given by

pij,t ≡
⎧
⎨

⎩

(ai,taj,t)α if i /∈ B, j /∈ L, and {i, j} �⊂ D,

0 otherwise,
(3)

where L, B, and D denote the sets of pure lenders, pure borrowers, and bidirectional
traders, respectively. After applying this procedure to every combination of (i, j), we re-
move all the edges and move on to day t + 1. At the beginning of day t + 1, the activity level
of bank i is updated as follows. With probability h(ai,t), ai,t+1 is reset to a random value
drawn from the uniform distribution on [0, 1], where h(ai) ≡ c–1

1 ac2
i . This reset probability

is intended to capture the metabolism of the interbank market, in which some banks exit
after continuous transactions while other banks enter after a long resting period. With
probability 1 – h(ai,t), the activity level is updated according to a random walk process on
the unit circle, given by

ai,t+1 = | cos θi,t+1|, (4)

θi,t+1 = θi,t + 2πεi,t+1, (5)

where θi,t+1 is a random-walk variable that describes the angle on the unit circle (see Fig. 4
for a schematic). Since an activity level must be on [0, 1], ai,t+1 is given by the absolute
values of cos θi,t+1. εi,t+1 is a random variable uniformly distributed on [–0.002, 0.002]. The
introduction of fluctuations in εi (and therefore in θi and ai) would capture variations in
money demand that banks are facing on a daily basis in practice. We note that assum-
ing a random walk on the real line would not be able to replicate the empirical duration
of bilateral transactions. The volatility of ε is set such that the simulated bank turnover
would well match the empirical one (Fig. S1). The initial value for the angle is set such that
θi,0 = arccos(ai,0), where ai,0 is drawn from the uniform distribution on [0, 1]. The above
two steps, edge creation and activity updating, are repeated until reaching the predefined
terminal date T . Initial 5000 simulation periods are discarded to eliminate the influence
of the initial conditions. We find that the combination (α, c1, c2) = (4, 2000, 2) gives the
best fit to the empirical properties. The influence of parameters c1 and c2 on the slope of
superlinear scaling is illustrated in Fig. S11.

Figure 4 Schematic of the activity update in the dynamical fitness model. (a) Circular random walk of angle
θi on the unit circle. Activity level of bank i is given by ai = | cosθi|. (b) Activity level ai evolves according to
Eqs. (4) and (5) with reset probability h(ai)
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Figure 5 Generation of model networks. (a) Model networks with NP = 100, 200, and 300 (visualized by
graph-tool [65]). The average values 〈N〉 and 〈M〉 for each NP are also shown. (b) Joint conditional probability
function f (N,M|NP) (color bar) for a given NP

The simulated distributions of duration τ and interval �τ for pairwise transactions
replicate the empirical distributions for a given NP (see lines in Fig. 2(b)–(c)). In addi-
tion, the growth pattern of the normalized aggregate degree K(t)/K(T) is also successfully
reproduced (Fig. 2(e)). We further evaluate the model fit for other dynamical properties
such as the degree distribution and the strength as a function of degree [51] (Figs. S7–S9).
We confirmed that the model can robustly reproduce the duration and interval distribu-
tions under different parameter settings (Figs. S4–S6).

2.3 Fitting model to the data
It should be noted that while the activity level ai,t fluctuates with time independently from
other banks’ activity levels, the model ensures that the size and the structure of gener-
ated networks are stationary for a given NP. In reality, however, the evolution of daily
networks show a decreasing trend (Fig. 1(a) and (b)) and the network size varies from day
to day owing to various external factors (e.g., shifts in monetary policy [39] and the sea-
sonality of money demand due to the national holidays and/or the reserve requirement
system [13]). In the model, the averages of the network size 〈N〉 and the number of edges
〈M〉 are controlled by tuning parameter NP (Fig. 5(a)). Therefore, we need to estimate the
daily sequence of NP to reconstruct time series of empirical daily networks. Here, we take
the following steps. First, we generate sufficiently many instances of synthetic networks
for a given NP to compute the histogram of (N , M) (Fig. 5(b)). Generating networks over a
sufficiently broad range of NP provides a conditional probability function f (N , M|NP) that
would cover the range of N and M observed in the empirical networks (Fig. S10). Sec-
ond, for a given empirical daily network with (N ′, M′), we choose a daily estimate of NP,
denoted by NP,ML, such that NP,ML = argmaxNP f (N ′, M′|NP).
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Figure 6 Dynamic characteristics of fitted daily networks. (a) Time series of NP,ML . Inset: Scatter plot of NP,ML
against empirical N and M. (b) Bipartivity of fitted daily networks. Black line represents the moving average
with 20-day smoothing window. (c) Scatter plot of N and M of fitted daily networks. A dot corresponds to a
day. Solid line illustrates the empirical regression line identical to that shown in Fig. 2(a)

We find that simulated instances of (N , M) concentrate tightly along the regression line
of M ∝ N1.5 when we vary NP from 50 to 350 (Fig. S10). This agreement holds true even
under alternative parameter values within a reasonable range of variation (Figs. S4(a) and
S11). The sequence of daily estimates of NP,ML, each of which is based on the empirical
combination (N ′, M′) of a day, exhibit a long-term downward trend consistent with the
empirical sequence of N and M (Fig. 6(a)). Specifically, NP,ML is proportional to N and
increases nonlinearly in M with saturation at NP,ML ≈ 300 (Fig. 6(a), Inset).

A time series of model networks based on the daily estimates of NP,ML reproduces the
tendency toward a perfect bipartite structure (Fig. 6(b)), although we have not explicitly
modeled how the network structure should change with NP. The tendency toward a bipar-
tite structure may reflect the fact that the average degree of generated networks becomes
smaller as the size of network shrinks. Indeed, the relationship between N and M across
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the fitted daily networks explains the emergence of superlinearity (Fig. 6(c)), which indi-
cates that M ∝ N1.5 or 〈k〉 ∝ √

N .

3 Discussion
The time series of daily networks reveal many dynamical regularities encoded in millions
of financial transactions. An important finding is that the transaction patterns between
banks are similar to the social communication patters of humans, which have been ob-
served at higher temporal resolutions (typically 20∼60 seconds) than a daily resolution.
For instance, a power-law scaling in the distribution of the interaction duration has been
found in human contact networks, such as face-to-face conversation networks of indi-
viduals [36, 37]. We note that the general economic meaning of long-term relationships
between a lender (e.g., a bank) and a borrower (e.g., a firm) has long been studied in mi-
croeconomics, and some studies pointed out that there also exist long-term relationships
between banks in interbank markets [28, 52–55]. This would imply that there could be
common mechanisms that govern social behavior of humans and economic behavior of
financial institutions. Although the social activity patterns have been found only in social
systems so far, given our findings, it would be reasonable to speculate that similar activity
patterns might be found in other complex systems as well as in financial systems.

The sublinear growth pattern of aggregated degree has also been reported in the mo-
bility pattern of mobile-phone users [47]. In addition, superlinear scaling at the network
level (called “urban scaling” [40]) emerges in various social contexts, such as the relation-
ship between the number of mobile connections and the population size of cities [38]. The
discovered dynamical patterns are quite robust and hold true even amid the global finan-
cial crisis, suggesting that there is a universal mechanism connecting financial and social
dynamics.

The contribution of our work is not limited to the findings on the transition patterns
of interbank networks. The model we propose here can be used as a generator of syn-
thetic networks for studies of financial systemic risk. As is often the case, inaccessibility to
empirical data on financial transactions forces academic researchers to use synthetic net-
works with limited empirical properties [15, 25] or to infer real network structure based on
available partial information [18, 56–62]. Our model provides a way to easily generate syn-
thetic time series of networks that exhibit dynamical properties characterizing the daily
evolution of real interbank networks. We hope that the current work will not only deepen
our knowledge about the dynamic nature of interbank networks, but also help to improve
the conventional approach of systemic-risk studies toward a more dynamic analysis.

We leave three remaining issues that need to be addressed in future research. First, while
the observed dynamical patterns are quite robust and seem universal given the similarity
to social network dynamics, it is worth investigating whether those findings hold true
in other countries as well. Second, we might be able to find other dynamical patterns at
different time resolutions such as intraday, weekly, and monthly. If that is the case, we need
to see if those dynamical patterns found in different time scales are consistently explained
by the current model. Finally, our finding reveals an independence of local interaction
patterns of banks from a global-scale network evolution, such as the decreasing trend in
network size. This implies that there is no feedback loop between micro and macroscopic
phenomena, meaning that banks are not adaptive to their environments. Further research
is needed to explain why such a decoupling phenomenon takes hold in financial networks.
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4 Methods
4.1 Data description
The original time-stamped data are commercially available from e-MID SIM S.p.A based
in Milan, Italy [35]. The data contain all the unsecured euro-denominated transactions
between financial institutions made via an online trading platform, e-MID. We focus on
overnight (labelled as “ON”) and overnight-large (“ONL”) transactions. ON transactions
refer to contracts that require borrowers to repay the full amount within one business day
from the day the loans are executed. ONL transactions are a variant of the ON transac-
tions, where the amount is no less than 100 million euros.

The data processing procedure is as follows. First, we extract transactions made between
September 4, 2000 and December 31, 2015. The choice of the initial date is based on the
introduction of the ONL category [13]. This leaves us with 1,119,258 ON and 73,480 ONL
transactions, which comprise 86% of all the transactions during that period. Next, we
transform all the ON and ONL transactions into a sequence of daily networks by applying
the daily time window of 8:00–18:00 [28]. We then extract the transactions that belong to
the largest weakly connected component of each daily network, which account for 99.3%

of all the daily transactions on average (the minimum is 78%). We referred to this com-
ponent as daily network throughout the analysis. Multiple edges between two banks are
simplified. In the end, we have 1,187,415 transactions conducted by 308 financial institu-
tions over 3922 business days.

4.2 Fitting procedure for the interval distribution
As shown in Fig. 2(c), the empirical distribution of transaction interval �τ for each bank
pair does not follow a power law. We instead find that the interval distribution nicely fits
a Weibull distribution for 1 ≤ �τ < �τu, where �τu denotes a cutoff value.

The complementary cumulative distribution function (CCDF) of a Weibull distribu-
tion [46] is given by

Pc(x) = exp

{

–
(

x
λ

)c}

for x > 0, (6)

where c > 0 and λ > 0 are parameters. Distribution Pc(x) can also be written as nx/NX ,
where NX is the total number of interval values observed, and nx is the rank of interval
length x (i.e., nx is the number of observed interval values such that �τ ≥ x). By taking
the logarithm of nx/NX = exp {–(x/λ)c}, we obtain the following expression [45]:

(xn)c = –β(log nx – log NX), (7)

where xn represents the interval length whose rank is n (i.e., x1 > x2 > · · · > xNX ), and β

is defined as β ≡ λc. We use Eq. (7) to find β and c that give the best fit to a Weibull
distribution. We introduce n̂, the logged rank of cutoff value �τu, and estimate parameters
(β , c) for a subset of the observed values of �τ , in a similar way as is done in the standard
estimation procedure for a power-law exponent [43]. The cutoff �τu corresponds to the
en̂th largest interval length. Parameters β , c, and n̂ are determined as follows.

1. For a given pair (c, n̂), estimate β in (7) by the ordinary least squares (OLS). Repeat
this for sufficiently many values of c ∈ [0, 1) (we set c < 1 because the tail of the
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Figure 7 Fitting of the interval distribution with a Weibull distribution. (a) Determination of the optimal
log-rank cutoff n̂∗ . (b) Empirical CCDF of interval �τ (symbols) and the Weibull distribution with the
estimated parameters (lines). The cutoffs �τu and �τ ′

u are obtained from the optimal log-rank cutoffs n̂∗ and
n̂∗′ , respectively

empirical distribution of �τ is apparently heavier than that of an exponential
distribution). The estimate of β is denoted by β∗(c, n̂).

2. For n̂ given in step 1, find the optimal value of c, denoted by c∗(n̂), such that the
coefficient of determination R2 for the OLS regression is maximized, in which case
β = β∗(c∗(n̂), n̂). Let R2(n̂) denote the maximum of R2 for a given n̂.

3. By repeating steps 1 and 2 for all the predefined values of n̂, find the optimal cutoff
value n̂∗ ≡ argmaxn̂ R2(n̂). In the end, the estimates of the parameters are given by
n̂ = n̂∗, c = c∗(n̂∗), and β = β∗(c∗(n̂∗), n̂∗).

Figure 7(a) illustrates the determination of the optimal log-rank cutoff n̂∗. The inset of
Fig. 2(c) in the main text shows the OLS fit to (7) when n̂ = n̂∗ (note that xn corresponds to
�τ in that figure). Once n̂∗ is determined, it is straightforward to obtain the corresponding
cutoff �τu. Figure 7(b) verifies the goodness of fit between the empirical CCDF and the
estimated Weibull distribution.

4.3 Analytical solution for the fitness model with a finite size effect
Relationship between N and M. As we described in the main text, we assume that initially
there are NP many isolated nodes. Node i (1 ≤ i ≤ NP) is assigned a fitness ai ∈ [0, 1] which
is drawn from density ρ(a).

The probability of edge formation between two nodes i and j is denoted by u(ai, aj). We
define N as the number of nodes connected with at least one edge and M as the total
number of edges in a network. We express N and M as functions of NP:

⎧
⎨

⎩

N = (1 – q0(NP))NP,

M = k(NP)NP
2 ,

(8)
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where q0(NP) is the probability of a randomly chosen node being isolated (i.e., no edges
attached) and k(NP) is the average degree over all nodes including isolated ones. Thus, to
obtain the functional forms of N and M, we need to get the functional forms of q0(NP)
and k(NP). In the following, we first derive the functional forms of q0(NP) and k(NP) in a
general setting. Then, we will restrict our attention to the case with ρ(a) = 1 (i.e., a uniform
distribution) and u(ai, aj) = (aiaj)α to explain the empirical superlinear relation between
N and M in the same specification as in the main text.

Average degree of networks including isolated nodes, k(NP). Given the fitnesses of all
nodes a = (a1, a2, . . . , aNP ), the probability that node i has degree ki is

g(ki|a) =
∑

ci

[∏

j �=i

u(ai, aj)cij
(
1 – u(ai, aj)

)1–cij
]

× δ

(∑

j �=i

cij, ki

)

, (9)

where cij ∈ {0, 1} is the (i, j)-element of the adjacency matrix and ci = (c1i, c2i, . . . , cNPi)�

is the ith column vector. Function δ(x, y) denotes the Kronecker delta. Let us redefine a
product term in the square bracket of (9) as

fj(cij; ai, aj) ≡ u(ai, aj)cij
(
1 – u(ai, aj)

)1–cij . (10)

Since g(ki|a) is the convolution of {fj(cij; ai, aj)}j, its generating function

ĝi(z|a) ≡
∑

ki

zki g(ki|a) (11)

is decomposed as

ĝi(z|a) =
∏

j �=i

f̂j(z; ai, aj), (12)

where f̂j is the generating function of fj(cij; ai, aj), given by

f̂j(z; ai, aj) ≡
∑

aij

zaij fj(aij; ai, aj). (13)

Degree distribution p(ki; NP) is defined by the probability that node i has degree ki and
is related to g(ki|a) such that

p(ki; NP) =
∫

g(ki|a)ρ(a) da, (14)

where we define ρ(a) ≡ ∏
i ρ(ai) and da ≡ ∏

i dai. Therefore, differentiation of ĝi(z|a) with
respect to z gives the average degree k(NP):

k(NP) =
∑

ki

kip(ki; NP)

=
∑

ki

ki

∫

g(ki|a)ρ(a) da
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=
d
dz

∫

ĝi(z|a)ρ(a) da
∣
∣
∣
z=1

=
d
dz

∫

ρ(ai) dai
∏

j �=i

∫

f̂j(z; ai, aj)ρ(aj) daj

∣
∣
∣
z=1

=
∫

ρ(ai) dai
d
dz

[∫

f̂ (z; ai, h)ρ(h) dh
]NP–1∣

∣
∣
z=1

= (NP – 1)
∫

ρ(ai) dai

[∫

daρ(a)f̂ (z; ai, a)
]NP–2 ∫

daρ(a)
d
dz

f̂ (z; ai, a)
∣
∣
∣
z=1

. (15)

From Eqs. (10) and (13), we have f̂ (z; ai, a) =
∑

cij
zcij f (cij; ai, a) = (z–1)u(ai, a)+1. It follows

that
∫

daρ(a)f̂ (z; ai, a) = (z – 1)
∫

daρ(a)u(ai, a) + 1, (16)
∫

daρ(a)
d
dz

f̂ (z; ai, a) =
∫

daρ(a)u(ai, a). (17)

Substituting these into Eq. (15) leads to

k(NP) = (NP – 1)
∫ ∫

dada′ρ(a)ρ
(
a′)u

(
a, a′). (18)

It should be noted that (18) is equivalent to Eq. (21) of Ref. [50].
Probability of node isolation, q0(NP). From (14), the probability of a node being isolated,

q0(NP) ≡ p(ki = 0; NP), is given by

q0(NP) =
∫

g(ki = 0|a)ρ(a) da

=
∫

daiρ(ai)
[

1 –
∫

u(ai, a)ρ(a) da
]NP–1

. (19)

Special case: ρ(a) = 1 and u(a, a′) = (aa′)α . Substituting ρ(a) = 1 and u(a, a′) = (aa′)α into
Eq. (18) gives

k(NP) =
(

1
α + 1

)2

(NP – 1). (20)

Similarly, substituting the same conditions into Eq. (19) gives

q0(NP) =
∫

dai

(

1 –
1

α + 1
aα

i

)NP–1

. (21)

By rewriting the integrand as x = 1 – 1
α+1 aα

i , we have

q0(NP) =
1
α

(α + 1)
1
α

∫ 1

1– 1
α+1

(1 – x)
1
α –1xNP–1 dx

=
1
α

(α + 1)
1
α

[

B
(

NP,
1
α

)

– B1– 1
α+1

(

NP,
1
α

)]

, (22)
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where B(x, y) ≡ ∫ 1
0 tx–1(1 – t)y–1 dt is the beta function and Bz(x, y) ≡ ∫ z

0 tx–1(1 – t)y–1 dt
(0 < Re(z) ≤ 1) is the incomplete beta function. Combining these results with Eq. (8), we
end up with

⎧
⎨

⎩

N = NP[1 – 1
α

(α + 1) 1
α (B(NP, 1

α
) – B1– 1

α+1
(NP, 1

α
))],

M = ( 1
α+1 )2 NP(NP–1)

2 .
(23)

If NP is sufficiently large, then q0(NP) � 0 and thereby N � NP and M � (1/α + 1)2N(N –
1)/2 ∝ N2. Therefore, the solution is consistent with that of the previous studies [48–50]
in the absence of the finite-size effect.

4.4 Dynamics of weights
Empirical observation. On top of the edge dynamics that we discussed in the main text,
the dynamics of edge weights also exhibits specific patterns. Let us define the weight of an
edge, wij,t , as the total amount of funds transferred from bank i to j on day t. We define the
growth rate of edge weights as rij,t ≡ log (wij,t+1/wij,t) for bank pair (i, j) such that wij,t+1wij,t >
0 [51]. The distribution of rij,t , aggregated over all pairs and all t, exhibits a symmetric
triangular shape with a distinct peak at 0 (Fig. 8(a)). The shape of the distribution indicates
that a large fraction of bank pairs do not change the amount of funds when they keep
trading, and if they change the amount, the rate of change will be typically small. A similar
sort of triangular-shaped distribution of the growth rate of weights has also been found
in networks of email exchanges [63], airlines [51] and cattle trades between stock farming
facilities [64].

Model of weight dynamics. To reproduce the dynamics of edge weights, we add the fol-
lowing step to the model. Let us consider the edge between i and j formed in day t. If there
is an edge from i to j in day t – 1, then the edge weights in day t is given by

wij,t ≡
⎧
⎨

⎩

wij,t–1 with probability 1 – q,

κνij,tpij,t with probability q,
(24)

where random variable νij,t takes different values across bank pairs and are assumed to
follow a power-law distribution with exponent η to maximize the fit to P(r) (Fig. 8) and

Figure 8 Distribution of the growth rates of edge weights r (aggregated over all bank pairs) for (a) the data
and (b) the model
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Figure 9 CCDF of edge weights and strength. The in- and out-strength of bank i are defined as sin,i =
∑

j �=i wji

and sout,i =
∑

j �=i wij , respectively. (a)–(c) The data. (d)–(f) The model

the empirical weight distribution (Fig. 9(a)–(c)). Positive constant κ is introduced to match
the scale of edge weights with that of the data (i.e., millions of euros). On the other hand,
if there is no edge from i to j in day t – 1 but there is in day t, then

wij,t ≡ κνij,tpij,t . (25)

Any non-adjacent pairs (i, j) has wij,t = 0.
We set the weight parameters as (q,κ ,η) = (0.5, 80, 3.3) to fit P(r) and the simulated

weight distributions with the empirical ones, respectively. Figures 8(b) and 9(d)–(f ) show
that our model of weight dynamics successfully replicates the empirical distributions.
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