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Abstract
The emerging domain of data-enabled science necessitates development of
algorithms and tools for knowledge discovery. Human interaction with data through
well-constructed graphical representation can take special advantage of our visual
ability to identify patterns. We develop a data visualization framework, called BiFold,
for exploratory analysis of bipartite datasets that describe binary relationships
between groups of objects. Typical data examples would include voting records,
organizational memberships, and pairwise associations, or other binary datasets.
BiFold provides a low dimensional embedding of data that represents similarity by
visual nearness, analogous to Multidimensional Scaling (MDS). The unique and new
feature of BiFold is its ability to simultaneously capture both within-group and
between-group relationships among objects, enhancing knowledge discovery. We
benchmark BiFold using the SouthernWomen Dataset, where social groups are now
visually evident. We construct BiFold plots for two US voting datasets: For the
presidential election outcomes since 1976, BiFold illustrates the evolving geopolitical
structures that underlie these election results. For Senate congressional voting, BiFold
identifies a partisan coordinate, separating senators into two parties while
simultaneously visualizing a bipartisan-coalition coordinate which captures the
ultimate fate of the bills (pass/fail). Finally, we consider a global cuisine dataset of the
association between recipes and food ingredients. BiFold allows us to visually
compare and contrast cuisines while also allowing identification of signature
ingredients of individual cuisines.
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1 Introduction
Despite the dominance of automated algorithms for data mining and knowledge discov-
ery, it has been increasingly recognized that human perception can play an essential and
often favorable role in exploring patterns and developing insights []. For instance, the
Hertzsprung Russell diagram of stellar luminoscity versus temperature provides a classic
example of a data analysis problem easily tackled by a person but remains a challenge for
automated methods []. Typically, the utilization of human cognition in exploratory data
analysis relies on proper representation and visualization of the data in a low-dimensional
embedding space [–].

The standard concept of a “dataset” is a tabular array, where each row corresponds to
an object in the dataset and every column corresponds to a variable (or factor) measured
on each object. A natural question about such a dataset is “how are objects like (or unlike)
other objects and are there relevant relationships among collections of objects?” Multidi-
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mensional scaling (MDS) refers to a family of techniques that address these questions by
visualizing the objects as a set of points embedded in a low-dimensional (typically -D or
-D) geometric space, with the goal of representing the dissimilarities between objects by
the distances between the corresponding points in the embedded space [, ]. The gen-
erality of MDS approaches makes them suitable for a broad range of practical problems,
as demonstrated in many classical examples [, ] as well as in several recent scientific
breakthroughs: mapping of brainwide neural behavior [], discovery of sex-specific and
species-specific perceptual spaces among different biological species [], and analysis of
biogeographic differentiation between geographical regions []. On a more fundamen-
tal level, several recent developments focused on generalizing different measures of “dis-
tance” in the MDS formulation to allow for embedding from and/or onto general nonlinear
manifolds [–].

Frequently, we encounter dataset which encodes a binary relation between two sets (or
“classes”) of objects, with elements of one set corresponding to the rows, elements of the
other corresponding to the columns, and the data entries (“” or “”) indicating whether
or not there is a relationship between the associated row and column. Common examples
include politicians and bills they supported, or movie-goers and the movies that they at-
tend, or students and the courses in which they enroll. Such examples can be regarded as
decision-makers and choices, while we note that similar datasets arise in many contexts
that are often described by bipartite graphs, such as the association between genes and
diseases [], relation between chemical reactants and reactions [].

Knowledge discovery on binary relation datasets can benefit from a visualization of both
decision-makers and choices in a common embedding space, where (simultaneously)

() “Similar” objects (whether decision-makers or choices) ought to be “nearby” in the
visualization;

() Decision-makers should be positioned “close” to their preferred choices.
The BiFold method developed here relates to a set of ordination methods that attempts
to resolve various aspects of this challenge. From a classical perspective, one should build
that framework upon three primary choices, where we would point the reader to [, ]
and the references therein for details of common methods: Biplot [] aims to satisfy
requirement (), with points (typically referred to as “samples”) representing one set of
objects and coordinate axis (often referred to as “variables” and plotted as position vec-
tors) describing the other set; Unfolding [] considers only between-class distances, and
therefore focuses only on requirement (); Correspondence analysis [–] focused on
contingency table data rather than general binary relation data. The BiFold method devel-
oped herein merges the respective goals of Biplot and Unfolding methods, satisfying both
requirements () and (), and it is this connection that motivates the name.

In addition to the classical ordination methods described above, we note that BiFold
has similar goals to nonlinear and generalized biplot methods described in [, ]. In
particular, the generalized biplot addresses categorical variables (of which dichotomous
variables are a subset) with consideration of both requirements () and () in developing
the ordination. Their approach is to ordinate each entry in the dataset, such that each level
of a categorical variable is separately visualized. For binary variables, that approach would
require representation of one of the classes of objects by two sets of ordination coordi-
nates, one to represent the “” and the other to represent the “” in the data. Our original
contribution here is two-fold: (i) Our treatment is completely symmetric with respect to
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Figure 1 BiFold as a joint visualization. (Middle panel) The classic SouthernWomen Dataset [26], where
Davis has arranged the table to highlight the social group structures. (Left panel) Independent MDS
representations can be created for the women (using inter-row distance) or for the events (using
inter-column distance), but those plots cannot be directly merged because the coordinate axes are not same.
(Right panel) The BiFold representation gives coordinate representation against a common basis. Note that
the significant “clusters” observable in the sorted data matrix (colored rectangles) are matched to spatially
clustered sets (colored ellipses) in the BiFold plot.

the classes, with neither being treated as the “variables.” The resulting ordination is iden-
tical, even if we transpose our dataset. Consequently, each object, regardless of class, is
assigned only one coordinate. (ii) We consider an ordination scheme that accounts for
the difference in information quality of cross-group and within-group distances, as well
as the difference in information content across groups of different size, as specialized to
the binary data framework. The ordination approach is more naturally able to account for
the difference in information content arising from the non-square data matrices, missing
data, and differences in interpretation of matches for categorical variables [].

We begin with an introductory example of BiFold below, leaving the details of the ap-
proach and more examples to the later sections.

An introductory example - BiFold plot of the southern women dataset
Consider the Southern Women dataset, collected in the s in a small town in the

southern United States. The data records the participation of  ladies (Southern Women)
in  social events [] and can be represented by matrix B = [bij]×, where bij =  in-
dicates that woman i attended event j, and bij =  otherwise (see Figure  middle panel as
well as Materials and Methods). Due to its relatively small size and simple structure, the
dataset serves as a popular benchmark for techniques that consider social stratification,
group formation, and other social structure questions [].

One way to visualize the Southern Women dataset is to use MDS to place the  women
at suitable -D locations, where distance between embedded coordinates reflects the de-
gree to which the women attended similar events, as in Figure -top left. In this case,
we are treating the women as the entities to be plotted, while the events are regarded as
factors that characterize each individual. Alternatively, we can treat the events as enti-
ties and the women as factors, allowing us to obtain an MDS configuration of events,
as shown in Figure -bottom left. The goal is to “overlay” the two embeddings to not
only capture the within-class relationships (woman to woman, event to event) but also
the cross-class relationship of woman to event. BiFold produces such a joint visualization
(Figure -right panel) in which social group structure [, ] is easily identified through
proximity: (a) nearby women attended similar events, (b) nearby events were attended by
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similar groups of women, (c) nearby woman-event pairs indicate that the woman likely
attended that event.

2 Results
2.1 The BiFold approach
BiFold provides a procedural framework to produce a low-dimensional embedding from
a binary data matrix. First, we create a joint dissimilarity matrix that appropriately fuses
information from both within-class and cross-class relations. Secondly, we construct a
weighting matrix to reflect the relative uncertainty associated with the dissimilarities. Fi-
nally, we minimize a weighted stress function to obtain a BiFold embedding, coordinates
in R

d for each row and each column of the data matrix. In this section, we describe and ex-
plain this framework, leaving the detailed specification of the algorithms and parameters
to Materials and Methods.

Given a binary relation between two types (classes) of objects, encoded as matrix B =
[bij]m×n, where

bij =

⎧
⎨

⎩

, if object i of type  relates to object j of type ;

, otherwise.
()

Such data equivalently encodes a bipartite graph, where an edge in the graph corresponds
to a binary relationship, and the matrix B is the biadjacency matrix of the graph [].

Focusing on objects represented by the rows of B, we quantify, using some appropri-
ate measure, the dissimilarity between row i and row j, denoted δ

(x)
ij , producing matrix

�(x) = [δ(x)
ij ]m×m. Likewise, we generate dissimilarity matrix �(y) = [δ(y)

ij ]n×n by comparing
the columns of B. Finally, the dissimilarity between row object i and column object j is de-
fined by a monotonic transformation of the entries in matrix B, which yields a cross-class
dissimilarity matrix �(xy) = [δ(xy)

ij ]m×n. A binary relation dataset typically falls into one of
the two categories: () choice data, for which each data entry (whether “” or a “”) re-
flects an active decision (either a positive or negative relation); and () association data,
for which the “”s indicate only an absence of a relation, and are usually much less in-
formative than the “”s. For data from each of these categories, we have developed some
sensible dissimilarity measures (see Materials and Methods).

Given within-class dissimilarity matrices �(x) and �(y) together with the cross-class dis-
similarity matrix �(xy), we form a joint dissimilarity matrix of size (m + n) × (m + n), as:

� =

[
αx�

(x) αxy�
(xy) + β

αxy�
(yx) + β αy�

(y)

]

, ()

where  is a matrix of s, and �(yx) is the matrix transpose of �(xy). The joint dissimilarity
matrix contains a few tunable parameters: αx, αy, and αxy control the relative scale of the
within-class and cross-class distances in the embedded space, while β allows for explicit
translation (i.e., shifting) of the row objects away from the column objects. In the exam-
ples of this paper, we use β =  (no translation). Note, however, that for some datasets
the visualization might be improved by a translation (realized by a nonzero β value) as
determined by the end-user.
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Dissimilarities are generated from data and should be viewed as a measurement with
uncertainty. To capture such uncertainty, we associate a “weight” to each dissimilarity fol-
lowing the principle that the weight should reflect the information content (or reliability).
We denote the corresponding joint weighting matrix as

W =

[
W (x) W (xy)

W (yx) W (y)

]

. ()

Once the joint dissimilarity and weighting matrices are specified, a d-dimensional BiFold
embedding yields coordinates X = (x, x, . . . , xm) and Y = (y, y, . . . , yn) to denote the sets
of points corresponding row objects and column objects. Denote the full coordinate set
as Z = (X, Y ). Such an embedding is computed by minimization of the multivariate stress
function S : Rd×(m+n) →R, defined as

S(z, z, . . . , zm+n) =
m+n∑

k,�=

wk�

(‖zk – z�‖ – δk�

). ()

Here ‖ · ‖ denotes a metric distance in the common embedding space. The stress function
S, which is given by a weighted sum of the discrepancies between the embedded distances
and the dissimilarities, is a standard type of loss function frequently used in MDS [, ].

In the following sections, we illustrate BiFold via three additional binary datasets: US
presidential election results, US senate voting records from the th Congress, and a
food-recipe relational dataset from five major global cuisines.

2.2 Examples: voting datasets
A common type of binary relation comes from voting data: for each item to be voted on,
a voter either votes “for” or “against,” with (perhaps) the ability to abstain. We consider
two such examples: US presidential election results for past ten elections, for which the
“voters” are the individual US states and the “items” are the winning presidents in each
election. We also examine senate congressional roll call votes, with US senators as voters
and the items are senate bills.

.. Presidential election by states
Consider the state-level votes for the United States presidential elections for the period
from  to . There are  decision makers ( states plus the District of Columbia)
and a total of  decisions, resulting in a data matrix B = [bij]× where

bij =

⎧
⎨

⎩

 if state i voted for the winner of election j,

 otherwise.
()

As with the Southern Women example, we seek a low-dimensional visualization which
captures the within-class relationships (state-to-state and president-to-president) while
also accounting for the between-class relationships (state-to-president). To quantify these
relationships, we define the dissimilarity between two states as the fraction of elections
for which they voted differently; the dissimilarity between two elections is computed as
the fraction of states which voted differently in those elections; finally, the dissimilarity
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Figure 2 BiFold bubble plot of US presidential
election voting - by state (1976-2012). The BiFold
layout based on state voting records, where bij = 1 if
state i voted for the winning candidate in election j.
Bubble size (area) is proportional to the number of
states at that position, with the smallest circle
indicating one state. Each two-digit year is
positioned at the BiFold coordinates of the elected
president.

Figure 3 BiFold of US presidential election - visual
enhancement. (a) States are colored based on the fraction of
elections for which they supported the Republican (red) or Democrat
(blue) presidential candidate. (b) Lines are added to connect Carter
(‘76) and Reagan (‘84) to their respective “supporting” states in those
elections. The boldness of the lines are proportional to the number of
supporting states. (c) Similar support representation for Bush ‘00 and
Obama ‘12 illustrate the strong partisan nature of those elections.

between state i and election j is quantified as  – bij. Given these dissimilarities, Figure 
visualizes these election results, where coordinates are determined using BiFold.

Using BiFold for positional layout, we may encode additional information using other
aesthetics. In Figure , states are colored according to party affinity (based on the fraction
of these  elections in which that stated voted for the presidential candidate from that
party, with Republican in red and Democrat in blue).

Aided by the additional encoded information, the BiFold layout yields some interesting
observations.

- Not surprisingly, the primary coordinate axis (left/right) strongly encodes the party
affinity (blue state/red state).

- Over time, the election positions have (generally) moved toward the left/right
extremities, capturing the increasing partisanship of the elections.

- Most of the purple colored “swing states” are near the center of the visualization,
which implies that they align with most of the election winners, with slight variation
based on the particular set of presidents that they supported. As interesting exception,
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West Virginia lies far above the main cloud, which we attribute to its trend of having
often supported the non-winning candidates.

- Noting several “paired” election coordinates, we observe that such pairs associate with
two-term presidents, likely because their constituent support did not change much
between elections.

- Positional outlier Carter ‘ reflects support from a non-typical coalition of states,
likely attributed to Carter being the first president elected from the Deep South since
the Civil War. Reagan ‘ is the most centrally positioned, reflecting broad national
support. Figure b connects each of these elections to the supporting states.

- Comparing Bush ‘ to Obama ‘ (Figure c) we see both elections driven primarily
by partisan support.

We remark that any of the visually indicated hypothesis should be viewed as exploratory
and be confirmed by additional quantitative analysis (as would also be appropriate for
most other data visualizations). However, we note that the BiFold visualization motivates
a rich palette of such hypotheses, many of which directly exploit the between-class infor-
mation.

.. Senate congressional roll call votes
We consider the voting record of the United States (U.S.) Senate. The U.S. legislative body
is composed of two chambers, known as the Senate and the House of Representatives.
A particular congress serves for two years with this time frame divided into two sessions.
We focus on voting data from the th congress, first session of the Senate, which con-
ducted  roll call votes. For each roll call vote, there are at most  senators. However,
the replacement of Senator Ensign by Senator Heller mid-session leads to a data matrix
with  rows and  columns, recording the action of senator i on bill j

bij =

⎧
⎨

⎩

 if a “yes” vote,

 if a “no” vote.

If senator i did not act on bill j, entry bij is undefined and is treated as missing data. (See
Materials and Methods for treatment of missing data.)

As with the previous examples, the goal (achieved by BiFold) is to obtain an embedding
that captures both the within-class relationships (senator-to-senator and bill-to-bill) and
the between-class relationships (senator-to-bill). From the data, we quantify the dissimi-
larity between two senators (bills) as the estimated probability that they vote (were voted)
differently. Dissimilarity between senator i and bill j is the estimated likelihood that sena-
tor i objects to bill j.

As shown in Figure , the BiFold plot clearly shows the two-party structure of the sen-
ate, allowing for convenient visual comparison of the relative “spread” of the parties, and
identification of senators that are “moderate” versus those that are more “extreme” (Fig-
ure , top panels). The pattern of bills revealed by BiFold is reminiscent of the diamond
structure previously identified from classical MDS []. In addition, BiFold provides vi-
sual information regarding the relationships between bills and senators by positioning bills
“close to” the senators supporting them. This unique feature enables a clear classification
of the main clusters of bills as shown in Figure :
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Figure 4 BiFold of voting records: US Senate, 112th Congress, Session 1. (a) BiFold layout of Senate
voting data. Senators are numerically labeled (based on alphabetical order), with Republicans in red,
Democrats in blue, and Independents in black. Votes that passed are colored green, while those that did not
pass are gray. Observe that the two “Independents,” Senators Lieberman (58) and Sanders (82) align with the
broad democratic party cluster, but both near its fringe. Republican Senators Snowe (85), Brown (14), and
Collins (25) appear (by the BiFold plot) to have the most liberal voting record of their party. (b-d) Further
aspects of the BiFold Senate layout. (b) “Nearby” senators Collins (R-25) and Nelson (D-72), with lines
connecting each senator position to their respective “yes” votes. Both show strong bipartisanship in their
voting records. (c) Senators Inhofee (R-44) and Inouye (D-45) have very few votes that “reach across the aisle.”
(d) Bills positioned near the center of the plot have broad, bipartisan support. Vote 45 unanimously
confirmed Amy Jackson as a US District judge. The lines connect this vote to those senators who voted in
support. (e) Vote 59, supported only by the Republican caucus, failed to pass. It is situated “far” from the cloud
of democrats, but near the Republicans. This resolution would restrict use of Department of Defense Funds to
carry out provisions of the Patient Protection and Affordable Care Act.

- Bills in the “left” (liberal) cluster received strong support from the Democratic
Senators;

- Bills in the “right” (conservative) cluster received strong support from the Republicans;
- Bills in the “top” (bipartisan supportive) cluster were strongly supported by both

parties, as visually being “pulled” between the two parties;
- Bills in the “bottom” (bipartisan opposition) cluster are pushed far away from both

parties, indicating bills that were supported only by a small number of senators.
Thus, by simultaneous embedding of both the senators and the bills, the BiFold visual-
ization not only captures patterns within the senators and those within the bills, but also
reveals salient features of the senator-bill cross relations.

2.3 Association datasets: a recipe - ingredient dataset
We envision the BiFold approach to be broadly useful, certainly beyond the visualization
of voting data. Another important category of binary data captures the association be-
tween “members” and “affiliations.” A key feature of such association datasets is that the
non-association relations carry little information compared to the association relations; in
sharp contrast, in a voting dataset the “yes” and “no” votes both convey valuable informa-
tion about the relation between the decision makers and the choices. Association datasets
are often collected to form sparse, bipartite networks, where sparsity arises from the real-
ity that there are (typically) many more non-associations than associations in these data.

We focus here on a specific example relating recipes with their included ingredients.
A recipe defines a procedure for cooking, along with a list of food items (ingredients)
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used in the recipe. Gathering this data over a broad spectrum of recipes allows us to more
completely understand how ingredients are used in combination, which may vary from
one cuisine to another. As our data source, we consider the recipe-ingredient association
dataset generated in [], which assembled over , recipes taken from two American
and one Korean online repository. The data is (again) represented by a matrix B, where
bij =  indicates that recipe i contains ingredient j, and  otherwise. To proceed with the
BiFold approach, we must define the dissimilarities between the entities: Recall that in the
voting examples, both a “” (a yes vote) and a “” (a no vote) contain actual information
regarding a voter’s opinion. In contrast, in the recipe-ingredient dataset, a given recipe
typically includes only a small fraction of all available ingredients and carries essentially
no information on those ingredients that are not used in the recipe.

Between-class dissimilarity measure is as before, δij =  – bij. However, the within-class
dissimilarities require more careful consideration. If we were to quantify the dissimilar-
ity between two recipes in the same way that we did for two voters, we would conclude
that most recipes are very “similar.” This apparent similarity is artificial, resulting not from
commonality of ingredients they share, but due to the overwhelmingly large set of ingredi-
ents that neither recipe contains. A dissimilarity measure that symmetrically incorporates
“”s and “”s will therefore be dominated by the sparsity of the data rather than the actual
relation between the entities of interest. In this context, we would consider the s as carry-
ing relatively little information. As such, the Jaccard distance provides a natural measure
of dissimilarity [], where we treat rows (or columns) of B as a characteristic function
indicating set membership. For two recipes, the Jaccard distance is

JR =  –
# ingredients shared by the two recipes

# ingredients needed to make both recipes
. ()

Likewise, the Jaccard distance between two ingredients is

J I =  –
# recipes using both ingredients
# recipes using either ingredient

. ()

In addition to the recipe-ingredient relationship information, the original dataset also
categorized each recipe as belonging to a particular cuisine. We focus our analysis on a
random subsample (of , recipes) of the five cuisines in the original dataset that contain
more than , recipes. We compute a -D BiFold embedding to support visualization
of this reduced dataset. In Figure , we use the BiFold coordinates to plot food ingredients
(circles, colored by ingredient category), with that layout the same for all five cuisines.
Each cuisine is visualized in its own panel, where we use a density plot to capture the
distribution of recipes from that cuisine.

As expected, ingredients that are commonly used together in recipes are positioned near
each other in the plot, and recipes with similar ingredients appear close together as well.
A unique outcome of applying BiFold to this data is that we may now visually associate
ingredients to cuisines, whereas the original data only associates recipes to cuisines, fa-
cilitating an entirely new level of interpretation enabled by embedding both recipes and
ingredients using a common coordinate frame:

- From the collection of cuisine plots, we can visually identify similar cuisines (North
America - Western Europe, Latin America - Southern Europe).

- The East Asian cuisine appears visually distinct from the western heritage cuisines.



Jiang et al. EPJ Data Science  (2017) 6:2 Page 10 of 19

Figure 5 BiFold visualization of recipes and ingredients. Ingredients are plotted as circles with area
proportional to the frequency of usage in recipes and coloring indicating its category. For each of the five
cuisines (North American, Western European, Latin American, Southern European, and East Asian) we plot a
density plot of the recipes from that cuisine along with the full set of ingredients. The BiFold layout enables
visual exploration of the joint recipe-ingredient space across cuisines. For example, the central cloud contains
protein groups (primarily meat) shared by all cuisines. Each cuisine is visually associated with a few “signature”
ingredients, with examples include basil and oregano (Southern European), sesame oil and soy sauce (East
Asian), and so on. The BiFold plots allow us to “see” that certain cuisines are likely similar (North American -
Western European, and Latin American - Southern European).

- The protein group, primarily meat, appear centrally in the figure of ingredients, with
all the cuisines showing significant density in that region of the plot. (In other words,
the meat group does not identify any particular cuisine.)

- The density plots allow to visually identify certain ingredients as the “signature” of a
cuisine: basil and oregano (Southern European); sesame oil and soy sauce (East Asian);
cocoa and vanilla (North American and Western European).
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Figure 6 Minimal stress vs. dimension in BiFold. For each of the example dataset used in this paper, we
plot the minimal BiFold stress obtained by the SMACOF algorithm (seeMaterials andMethods for details) as a
function of the embedding dimension.

3 Discussion
The BiFold framework described in this article has primarily focused on a fixed, binary
dataset, interpretable as associations between two types of objects. We consider that
framework to be broadly applicable to datasets describing relationships between entities
from different classes, where we want to be able to simultaneously visualize the different
classes such that visual distance can be associated to a dissimilarity measure, both within
class and between classes. For the datasets examined, we would remark that although the
knowledge discovery facilitated by the visualization are possibly achievable by other anal-
ysis techniques, BiFold has a unique ability to simultaneously visualize those discoveries.
Note that the extent to which BiFold plot (or any visualization) reflects the actual similari-
ties and dissimilarities between objects in the dataset - as measured by the stress function -
depends intrinsically on the dataset itself. In typical real-world datasets, the representa-
tion would not be perfect, even if the dimensionality of embedding is large. For the datasets
considered here, we find that in the Southern Women example, as well as the two US voting
examples, a low-dimensional (-D or -D) BiFold embedding achieves an almost minimal
stress which cannot be further decreased by increasing dimensionality (see Figure ), sup-
porting the notion that the opinions are well expressed by a low-dimensional model. On
the other hand, for the recipe-ingredient example, increase of dimensionality beyond -D
continue to decrease stress and improve the match to the original data (Figure ), suggest-
ing an enormous diversity and complexity in the cuisine space which cannot be accounted
for using just a few variables or parameters.

In addition, we note that the BiFold framework described here may be easily extended
to a number of interesting and related problems:

- As an (almost trivial) extension, we note that interpretation of the data as representing
a bipartite network implies that BiFold could act as a graph layout algorithm for
bipartite network data.

- BiFold can be viewed as a generalization of several other classical techniques which
can be recovered by specific choice of parameters:
• w(xy)

ij = : Only within-class dissimilarities are considered, yielding separate MDS
embeddings of the two types of objects [, ].
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• w(x)
ij = w(y)

ij = : only between-class dissimilarities are considered, yielding an
unfolding of the data [, , ].

- The entries in the data matrix, B, need not be binary, but could represent a
continuous or ordinal variable, such as ratings, rankings, or preferences.

- Some dataset might naturally contain more than two groups, such as actors, movies,
and viewers. Such datasets can be treated as multipartite, rather than bipartite data.
We envision a natural extension of BiFold, where the joint dissimilarity and weighting
matrices must be appropriately constructed based on the within-group and
between-group relationships.

- We focused on Hamming distance and Jaccard distance to compute within-in class
dissimilarity, with each providing a natural interpretation for the datasets considered.
We note that the BiFold framework is not dependent upon any particular choice of
dissimilarity measure, and a reasonable practitioner may choose other methods for
defining dissimilarities (and weights) that might be appropriate for their data. The
BiFold approach - based on the joint dissimilarity matrix, will still provide a means to
develop the joint visualization.

- For some of the methods, we interpret the raw (binary) from Bayesian perspective,
but with uninformed prior. That approach could easily added to accommodate other a
priori understanding of the data.

- For dynamic datasets (parameterized by time, for example) each data “snapshot”
would yield a BiFold layout. A stress functional that incorporates a regularity
condition in time could compute an optimal sequence of layouts, computed over
many snapshots.

As caution, we note some of the challenges associated with analysis via the BiFold frame-
work:

- Computational complexity of the stress minimization as an optimization problem
using the SMACOF algorithm is roughly O(n) for reaching at a local, approximate
solution. As such the current implementation of stress minimization will likely
struggle with very large datasets. Because the technique is meant to support visual
knowledge discovery (human interaction), speed of visualization is important. Data
aggregation might be a way to handle large datasets, but the aggregation procedures
will almost certainly be domain specific.

- Comparing one BiFold layout to another (exploring parameter space) can be
challenging in that the solution layout is rotation and reflection invariant. Normalizing
the orientation of the generated solution is important. As additional complication, the
configuration solution to the optimization problem is a local minimizer, so that
solution may “jump” to a different minimizer under small changes in the data.

- The non-Euclidean nature of the dissimilarity measures results in a dissimilarity
matrix that is not necessarily well approximated by a low dimensional embedding.
Under such case, visually interesting effects may sometimes be an artifact of the data,
particularly with sparse datasets.

Despite these challenges, we note that the proposed BiFold framework developed here
appears to have broad applicability in many settings related to complex networks, social
sciences, and those areas of data analysis that focus on binary relations.
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4 Materials and methods
4.1 Datasets

- The Southern Women dataset is a popular dataset used in social network analysis. The
dataset first appeared in the book “Deep South: A Social Anthropological Study of
Caste and Class” [] (p.), and can also be found in several online network data
repositories. Collected in the s in a small southern town Natchez (Mississippi,
United States), the data records the participation of  women in a series of 
informal social events over a nine-month period. Only the events for which at least
two women participated are included in the dataset. Figure  shows the data table
without including the names of the women or dates of the events. We represent the
dataset by a woman-by-event matrix B = [bij]×, where bij =  indicates that woman
i attended event j, and bij =  otherwise.

- The U.S. presidential election dataset considered in this paper includes the state-level
voting results of the United States presidential elections for the period from  to
. The dataset, available at the U.S. government archive (http://www.archives.gov/
federal-register/electoral-college/), includes the state voting outcome from the 
voting entities ( states plus the District of Columbia) for the past  presidential
elections. We alphabetically numbering the states from  to  by name, and the
elections from  to  in chronological order. We then represent the dataset by a
state-by-president matrix B = [bij]×, where bij =  indicates that state i voted for
the elected president in the jth election, and bij =  otherwise. For example, in all past
 elections Ohio has always voted for the president candidate who eventually won
the election regardless of his party affiliation. Florida and Nevada both “missed” one
election: in the  election, Florida voted for G.H.W. Bush (the elected president
was B. Clinton); in the  election, Nevada voted for G. Ford (the elected president
was J. Carter). All three are well-known examples of “swing” states characterized by
flexible voting patterns and importance in determining the election outcome.

- The U.S. Senate Congressional Voting dataset used in this paper is obtained from the
congressional voting records of the th United States congress, first session of the
Senate. There are at most  senators at any time, with occasional need to replace a
senator in mid session, which happened once during the voting portion of this session.
As such the roll calls indicate  senators voting,  Democrats (D),  Republicans
(R), and  Independents (I). There were  recorded roll call votes,  passed and 
rejected. We number the senators from  to  by last name, and the bills from  to
 in chronological order. We formulate data matrix B = [bij]× by defining bij

using the voting of senator i on bill j: for a “yes” vote bij = , for a “no” vote bij = . The
abstained votes are treated as “missing” data in the matrix (see the “Treatment of
partial and missing data” section below for details).

- The recipe-ingredient dataset is retrieved from the Supplementary Information of
Ref. [], a paper that studied the similarity and difference in food pairings across
different geographical regions. The dataset contains more than , recipes
extracted from three cuisine websites: allrecipes.com, epicurious.com, and
menupan.com. The recipes were divided into  geographical regions, covering ∼
popular cuisines around the world. The recipes and ingredients are indexed. Focusing
on the  geographical regions (cuisines) that contain over , recipes, we construct
data matrix B = [bij],×, with bij =  if recipe i contains ingredient j. This

http://www.archives.gov/federal-register/electoral-college/
http://www.archives.gov/federal-register/electoral-college/
http://allrecipes.com
http://epicurious.com
http://menupan.com
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subsample of the original dataset contains , randomly selected recipes from each
of the  selected cuisines: East Asian, Latin American, North American, Southern
European, and Western European. The subsampled data contains a total of 
different ingredients.

4.2 The BiFold framework: dissimilarity measures, weights, and stress
minimization

The BiFold framework describes a general approach to produce a low-dimensional em-
bedding from a data matrix, where that matrix encodes the relationship between two
classes of objects. First, one needs to create a joint dissimilarity matrix using some appro-
priate within-class and cross-class dissimilarity measures as well as scaling to make the
within-class and cross-class dissimilarities commensurate. Secondly, one needs to con-
struct a weighting matrix to reflect the relative focus to be given to the computed dissimi-
larities. Finally, the BiFold embedding is obtained by minimizing a weighed stress function
similar to the determination of an MDS solution.

We now present the mathematical details of the BiFold procedure. For a given data ma-
trix B = [bij]m×n, a d-dimensional BiFold embedding is based upon minimization of the
multivariate stress function S : Rd×(m+n) →R, given by

S(z, z, . . . , zm+n) =
m+n∑

k,�=

wk��
(‖zk – z�‖, δk�

)
. ()

- The joint dissimilarity matrix is given by Eq. (), where �(x) = [δ(x)
ij ]m×m and

�(y) = [δ(y)
ij ]n×n are the within-class dissimilarity matrices and �(xy) = [δ(xy)

ij ]m×n is the
cross-class dissimilarity matrix (�(yx) = �(xy)�). The parameters: αx, αy, and αxy

provide flexible scaling of the within-class and cross-class distances in the embedded
space, while β can be used to visually translate the type- objects away from the
type- in the embedding.

- The weighting matrix is defined in Eq. (), where W (x) = [w(x)]m×m, W (y) = [w(y)]n×n

are the within-class weighting matrices and W (xy) = [w(xy)]m×n is the cross-class
weighting matrix (W (yx) = W (xy)�).

- As typical choice for the above stress function S is to let �(d, δ) = (d – δ). For a given
dissimilarity and weight matrix, this fully specified stress function may then be
minimized to obtain coordinates {z, . . . , zm+n}.

4.3 Dissimilarity measures and weights used in the examples
In the data matrix B = [bij]m×n of the Southern Women dataset, bij =  if woman i attended
event j and bij =  otherwise. For the BiFold plot in Figure , we used the following within-
class and cross-class dissimilarities:

⎧
⎪⎪⎨

⎪⎪⎩

(woman-to-woman dissimilarity) δ
(x)
ij =

∑n
k= |bik – bjk|,

(event-to-event dissimilarity) δ
(y)
ij =

∑m
k= |bki – bkj|,

(woman-to-event dissimilarity) δ
(xy)
ij =  – bij.

()

Then, to balance the spread of the points from the two classes in the embedding, we set
the scaling parameters αx = /n, αy = /m, and αxy = . The shifting parameter β = . All
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entries of the joint weighting matrix W equal to . These choices were made primarily for
simplicity and are unlikely to be appropriate for the other, much larger datasets considered
in the paper. Below we develop a set of dissimilarity measures and corresponding weights
suitable for two common types of data matrices encoding voting and association relations,
respectively.

- Voting data: the BiFold Bernoulli Method. Where the data matrix B represents ‘voting’
data, such that bij indicates that object Xi voted positively for object Y j, one may
consider that the preference selection (‘’ or ‘’) is a forced binary decision on a
continuous variable that represents preference. One model for this situation would be
to view bij as the observation of the forced decision outcome, treated as a Bernoulli
trial, where Bernoulli parameter p := pij =: p(xy)

ij is not known. (For real data sets of
voting data, we treat ‘yes’ as ‘’ and ‘no’ as ‘.’ As a third outcome, sometimes a voter
will ‘abstain’ on a particular vote, which we view as “missing data” with technique
described below.) Applying this model within a group (for example, within group )
we could assert a Bernoulli process with p := p(xx)

ij the (unknown) probability that
object Xi and Xj would vote the same way on an arbitrarily selected vote. Comparing
rows i and j in the data matrix B would provide n observations of outcomes from that
Bernoulli process. Comparison of columns treated in the same way, would represent
m observation of the Bernoulli process associated to objects Y i and Y j. Ideally, we
would like to construct a BiFold configuration using dissimilarities computed from the
actual values for preference - the unknown values for pkl

ij . Instead, we must assign
dissimalities from estimated probabilities , δ(∗)

ij :=  – p̂(∗)
ij . Following standard

development for estimating proportions, we count the number of within group
differences between pairs of entities in each class :

s(x)
ij =

∑

k

|bik – bjk|, ()

s(y)
ij =

∑

k

|bki – bkj|. ()

For the cross-class data, we pool all observations to define an average rate of positive
voting:

p̄ =
∑

i,j bij

nm
. ()

Because we have significantly more observations for the ‘within class’ data, we
expect those estimates to be more accurate. Consequently, we choose weights wij

proportional to the information content. Borrowing from approaches used in
regression of heteroscedastic data, we weight the error term (stress) inversely as the
(estimated) variance in the observation, as applied in equations () and (). We focus
on three primary alternatives for the estimation of the parameters and the variance:
() Bayesian, with uniform prior; () Bayesian, with Jeffreys’ prior; and
() Non-Bayesian, maximum likelihood estimate. Table  shows the resultant formulas
associated to these methods. We note that the specific Bayesian approaches described
assume no prior belief regarding the parameters pij. However, the concept is obviously
easily generalized to those cases where prior information is available, where one
would simply encode that knowledge into assumed prior distribution.
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Table 1 Bifold Bernoulli methods: coefficient estimation formulas for the distances

Groups Uniform prior Jeffreys’ prior Non-Bayes

δij 1/wij δij 1/wij δij 1/wij

1↔ 2
2–bij
3 p̄(1 – p̄)

3/2–bij
2 p̄(1 – p̄) 1 – bij p̄(1 – p̄)

1↔ 1
s(11)ij +1

n+2
δij (1–δij )

n

s(11)ij +1/2

n+1
δij (1–δij )

n

s(11)ij
n

(s(11)ij +1/2)(n–s(11)ij +1/2)

(n+1)2n

2↔ 2
s(22)ij +1

m+2
δij (1–δij )

m

s(22)ij +1/2

m+1
δij (1–δij )

m

s(22)ij
m

(s(11)ij +1/2)(m–s(11)ij +1/2)

(m+1)2m

- Association data: the BiFold Membership Method. For association data (such as the
recipe-ingredient dataset), the sparse biadjacency matrix bij =  indicates an
association between object i from class x with object j from class y. Unlike the case of
voting datasets a “” in an association dataset carries relatively little information as
opposed to a “”. This asymmetry, if not accounted for appropriately, will result in an
embedding (and visualization) that is dominated by the count of s instead of
revealing more useful features.

Between class dissimilarity measure is quantified as

δ
(xy)
ij =  – bij. ()

The within-class dissimilarities are computed using a Jaccard distance. Specifically, for
two objects represented by rows i and j of the matrix B, their dissimilarity is given by

δ
(x)
ij =  –

∑
k bikbjk

∑
k(bik + bjk – bikbjk)

. ()

Likewise, the dissimilarity between columns i and j is computed as

δ
(y)
ij =  –

∑
k bkibkj

∑
k(bki + bkj – bkibkj)

. ()

For weights, we treat bij =  as representing unit information, while bij =  carries no
information, so that

w(xy)
ij =  – bij. ()

For within class, the weights are computed by counting the number of common “’s,” yield-
ing

w(x)
ij =

∑

k

bikbjk , w(y)
ij =

∑

k

bkibkj. ()

As a result of the typical sparsity in such dataset, matrix W will also be sparse. We remark
that

wij =  ⇐⇒ δij = , ()

meaning that under this condition of maximal dissimilarity of i with j, that particular dis-
similarity does not directly affect the computed stress functional or the resultant BiFold
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embedding. Without this weighting scheme, a sparse association dataset would be com-
pletely dominated (visually) by the large number of objects forced to lie at the outside of
the unit ball because most objects are ‘very far’ from most other objects.

5 Stress minimization
After formulating a stress function () and embedding dimension d, a BiFold represen-
tation of the data is obtained by minimizing the stress function over the coordinates of
m + n points in a d-dimensional Euclidean space. This optimization problem is within the
class of MDS problems, with several alternative tools available to find a local minimum
[, ]. For the BiFold plots reported in this paper, the stress minimization is done via the
(iterative) SMACOF algorithm []. For reproducibility of results, for the initial iteration
of the algorithm, the starting configuration for the coordinates is obtained by a classi-
cal MDS solution of the joint dissimilarity matrix (without weighting). After applying the
SMACOF algorithm to obtain a set of coordinates, we further perform a PCA (principal
component analysis) to standardize the alignment, noting that the stress function is in-
variant under such transformations. As a consequence, in all BiFold plots the horizontal
axis is the principal direction.

6 Treatment of partial and missing data
For real datasets, the choice of methods for dealing with missing data can become a critical
component of the data processing. In general, the BiFold approach admits a very reasoned
approach that does not depend upon imputation and remains robust in a wide variety of
datasets. The key enabler is recognizing that data matrix B contains mn pieces of infor-
mation, while the solution (a configuration) allows just d × (m + n) free variables. Under
typical scenarios, with the visualization dimension d =  or d = , and n, m 
 d, we may
view this as the data matrix as providing significant amount of “redundant” information.
In the same way that a regression line should not suffer too much if a small fraction of
the data set is removed, a similar robustness should persist in the BiFold visualization. As
such, we follow two general guidelines when dealing with missing data:

. Use only available data when computing dissimilarities δij.
. Weights wij should be selected to account for the actual (non missing) data that is

used to compute the associated dissimilarity.
Consider, for example, the congressional voting data described above. For these data, it

is typical that not all senators would vote on every bill. Some may “abstain” during the roll
call, but others may simply not be present. In this case, a typical dataset structure might
assign

bij = NA ()

if senator i did not vote on bill j. To perform BiFold under this condition of missing data,
we proceed as follows:

- If bij = NA then w(xy)
ij = , and δ

(xy)
ij = c, where c is an arbitrary, finite constant.

- For within group differences for group , define index sets κij as

κij = {k | bik �= NA, bjk �= NA},
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compute

s(x)
ij =

∑

k∈κij

|bik – bjk|, ()

and determine the number of information elements as

n(x)
ij = |κij|. ()

- Apply Table  formulae to compute δ
(x)
ij and w(x)

ij , replacing n by nij.
- Use similarly modified formulas to compute δ

(y)
ij and w(y)

ij .
After forming the data matrices � and W , then we may simply minimize the weighted

stress to determine an coordinate representation.
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