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Abstract
Existing studies have developed different indices based on various approaches
including network connectivity, delay time and flow capacity, estimating the traffic
reliability states from different angles. However, these indices mainly estimate traffic
reliability from single view and rarely consider the combined effect of city traffic
dynamics and underlying network structure. Based on percolation theory, Li et al. has
developed a traffic reliability index to address this issue (Proc. Natl. Acad. Sci. USA
112(3):669-672, 2015) [1]. Here we compare this percolation-based index with one of
the well-known index - congestion delay index (CDI). Using real traffic data of Beijing
and Shenzhen (two large cities in China), we compare the two indices in the
macroscopic trends and microscopic extreme values. The two indices are found to
indicate the state of real-time traffic reliability in different consideration. Our results
can be used for better evaluation of traffic system reliability and mitigation measures
of traffic jams.
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1 Introduction
Given the rapid urbanization process and the sharp growth in travel demand, people spend
more time on road, which has led much economic and environmental loss. A  Texas
Transportation Institute report found that U.S. commuters spend about  hours a year
stuck in traffic congestion. The total nationwide price tag: $ billion, or $ per com-
muter []. Behind the staggering number is the increasing concern about traffic reliability.

Traffic reliability is a critical measure to assess the performance of transportation sys-
tems, especially under unexpected events []. Researchers have developed different types
of traffic reliability indices with different considerations. Existing traffic reliability indica-
tors include connectivity reliability, travel time reliability, capacity reliability, travel cost
reliability, traffic flow recession reliability, traffic demand satisfaction reliability, user sat-
isfaction reliability etc.

Connectivity reliability was firstly defined by Mine and Kawai [] in , which mainly
reflects the connection probability between a random pair of nodes in road network.
A given road segment in the road network are classified into two states: connected or
disconnected. Further works supplement the theory by extending the definition of con-
nectivity from two nodes to k nodes []. However, this measure of traffic reliability neglects
the limitation of real-time flow, and mainly quantifies the ability of road static capacity.
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Anthony Chen et al. [, ] proposed the concept of capacity reliability. Capacity relia-
bility deals with the probability of a road network to meet traffic demand under certain
service level. Lindley [] developed an index based on peak hour traffic volume of urban
highways. The index is calculated by comparing volume to capacity (V/C), and roads with
V/C higher than . are regarded as congested. Research at the Texas Transportation
Institute [] led to the development of the roadway congestion index (RCI) methodology
to quantify the relative congestion levels in urban areas, which combines the indicator of
urban area daily vehicle kilometers of travel (DVKT) per lane kilometer of roadway for
both freeways and principal arterial streets.

Travel time reliability (TTR) is widely used to estimate the temporal damage caused by
daily traffic congestion, which not only affects the daily travel of the public but also causes
frustration among drivers [–]. TTR is defined as the probability of trips completed
within a specified time between a given origin and destination (OD) at a certain level of
service (LOS) []. TomTom International B.V. proposed a congestion index by comparing
travel time in peak hours with travel time during non-congested periods (free flow) [].
The difference is expressed as a percentage increase in travel time. Higher index indicates
a longer delay in real-time compared with that in free-flow periods. The deformation of
this index, congestion delay index (CDI) [] that reflects the average delay time of real
travel trajectories, is well-applied especially in China.

With the development of urban traffic and intelligence technology, there is a pressing
need to estimate the real-time traffic performance from the system operator’s viewpoint
[, ]. However, existing reliability studies may not be sufficient for a comprehensive net-
work performance measurement []. Most of traditional reliability analyses mainly focus
on the effect of single fact on the performance of the network, neglecting the combined ef-
fect of traffic dynamics and network structure. Here we use a traffic reliability index based
on percolation theory [] to measure real-time traffic reliability in a comprehensive way.
We compare this traffic reliability index qc with congestion delay index, and analyze the
performance of these two indices in large cities of China: Beijing and Shenzhen.

By constructing a traffic dynamical network, Li et al. found that the organization of
city traffic could be considered as a percolation-like transition []. Percolation theory
[–] is a useful tool to study network transition, providing a possibility to overcome
the limitations mentioned above. In percolation process, different clusters form as failed
nodes/edges are removed (due to congestion) from original network, during which the
transition can be clearly identified between a well-connected global giant cluster and iso-
lated local clusters. Percolation theory can present a systematic viewpoint to analyze the
influence of localized jam on system. The transition of traffic network phase can be quan-
tified by the probability threshold qc, which can be taken as a statistical indicator of the
operational limits of a network [–]. Therefore, the index qc has three main advantages
that we will discuss in the sections bellow: (a) qc is the threshold distinguishing the net-
work dynamics from connected global scale to isolated local scale; (b) qc is less influenced
by the trip sampling, faced with possible extreme local conditions; (c) qc measures the rel-
ative traffic reliability from network operator’s viewpoint, which is scalable for comparing
different cities.

In Section , we describe the dataset of real traffic. In Section , we explain the construc-
tion of dynamical traffic network and definition of index. In Section , we compare the two
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different indices in different aspects. The application in different cities is also illustrated
in this part. Conclusions and discussion are presented in Section .

2 Data description
For the road network, intersections are represented by nodes and road segments between
two intersections are represented by links. The road network of Beijing includes over
, road segments (links) and , intersections (nodes). The road network of Shen-
zhen includes over , road segments (links) and , intersections (nodes). For
each link, the velocity vij (i and j stands for the node on each end of the link respectively)
is recorded according to real-time traffic. Here we consider a directed traffic network, be-
cause vij is in general different from vji. The dataset covers velocity records of roads in
Beijing and Shenzhen for  days in October , including a representative holiday pe-
riod in China, the National Day, from Oct. st to Oct. th. Velocity (km/h) is recorded
through floating cars, with a resolution of minute.

In order to estimate traffic state of Beijing, at least the information of , floating
vehicles is needed []. Now about , floating cars were monitored. The number of
sampled floating cars varies with time. There are around .% of high-level roads hav-
ing more than  vehicles records every  minutes, while the percent for low-level roads
is .%. We use an interactive-voting based map matching algorithm to associate the
measured velocity to a given road, which is introduced by reference []. Our GPS data
includes multiple types of floating cars with different resolutions. For taxis, the resolution
of GPS data is  min or  s. For private cars, the resolution of GPS data is  s. The vehicle
position error is less than  m. We compute the road velocity based on Dempster-Shafer
theory [], which includes a voting process. Each road is classified into one of three cat-
egories according to a pair of thresholds (v, v, v < v) based on road levels. We compare
the instantaneous velocities v of vehicles on a given road with its velocity thresholds. For
v ∈ (, v), we vote for congested state. For v ∈ (v, v), we vote for intermediate state. For
v ∈ (v,∞), we vote for free-flow state. We regard the state with the highest votes as the
real-time traffic state of this road. Then for this road, we smooth velocities within the
voted category and calculate the road velocity. All sampled vehicles are pre-filtered to en-
sure their representativeness of road condition properly. The accuracy of data is greatly
influenced by traffic lights. Our test results suggest that the accuracy of data is more than
% on closed roads, while it is more than % on open roads.

The dataset is incomplete, with some velocities missing. We compensate the missing
velocities by considering road network topology [], where the missing velocity of road
equals to the average velocity of its neighboring roads with the same direction. The data
availability is constrained by our agreement with data provider of company.

3 Model
A traffic dynamical network is constructed based on both road network topology and traf-
fic velocity data. Instead of directly using the absolute velocity of road segment, we take the
relative velocity to illustrate real-time traffic road performance. For each road segment, we
rank its velocity over one day in an increasing order and regard the th percentile of that
as the limited maximal velocity for this road. The distribution of the th percentile ve-
locity of all roads is shown in Figure (a). It can be observed that the distribution the th
percentile velocity has a characteristic value around  (km/h) in workdays and holidays.
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Figure 1 The distribution of the velocity. (a) The distribution of the 95th percentile velocity in workdays
and holidays. (b) The distribution of the relative velocity during peak hour in workdays and holidays.

For each link, the ratio between its instantaneous velocity and the limited maximal ve-
locity, rij, is its relative velocity. The distribution of the relative velocity during peak hour
is shown in Figure (b), with a characteristic value around .. Then a tunable percola-
tion parameter q is defined to determine the state of road segments []. The state of each
road segment eij with relative velocity rij will be classed into two cases: functional state for
rij ≥ q and congested for rij < q, i.e.

eij =

{
, rij ≥ q,
, rij < q.

()

Then we remove all links with congested state and calculate strongly connected clusters
in the rest of the network. A strongly connected cluster is a set of nodes, where there is a
path in both directions between each pair of nodes []. In our calculation, we use Tarjan
algorithm [] to identify strongly connected clusters in the functional network.

We increase q from  to  with an interval �q = ., representing users’ increasing re-
quirement of service level. With the increasing of q, more links are considered congested
and higher proportion of links is removed. This leads to a decrease of the size of the giant
component G. Meanwhile, the second-largest component, SG, increases and reaches its
maximum when q equals to the critical threshold qc, according to percolation theory. The
critical threshold qc (shown in Figure (a) and (b)) represents the robustness characteris-
tics of the functional network connectivity [], which also signifies the phase transition
from free flow phase to congestion phase in the functional traffic network []. In the per-
colation theory, the failure of a node/edge of network is modeled by removal, and network
connectivity transition is observed during the component failure process. Here in the traf-
fic network, different from only considering structural information as before, we remove
the roads whose velocity is under certain threshold (q). In this way, the traffic dynamics is
incorporated into the percolation framework. With the increase of the tunable percolation
parameter q, which represents users’ increasing requirement of service level, the removal
of roads increases, and the network undergoes a transition from the phase of connectivity
(free flow roads connected as a whole network) to the phase of disintegration. This tran-
sition is significantly influenced by the traffic dynamics and corresponding road velocity
configuration. The probability threshold, qc, is obtained by identifying this critical transi-
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Figure 2 Similar trends of different indices. Traffic networks during the evening peak (at 18:36 pm on
Oct. 24th) for q value: (a) just below qc (q = 0.5) and (b) equals to qc (q = 0.51). For clarity, only the largest five
clusters are plotted, which are marked in red (largest cluster), blue (second-largest cluster), green (third-largest
cluster), yellow (fourth-largest cluster) and purple (fifth-largest cluster). Here the clusters are strongly
connected components, considering road direction. (c) Different indices as a function of time in Beijing on
Oct. 29th, Thursday. (d) Different indices as a function of time in Shenzhen on Oct. 29th, Thursday.

tion as a result of random process of road removal. Thus qc can be different from a given
sample, like the sample at the same time of different days.

Here we use qc as an index [] to measure the reliability level of city traffic: only cars
with relative velocity below qc can travel the main part of the city, i.e. the giant component
of traffic network; otherwise, cars with relative velocity above qc will be trapped in local
isolated clusters. Therefore, qc indicates the maximal relative velocity that allows one to
travel the main part of the city, which reflects the global efficiency of traffic in a network
view []. For comparison, we also take a widely applied index - congestion delay index
(CDI) []. In practice, with advanced information processing technology, the trajectory
can be precisely positioned on the map based on the data obtained from floating cars and
GPS navigation. And the travel time of users can be obtained from GPS time stamp records
[]. In this paper, we use the same data set for both indices. Due to the lack of trip details
in our data, we have to sample the origin and destination of trip from the traffic network.
For simplicity and generality, , pairs of nodes are randomly selected as origin and
destination (OD) separately.

We reconstruct the trips according to life experience: people usually choose the shortest
way to the destination in real life. Then the shortest path between each pair of OD is
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Figure 3 The distribution of trip duration at
peak hour in workdays.

calculated. The shortest path between two nodes in directed network is a directed path,
where the sum of the weights along its constituent edges is minimized. In traffic network,
the weight of each edge is the length of corresponding road segment. We use Dijkstra
algorithm to identify the shortest path between each pair of OD, and take each pair of
nodes as sample trips to calculate CDI. Each trip has a different duration, which depends
on the real-time traffic situation. The distribution of trip duration at peak hour is shown
in Figure , most of which is distributed around  (min).

The travel time Tr for each trip is calculated according to recorded velocity. We select
the reference moment tf when the average speed of all links in the network is maximal.
We then calculate free flow travel time Tf at reference moment tf . Since our dataset covers
velocity records of roads with resolution of minute, vi(t) may change every minute. Each
trip corresponds to a ratio between actual travel time Tr and free flow travel time Tf , and
the average ratio of , trips is regarded as the CDI. We assigned the CDI index to
the starting time of each trip, at which we compute corresponding qc. Therefore, the CDI
at tr can be defined as:

CDI(tr) =

S

∑
S

Tr

Tf
, ()

where S is the total number of trips. For this index, larger value means people spend longer
time on the way to the destination compared with free flow condition.

Because the two indices have different value ranges, in order to make a comparison
between the two indices, we use relative values of indices: qr

c and CDIr . The relative value
for each index can be obtained by:

qr
c =

qmax
c – qc

qmax
c – qmin

c
, ()

CDIr =
CDI – CDImin

CDImax – CDImin , ()

where qmax
c and qmin

c is the maximum and minimum of qc from : to : in each day.
The definition of CDImax and CDImin is similar to qmax

c and qmin
c . In this case, both indices

range from  to . In the following sections, we will use these two relative indices: qr
c and

CDIr , unless noted elsewhere.
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4 Results
We calculate the two indices in Beijing and Shenzhen for a month and compare trends
of different indices. We find the trends of the two indices are similar, while the degree of
congestion reflected by different indices is different from each other. Figure (c) and (d)
show examples that the trends of the two indices are similar. For Beijing on Oct. th
(see Figure (c)), both of the two indices increase in the morning and reach to morning
peaks around :. Then indices decrease to relative low values, which correspond to a
better traffic condition during noon. Around :, evening peaks appear and afterwards
both indices begin to decrease. The same curve trends can be also found in Shenzhen,
as shown in Figure (d). Since CDI has already been widely used to measure traffic state,
similar trends reflected by the two indices better illustrate the basic indicative function
of qr

c.
This similar trend is also confirmed by the correlation analysis between the two indices.

We calculate the Pearson correlation coefficient r of the two indices for the whole day
or during morning peak (morning peak ± . hour), respectively. The distribution of r
is shown in Figure . Pearson correlation coefficient r is a measure of linear correlation
between two processes. r ranges from – to . If r > , two variables are positively cor-
related; if r < , two variables are negatively correlated. The larger the absolute value of
r is, the stronger correlation between two variables is. As shown in Figure (a), a strong
positive correlation between the two indices has been observed. This further illustrates
their similarity in indicative function. Although CDIr and qr

c shows a strong correlation
for the whole day, they seems less correlated with each other during morning peak in
workdays. As shown in Figure (b), although most of r distributes close to ., there are
values even range from –. to .. In Beijing, the average Pearson correlation 〈r〉 is
. during morning peak, while 〈r〉 is . for the whole day. In Shenzhen, 〈r〉 is .
during morning peak and . for the whole day. This also proves that the two indices
display different behaviors during peak hours, while sharing similar trends in the whole
day. The differences are important because people care about the specific traffic condition
especially during peak hour.

More differences lie in the degree of congestion in details. According to CDIr , as shown
in Figure (a) and Table , the road condition in Beijing at : and : are similar. How-

Figure 4 The distribution of Pearson correlation coefficient of qr
c and CDIr . (a) The distribution of

Pearson correlation coefficient of qrc and CDIr for the whole day. (b) The distribution of Pearson correlation
coefficient of qrc and CDIr during morning peak. (a) contains indices of all days in October, while (b) only
involves indices in workdays in October.
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Figure 5 Different behaviors of qr
c and CDIr during the same time period. (a) qrc and CDIr as a function

of time in Beijing on Oct. 1st, Thursday. (b) qrc and CDIr as a function of time in Shenzhen on Oct. 1st,
Thursday. Blue lines in (a) and (b) mark the two instants when CDIr stays almost the same while qrc changes
obviously. (c) qrc and CDIr as a function of time in Beijing on Oct. 28th, Wednesday. (d) qrc and CDIr as a
function of time in Shenzhen on Oct. 28th, Wednesday. Blue lines in (c) and (d) mark the two instants when
qrc stays similar, while CDIr changes obviously.

Table 1 Example of differences in indices values

Date Index Time1 Value1 Time2 Value2 Change

Beijing
Oct. 1st CDIr 9:10 0.69 13:35 0.69 0

qrc 1 0.6 –40%

Oct. 28th CDIr 17:10 0.89 19:20 0.39 –56.2%
qrc 0.71 0.71 0

Shenzhen
Oct. 1st CDIr 11:50 0.65 22:05 0.61 6.2%

qrc 0.58 0.89 53.4%

Oct. 28th CDIr 6:55 0.07 15:10 0.37 427.6%
qrc 0.34 0.34 0

ever, qr
c changes from  to . during this period, indicating a % relief of traffic con-

gestion. The same situation can be observed in Shenzhen, as shown in Figure (b). At
: and :, CDIr shows that the traffic reliability levels at the two instants are similar,
while qr

c increases more than %. There are also situations that qr
c stays stable, while CDIr

changes obviously between two instants. Figure (c) and (d) show this difference in Beijing
and Shenzhen, separately. In Figure (c), qr

c is the same at : and :, however, CDIr

decreases from . to about .. The same situation can be observed from examples in
Shenzhen, as shown in Figure (d). Table  shows detailed indices values mentioned above.
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Figure 6 The probability distribution of different indices values during morning peak in workdays.
(a) The probability distribution of different indices values during morning peak in workdays in Beijing. (b) The
probability distribution of different indices values during morning peak in workdays in Shenzhen.

Figure 7 Scatter plot of the standard deviation
of velocity and the standard deviation of qc . The
result is based on the traffic data of Oct. 2015,
Beijing. The standard deviation of velocity at each
time is calculated by averaging the standard
deviation of velocity of each day at the same time.
The standard deviation of qc at each time is
calculated based on qc of all days at the same time.

The distribution of index values during morning peak (morning peak ± . hour) in
workdays is illustrated in Figure . In Beijing, qr

c shows a bell shaped distribution and the
maximum of p(qr

c) is at qr
c = .. The distribution of CDIr is more uniform with no ob-

vious peak. This suggests that the evaluation of congestion reflected by the two indices
is different, and qr

c performs more stable since it focuses on the whole network perfor-
mance. Performing stably is a critical property of an index because people may use it to
compare traffic condition in different days. In Shenzhen, both indices show a bell shaped
distribution. Indices values with higher probability are approximately equal: qr

c = .
and CDIr = .. Moreover, we find the average qr

c value of Beijing (.) is generally
larger than those of Shenzhen (.). For CDIr , the average value is . and . sepa-
rately. It is shown that Beijing, as the capital city of China, has a worse traffic condition
than Shenzhen, especially during morning peak. The differences between CDIr and qr

c

result from index concepts underlying their calculation methods. The variation of CDIr

depends on the number of sample trips. CDIr is influenced by the travel demands of traffic
network, and roads with larger travel demands are more likely to be sampled. qr

c does not
dependent on trip sampling. Instead, it considers the network as a whole system. Traffic
fluctuations can influence congestion formation []. The scatter plot of the standard de-
viation of velocity and the standard deviation of qc is shown in Figure . qc will not change
significantly with the velocity fluctuations of a few roads since it depends on the global
connectivity.



Zhang et al. EPJ Data Science  (2017) 6:19 Page 10 of 15

Figure 8 Different peak instants of different indices. (a) Different indices as a function of time in Beijing
on Oct. 27th, Tuesday. (b) Different indices as a function of time in Shenzhen on Oct. 27th, Tuesday. Red lines
mark the peaks of qrc and black lines mark the peaks of CDIr . (c) The distribution of morning peak instants of
qrc and CDIr in workdays in Beijing. (d) The distribution of morning peak instants of qrc and CDIr in workdays
in Shenzhen.

It is important to know when the traffic will get the most congested for congestion avoid-
ance or traffic prediction. There are also differences in peak instants of the two indices,
as shown in Figure . In Beijing on Oct. th, Tuesday, as shown in Figure (a), the time
when qr

c at peak in the morning is :, while the peak instant of CDIr is :. In the
evening, the peak instant of qr

c is :, slightly behind that of CDIr , :. The same can
be observed in Shenzhen in the morning. Peak instants imply the worst traffic condition
of the day. Furthermore, the distribution of peak instants of the two indices in workdays
is illustrated in Figure (c) and (d). Obvious differences between the two indices can be
observed. In Beijing, peak instants of CDIr range from : to :, while peak instants
of qr

c have a wider range from : to :. In Shenzhen, peak instants of CDIr distribute
mainly around :. However, qr

c have a much wider distribution of peak instants rang-
ing from : to :. This means that from a time delay perspective, peak hours appear
more centralized among different days than those when we focus on the phase transition
of network.

The difference in peak instants may be due to the feature of CDIrthat extreme values
of travel time along frequently visited trips will determine significantly peak instants of
CDIr . With the accumulation of traffic volume, the velocity will become slow and travel
time through mostly congested area will become one of the determining factors for CDIr .
This also makes CDIrmore sensitive to the change of local traffic. During the morning
rush hours, road conditions of other parts in the city may not change so sharply and global
connectivity of whole functional city may stay stable.
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Figure 9 Fluctuation of different indices. (a) Different indices as a function of time in Beijing on Oct. 27th.
(b) Different indices as a function of time in Shenzhen on Oct. 27th. Areas marked with blue circles are
examples that different indices fluctuate at different frequency.

Figure 10 Traffic reliability indices in different cities. (a) qrc as the function of time in Beijing and
Shenzhen in workdays. Inset: CDIr as the function of time in Beijing and Shenzhen in workdays. The results
are the average of 16 workdays’ results. (b) The difference of index between different cities as the function of
time. y-axis is the difference between the average qrc (CDIr ) values of Beijing and Shenzhen at each instant.

We also find that the two indices show different sensibility to the change of road con-
dition. Areas in Figure  marked with blue circle show one example of this difference.
Although the two indices have similar trends - both decrease to minimum and then begin
to increase - qr

c fluctuates with a higher frequency, while CDIr changes relatively smoothly.
This shows that qr

c is more sensible to real-time traffic variation. When calculating CDIr ,
travel time cannot be obtained until travelers complete the whole trip. Thus there exists a
smooth effect of traffic states for CDIr . We also find the similar phenomenon in Shenzhen,
as shown in Figure (b).

To further illustrate the application of the two indices in different cities, we compare the
performance of indices in Beijing and Shenzhen. In workdays, as shown in Figure (a), qr

c

in different cities shows similar trends in general, with clear peaks in morning and evening.
For CDIr , the same conclusion can be observed. This means both cities experienced heavy
traffic congestion during two peak instants and the traffic networks become less reliable.
During daytime, values of both indices in Beijing are generally larger than that in Shen-
zhen. Then we calculate the difference of the same index between different cities - the
average qr

c (CDIr) values in Beijing are subtracted by the average qr
c (CDIr) values in Shen-

zhen at each instant, the results are shown in Figure (b). Moreover, the average of abso-
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lute difference values of CDIr (.) is larger than that of qr
c (.). This difference between

CDIr and qr
c may be caused by following reasons: travel time usually scales with city size,

which leads to much larger CDIrvalue in Beijing than that in Shenzhen. However, qr
c tends

to evaluate the global management efficiency of cities based on phase transition and rela-
tive velocity, which stays stable among cities. Thus qr

c is more scalable for comparing the
traffic reliability among different cities.

5 Conclusion
Traffic congestion has become increasingly frequent in many major cities around the
globe. Congestions bring increasing extra economic and environmental costs to the whole
society. It’s critical to have an accurate estimation for traffic reliability for subsequent mit-
igation activities [–]. Here we compare a traffic reliability index based on percolation
theory with congestion delay index (CDI), and calculate the results from different perspec-
tives. When calculating the CDI, we assign the CDI index to the starting time of each trip.
We also try to assign the CDI index to the ending time of each trip, as shown in Figure .
There exists a clear delay (about  min) between two methods, which in accordance
with Figure . It can be observed that qc is more close to our original methods especially
at peaks.

The percolation threshold naturally acts as a network reliability indicator, quantifying
the operational limit of network traffic. Specifically, percolation theory focuses on con-
nected clusters, which fills up the gap of other indices that rarely consider the macro-
scopic network congestion behaviors from a network view []. We find that qc can reflect
the transition of dynamical traffic network, faced with possible extreme local conditions.
These features of qc make it a useful tool under the variation and absence of complete
traffic information, and provide supports for the congestion prediction and mitigation re-
search.

Although we made a comparison between the two indices, we found that each index
has its own advantages and limitations under certain situation. For example, qc reflects
traffic condition from managers’ perspective, while is less intuitive for travelers; CDI is less
scalable for comparing different cities, while has advantages of being more understandable
and easier calculation. These important differences will decide the choice of a given traffic
reliability index under specified requirement.

However, it should be noted that we just gave a brief analysis of indices in two cities
during limited time span. More data and analyses are needed to summarize the travel

Figure 11 Comparison of two methods of
assigning CDIr values. The black one is the result
that assign the CDIr value to the starting time of
the trip, while the blue one is the result that assign
the CDIr value to the ending time of the trip.
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characteristics of different cities according to indices. In addition, the city is not homo-
geneous and the travel velocity depends on the trips length []. In our present work, we
did not cut off the trip length. The influence of trips lengths on index calculation should
be discussed in future research.

Our study focuses more on the quantitative comparison of two reliability indices, while
the mechanisms behind these two indices are different. CDI assumes that the user trip in-
formation can reflect the overall performance of the traffic network, which incorporates
the different OD information with their weights. Meanwhile, percolation concept sug-
gests that the traffic organization over the whole network depends on the instantaneous
connected clusters of high-speed roads with free flow, where the weight of each road is
their velocity, instead of traffic flow. These underlying differences should be studied in
the future, especially its relation with macroscopic fundamental diagram (MFD). Geroli-
minis and Daganzo [] found that neighborhoods on the order of  km in cities like
Yokohama, Japan, should have a well-defined MFD. This MFD can be used to improve
accessibility as measured by the city’s trip completion rate. Both of their and our works
discuss the index to measure the performance of traffic network. For qc in our paper, it dis-
tinguishes the phase transition of the dynamical traffic network, where we divide based
on the velocity the roads into two categories: free and congested. qc reflects the real-time
variation of traffic reliability. For the work of Geroliminis and Daganzo’s, they used MFD
for traffic state monitor, which reflects the relation of density, flow and velocity. Due to
the lack of density and flow data, it is hard for us to explore the MFD and compare with
percolation index in the current stage. Further analysis should be carried out when data
are accessible.

Admittedly, only the comparison cannot reveal the underlying mechanism difference of
these two indices. In our future work, we wish to gather the value of CDI from different
sources including the mobile phone data, and further compare the fundamental relation
between these two indices. Based on big data and other advanced technologies [–],
we can perform a thorough cause-analysis for indices comparison in the future. Mean-
while, we can develop in the next step traffic optimization method based on percolation
index and compare with other methods based on CDI.
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