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Abstract. The present article discusses some recent advances in methods of critical evaluation of experi-
mental data on wavelengths of spectral lines and theoretical data on transition probabilities and oscillator
strengths for atoms and atomic ions. In particular, recently developed new statistical approaches to estima-
tion of uncertainties of weighted means of multiple measurements are described, and a numerical toolbox
implementing these new approaches is presented. There are also some new developments in estimation of
uncertainties of theoretical transition probabilities. A short review of literature implementing these new
procedures is provided, including a description of the methodology.

1 Introduction

There is a distinction between the concepts of “num-
bers” and “data.” This is seemingly trivial, but read-
ing current literature on atomic spectroscopy indicates
that not everybody understands it. There are many
properties of physical and mathematical objects that
can be expressed as exact numbers. A typical exam-
ple is the ratio of circumference to the diameter of
a circle. It is the number π, which can be calculated
with any required precision. So, we can say that it is
known exactly. However, if one tries to measure cir-
cumference or diameter of any circle with available
measuring tools, the result is never exact. Repeated
measurements with the same instrument or with differ-
ent instruments will give a set of slightly differing val-
ues. The result of such measurement can be calculated
as a weighted mean of individual results with weights
equal to inverse squares of measurement uncertainties.1
Uncertainty of this result can be reliably estimated by
studying the distribution of individual measurements
around the weighted mean. This is a typical example of
what we call “data.” Uncertainty is its intrinsic prop-
erty that cannot be omitted. Without uncertainties, the
results of a measurement or a calculation become unus-
able collections of senseless numbers, as they lack any
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indication of their dependability. For example, if we
omit the uncertainty when giving our result of the mea-
sured diameter of some cylinder, users of this result can
never be sure that this cylinder will fit in a hole of given
dimensions.

As indicated by the above example, uncertainty is a
statistical property, and its determination largely relies
on comparisons of repeated measurements or calcula-
tions. For measurements, there exists a very detailed
guideline to determination and expression of uncertain-
ties [2]. This guideline is not exact, as there are many
difficult circumstances preventing an exact knowledge
of all sources of measurement errors.2 Nevertheless,
there are good recipes for most circumstances.

For measurements of wavelengths of atomic spectral
lines and estimation of uncertainties associated with
them and propagating to other indirectly determined
atomic properties, such as energy levels, there exists a
methodology described in my old review [3]. Since that
time, there appeared some new developments in statis-
tical theory, which now allow a more robust estimation
of uncertainties. In particular, Dr. Andrew L. Rukhin
of the National Institute of Standards and Technology,
USA (NIST) has developed a procedure to estimate
statistical uncertainties in heterogeneous measurements
[4–6]. This procedure was successfully utilized in recent
atomic spectroscopy works [7,8]. One of the purposes
of this article is to explain this new statistical approach
and promote its further use in atomic spectroscopy.

Estimation of uncertainties in theoretical calculations
is a more difficult problem. Here, if one repeats the same
calculations using the same computer code and input

2 In this paper, the term “error” is synonymous to “differ-
ence from the true value.”
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parameters, the results are normally exactly the same,
which by no means implies that they are infinitely accu-
rate. Calculating the same atomic properties, e.g., tran-
sition probabilities, with a different code or with dif-
ferent input parameters usually gives different results,
often by orders of magnitude. Comparisons of results
obtained with different computational approaches can
provide means for a robust estimation of uncertainties
[3,9]. The methods suggested in the above papers have
been extended by several authors (see, e.g., [10,11]).

Back in 2016, in a talk on this subject at the 12th
International Colloquium on Atomic Spectra and Oscil-
lator Strengths (ASOS12) [12], a report on the current
status of the literature on atomic transition probabili-
ties was given. In particular, it was mentioned that less
than 2 % of published theoretical papers contained esti-
mates of uncertainties of the reported theoretical val-
ues. There has been a significant progress in this regard:
during the last two years, the percentage of such theo-
retical works containing uncertainty estimates grew to
about 10 %. There is still a long way to go, and many
researchers still make inadequate estimates. The second
purpose of the present article is to provide an update
on the procedures of estimation of uncertainties of the-
oretical transition probabilities in order to disseminate
the newly developed methodologies.

2 Uncertainties in wavelength
measurements

A common problem in all wavelength measurements
is estimation of measurement uncertainties. As with
all measurements, researchers must rely on the cur-
rent recommendations of the International Bureau of
Weights and Measures (BIPM) [2]. The NIST Guide-
lines for Evaluating and Expressing the Uncertainty of
NIST Measurement Results [1], despite narrowly tar-
geting NIST researchers in the title, are of general use
as well. From these recommendations, one can see that
uncertainty should be considered as a purely statistical
concept.3 One makes a series of measurements, looks
at the statistical distribution of the results, adds esti-
mated contributions of possible systematic effects, cal-
culates the weighted mean of the results, and somehow
derives an uncertainty of this weighted mean. There is

3 Some readers object that only the “type A” uncertainties,
as defined by Taylor et al. [1], are evaluated by statistical
methods, while the “type B” uncertainties are evaluated by
other means. However, from the explanations and exam-
ples given in Section 4 of Taylor et al. [1], one can see that
evaluation of the type B uncertainties is designed to approx-
imate standard statistical uncertainties as closely as possi-
ble, so that they can be treated by statistical methods on
equal footing with type A uncertainties. In particular, the
total standard uncertainty is calculated as a combination in
quadrature of both type A and type B uncertainties (see
Section 5 of Ref. [1]).

a long-standing problem with this procedure: there is
no strict statistical recipe that fits all scenarios.

Let us look at one simple example. The Newto-
nian gravitational constant, G, has been precisely mea-
sured by several independent teams, and a weighted
mean of these measurements is adopted by the Com-
mittee on Data of the International Science Coun-
cil (CODATA2018) [13]. The currently recommended
value is 6.67430(15) ×10−11 m3 kg−1 s−2. Let us take
it as one measurement and consider it together with a
result of a hypothetical very imprecise undergraduate
physics experiment. In this experiment, a student mea-
sured the acceleration of the free fall at the Earth’s sur-
face, say, with a reversible pendulum. Then the Earth’s
radius and mass data obtained from a web search were
plugged into the Newtonian gravitational law to derive
a value of G equal to 6.690(3)×10−11 m3 kg−1 s−2.
Now, let us treat these two results as a series of
repeated measurements and find the standard statis-
tical weighted mean value with instrumental weights
(inverse squares of measurement uncertainties) from the
formulae below:

vwm =
∑

viwi∑
wi

, (1)

uwm =
1

(
∑

w2
i )1/2

, (2)

where vi is the i-th measured value and wi = 1/u2
i

is its weight in the averaging (ui being the standard
uncertainty of the i-th measurement).

The weighted mean of our two measurements turns
out to be 6.67434(15) ×10−11 m3 kg−1 s−2. We seem
to have slightly changed G compared to the CODATA
value. However, we want to be careful and account for
the fact that the standard statistical formulae (1, 2)
give biased results. A seemingly good formula for unbi-
ased uncertainty of weighted mean of a series of mea-
surements can be found in Wikipedia [14] (referring to
[15]):

u2
biased =

∑
wi(vi − vwm)2

V1
, (3)

uunbiased =
ubiased

(1 − V2/V 2
1 )1/2

, (4)

where V1 =
∑

wi and V2 =
∑

w2
i .

From Eq. (3), we get ubiased = 0.0008, and from Eq.
(4), uunbiased = 0.011 (in the same units as G), 5 and
73 times greater than the CODATA uncertainty, respec-
tively. This implies that the undergraduate experiment
has hopelessly spoiled the joint effort of several leading
laboratories!

The reason for this apparently wrong result is that
Eqs. (3) and (4) are applicable only to the case where
all data belong to a sample from a series of measure-
ments having the same statistical distribution. This is
obviously not true in this case, as our set of two mea-
sured values is inhomogeneous: each of them has its
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own statistical distribution and its own set of system-
atic uncertainties, about which there is no informa-
tion at this stage of data processing. In this situation,
the concept of dark uncertainties comes in very natu-
rally. To rectify the result, we need to add in quadra-
ture some unknown dark uncertainties to each of the
values participating in the averaging. This is where
the new statistical theory of Rukhin [4–6] is indispens-
able. Both his clustered maximum likelihood and clus-
tered reduced maximum likelihood estimators (CMLE
and CRLME) unequivocally and correctly single out
our undergraduate experiment as the culprit of dis-
agreement between the two values. They both assign
a large value of dark uncertainty of 0.016 (in the same
units as G) to our undergraduate experiment, which
results in the weighted mean value and its uncertainty
coinciding with CODATA.

However, the reader must be warned right away that
the averaging procedure in this example is methodologi-
cally wrong. The result we got from the refined statistics
with dark uncertainties should only be used to make
a conclusion that one of our experiments was faulty
(i.e., the measured value and/or its uncertainty were
determined incorrectly) and must be investigated and
corrected. It is appropriate to quote here the reference
Guide to the Expression of Uncertainty in Measurement
(GUM) [2] (section 3.4.7): “Blunders in recording or
analyzing data can introduce a significant unknown in
the result of a measurement... Measures of uncertainty
are not intended to account for such mistakes”. The
point I want to make here is that statistics helped us to
identify the erroneous measurement, but it is wrong to
average correct measurements together with incorrect
ones; the latter should rather be corrected (from phys-
ical considerations) or excluded from the averaging.

Turning to wavelength measurements, I note that
many of them are intrinsically heterogeneous even in
the case when a large number of spectral lines are
measured in the same experiment (i.e., using the same
equipment and methodology). This is because the lines
have different spectral profiles (e.g., some are broadened
by self-absorption or saturation effects), and many lines
are usually overlapping in a quasi-random fashion with
other lines or are affected by hyperfine structure and/or
isotope shifts.

Rukhin’s method can be used not only in direct com-
parisons of several measured wavelengths of the same
spectral line but also in indirect comparisons, such as
analysis of deviations between observed and Ritz wave-
lengths. Such analysis was suggested in [3] as an easy
means to estimate the wavelength uncertainties where
they are not available from measurement reports. How-
ever, at that time Rukhin’s theory was yet unpublished.
Now it is clear that it can nicely supplement this anal-
ysis by allowing one to easily detect abnormally deviat-
ing wavelengths. One has to keep in mind that no sta-
tistical theory can replace a thorough analysis of mea-
surement errors. It can only serve as an indicator of
problems in some measurements. Finding the causes of
these problems and eliminating them is a task of the
physicist.

As mentioned above, in the course of our joint work
on Li-like ions [7] I have developed a statistical toolbox
implementing Rukhin’s CMLE and CRMLE methods,
as well as Mandel–Paule and DerSimonian–Laird dark
uncertainty estimators (see [4]) and the functions neces-
sary to make the so-called normal probability plots [16].
This toolbox is implemented in a Visual Basic mod-
ule embedded in a Microsoft Excel4 file included as the
Supplementary Information with this article. Its use is
illustrated in the following subsection.

2.1 Statistical toolbox

To understand the general ideas used in this statistical
toolbox, the reader is advised to study Section 4 of Ref.
[7], as well as Rukhin’s articles [4–6]. The content and
usage of the Toolbox are explained in Appendix A.

The most useful of the many functions included
in the Toolbox are dark_unc_MP (the Mandel–Paule
estimator), which provides for an exact reduction of
reduced χ2 (defined further below) to unity in the cases
where the measurements participating in the averag-
ing disagree beyond the stated uncertainties, and the
two functions based on Rukhin’s clustered estimators,
dark_unc_CMLE and dark_unc_CRMLE.

The example included in the toolbox is quoted from
our work on Li-like ions [7]. It consists of a set of 15 mea-
surements of energy of the 1s(2S)2s2p(3P ◦)2P ◦

1/2 level
of Li-like oxygen, O VI (for explanation of values and
references to their sources, see [7]). To see the dark
uncertainties and corresponding weighted mean values,
click on the Run button. As explained in [7], there is
only one value that significantly disagrees with the rest
of the data. This is the energy of 4539260(470) cm−1

deduced from the measurement of an absorption feature
reported by Liao et al. [17]. Abnormality of this value
is unanimously detected by the CMLE and CRMLE
estimators, which assign to it a dark uncertainty of
about 1600 cm−1, five times greater than the stated
uncertainty (470 cm−1). One can see that the Mandel-
Paule estimator assigns equal dark uncertainties of
about 200 cm−1 to all measurements, which results in
a weighted mean of 4540570(220) cm−1. With either
CMLE or CRMLE, the weighted mean is 4540880(230),
while the standard statistical formulae without dark
uncertainties give 4540590(210) cm−1. One can see that
the Mandel–Paule method gives a mean value close
to the standard statistical formula, while the result
of CMLE and CRMLE is significantly different (by
310 cm−1, or 1.4σ). As follows from the analysis of
Azarov et al. [7], the result of the MP estimator dis-
agrees with the recommended value, 4541169(17) cm−1,
by 3σ, while for the result of CMLE and CRMLE the
discrepancy is much smaller, only 1.3σ. Here, however,

4 The identification of commercial products in this paper
does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does
it imply that the items identified are necessarily the best
available for the purpose.
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Fig. 1 Normal probability plots of normalized residuals (Ri; see text) for calculations made with the Mandel–Paule (MP)
and clustered maximum likelihood (CMLE) estimators of dark uncertainties. The quantity G(Ui) on the horizontal axes of
these plots is the percent point function of the uniform order statistic median of the normal distribution [16]. The dotted
lines are linear fits to the data points

the main point is that different ways of estimating
dark uncertainties result in different values of both the
weighted mean and its uncertainty. Application of sta-
tistical methods should always be taken with a grain
of salt: their underlying assumptions can lead you to a
wrong result.

Note that the values of weighted means and their
uncertainties can easily be calculated using the func-
tions WMDU() and unc_WMDU() included in the tool-
box. These functions take as input three vertical arrays
of cells: values, stated uncertainties, and dark uncer-
tainties. The latter can be specified as an array of empty
cells for calculation without dark uncertainties.

The procedure called by the Run button of the tool-
box also displays the normal probability (NP) plots (see
[16]) corresponding to the three averaging procedures
(MP, CMLE, and CRMLE). The MP and CMLE plots
are shown in Fig. 1 (the plot obtained with CRMLE is
omitted, as it is almost exactly the same as the CMLE
plot). In these plots, Ri is the normalized residual of
the i-th measurement (difference of the measured value
from the weighted mean divided by the stated uncer-
tainty combined in quadrature with the dark uncer-
tainty). One can see that the uniformly distributed dark
uncertainty resulting from the MP estimator does not
rectify the irregularity of the NP plot: there is one data
point that strongly deviates from the straight line near
which the rest of the data points are clustered. This
data point corresponds to the faulty measurement dis-
cussed above. On the other hand, the NP plot drawn
from the CMLE calculation is much closer to a straight
line, but it has a slope of about 0.74, while one would
expect this slope to be close to 1.0 for normally dis-
tributed measurements with correctly estimated uncer-
tainties. The corresponding value of χ2 is 0.72, while for
the MP calculation it is exactly 1.0, by design of this
estimator. One has to come at peace with it: yes, the χ2

and the slope of the NP plot are allowed to be smaller
than unity. This can happen due to presence of signifi-
cant systematic uncertainties in the measurements.

One can see that the MP estimator is conceptually
simpler and easier to use than the cumbersome CMLE
and CRMLE estimators. However, it has an intrinsic

deficiency: it treats all measurements on equal foot-
ing. If the measurements are statistically inconsistent, it
assigns the same dark uncertainty to all of them. If the
measurements are, in fact, unequal (in the sense that
they use different methods or different experimental
conditions, or there are other factors leading to differ-
ent statistical distributions in the measurements), this
leads to both the weighted mean value and its uncer-
tainty being wrong. The CMLE and CRMLE estima-
tors, when they agree with each other (this is not always
the case), give much better estimates for the weighted
mean and its uncertainty, even if one chooses not to
investigate the causes of the large dark uncertainty they
assign to outlying measurements. However, one should
understand their limitations. They are designed to be
valid under certain assumptions, the most important
of which is that there are only two classes of mea-
surements, “good” (receiving no dark uncertainty) and
“bad” (all of the latter being equally bad and receiving
the same value of dark uncertainty). If one wants to be
fast and efficient, the easiest way of getting a statisti-
cally consistent set of data is to simply discard those
to which CMLE and CRLME unanimously assign large
dark uncertainties. However, there is danger of acciden-
tally throwing away a piece of gold together with muck.

As noted above, the detection of a faulty measure-
ment by a statistical procedure is in itself insufficient
for a proper interpretation of the measurements. One
has to look for physical reasons of the detected problem.
In the case of the O VI line measurement by Liao et al.
[17], the most probable cause is the intrinsic deficiency
of the measurement method: it was designed to mea-
sure the positions of absorption peaks, while absorption
to autoionizing levels, such as the one selected for this
example, is described by a Fano profile, which is asym-
metric and includes both an absorption and an emission
feature. The true position of the level should be found
by fitting a Fano profile to the observed feature in a
significantly wider spectral area than just the width of
the absorption peak. In this case, indeed, Figure 3 of
Liao et al. [17] shows the presence of a weaker emission
feature at a wavelength somewhat shorter than that of
the absorption peak. A proper modeling of the spectral
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profile would give a higher energy, consistent with the
observed deviation from the mean experimental value,
but probably with a significantly larger uncertainty.

As mentioned above, Rukhin’s estimators of dark
uncertainties can be used in the analysis of differences
between observed and Ritz wavelengths (or wave num-
bers). Let us take as an example the measurements of
Zr I wave numbers by Lawler et al. [18]. Although the
results of their level optimization look generally good,
there are many lines for which the observed wave num-
bers deviate from the Ritz values by more than twice
the standard uncertainty. Among the total list of about
370 lines, the fraction of such strongly deviating lines
is about 8 %, while for a normal statistical distribu-
tion one would expect 5 %. The simplest way to detect
problematic lines is by calculating the Mandel–Paule
dark uncertainty taking the differences of observed wave
numbers from the Ritz values (ΔEobs−Ritz) as the mea-
sured values with uncertainties equal to those of the
observed wave numbers (uobs). These dark uncertain-
ties should be calculated for small subsets of lines origi-
nating from the same upper level. In this way, it is easy
to see that the largest dark uncertainty gets assigned
to lines from the 4d25s5p z 5P ◦

1 level (25489.87 cm−1 in
the NIST Atomic Spectra Database (ASD) [19]). The
data associated with the four transitions from this level
included in Lawler et al. [18] are given in Table 1.

As noted above, the dark uncertainties given in the
last three columns of Table 1 are estimated by treat-
ing the wave number difference Δσobs−Ritz as mea-
sured quantity with uncertainty equal to that of the
observed wave number, uobs. Some people argue that,
in the treatment of Δσobs−Ritz, the uncertainty of the
Ritz wave number should be added in quadrature to
uobs. However, in the least-squares level optimization
procedure (in all of its flavors known to me), the min-
imized quantity is the sum of squares of the ratio
Δσobs−Ritz/uobs (denoted as Δσ/uobs in Table 1 for
brevity). This sum is called residual sum of squares
(RSS). Ideally, if the measurements are a sample from
a normal statistical distribution, and all uncertainties
uobs are properly estimated, the optimization proce-
dure should result in the ratio of RSS to the number
of degrees of freedom (number of observed transitions
minus the number of excited energy levels) equal to
one. This ratio is otherwise known as reduced χ2. Con-
versely, if χ2 > 1, it means that one or both of the
assumptions made above do not hold: some uncertain-
ties are underestimated and/or the measurements are
not normally distributed. Note that uncertainties of the
Ritz wave numbers do not participate in weighting of
the observed wave numbers. These properties of least-
squares fitting follow from rigorous statistical consider-
ations (see details in the LOPT article [20]).

The particular transitions that are most likely caus-
ing the problem in determination of the upper level
energy can be pinpointed by using Rukhin’s CMLE and
CRMLE methods implemented in the present statisti-
cal toolbox. Both these estimators unanimously sug-
gest (by assigning the large dark uncertainties of about
0.006 cm−1) that the transitions listed in the first and
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last rows of Table 1 are the most likely causes of the
problem. However, it is not a good practice to blindly
use these estimated dark uncertainties to degrade the
originally estimated uncertainties. This can lead to a
physically unjustified shift of the resulting energy lev-
els. As noted above, no statistical considerations can
replace a careful analysis of physical reasons of observed
problems. They can be used to pinpoint the likely cul-
prits, but the reasons for large deviations should be
investigated. In the case of the measurements of Lawler
et al. [18], each measured wave number results from
averaging of measurements in several spectra. The num-
ber of spectra used for this averaging is given in the col-
umn Nspectra in Table 1. Analyzing the statistics of indi-
vidual measurements could give more insights about the
problem; looking at the line profiles in each spectrum
is even more informative. Typical causes of large dis-
agreements between different measurements are blend-
ing with neighboring lines, asymmetries caused by par-
tially resolved hyperfine structure or self-absorption,
noise, and calibration errors. In typical atomic spec-
troscopy experiments, the number of observed lines can
be very large, measured by thousands or even tens of
thousands. It is very difficult to analyze profiles of every
measured line. However, isolating the problems to a lim-
ited number of lines can make the analysis of outstand-
ing errors manageable. The statistical toolbox given
here can be a good help in this matter.

It should be noted that the optimized level values
given in Table 1 result from my level optimization made
with the LOPT code of Kramida [20]. They slightly
differ from the values given by Lawler et al. [18] (by
one or two units of the last decimal place). These small
differences are due to rounding errors that are treated
differently in LOPT and in the code used by Lawler et
al. [18].

Regarding the use of the MP, CMLE, and CRMLE
estimators of dark uncertainties, my current recommen-
dation is to follow the procedure described above: first,
use the fast MP estimator to find potentially problem-
atic measurements, then use both CMLE and CRLME
to further narrow down the problem. The reason for
using both these estimators is that they do not always
agree with each other. If they do agree, it gives a strong
indication that the measurements they endow with a
large dark uncertainty are the culprit of the problem.
If they do not agree, the problem widens. In any case,
only a careful examination of all suspicious measure-
ments can give a good solution to the problem of mak-
ing all measurements statistically consistent with each
other.

3 Uncertainties in calculated transition
probabilities

There are two radically different approaches to esti-
mation of uncertainties of theoretical calculations. One
approach, which is used, e.g., by CODATA [13], is to

explicitly include all neglected terms in the equations
(such as the omitted high-order effects in a theory
accounting only for a limited number of terms), esti-
mate possible sizes of these omitted terms, and combine
them in quadrature to arrive at an estimate of the total
possible error. In calculation of transition matrix ele-
ments (determining transition probabilities), it is a very
difficult task. However, it was done in several works.
See, e.g., Safronova and Safronova [21]. It is fair to say
that this approach is limited to a restricted number of
atomic systems and requires a high level of expertise in
atomic theory.

The second approach, which is conceptually sim-
pler and technically easier to implement, is based on
comparisons utilizing statistics in a way that is simi-
lar to evaluation of experimental results. The practical
methodology of such evaluation was described in my
review article [3], and its possible extensions were out-
lined in a subsequent article [9].

The main requirement for applicability of statistical
evaluation of theoretical uncertainties is availability of
a benchmark data set to compare with. In selection
of benchmark data, the first priority should always be
experimental data, if they are available. However, not
all experimental methods are reliable, and it requires
considerable expertise in both theory and experiment to
detect unreliable experimental data. Some good guide-
lines for critical evaluation of transition probability
data can be found in the review made by Wiese [22].
As one can see from that review, critical evaluation of
published data (both experimental and theoretical) is
not an easy task. Not many theorists possess the skills
and knowledge required for it. Thus, one should use the
published products of available critical evaluations. One
common source of such critically evaluated data is the
NIST ASD [19]. However, it is far from being complete;
there are many spectra for which critically evaluated
data on transition probabilities do not exist or are too
sparse. (Note that the data compiled at NIST are not
always the most accurate available. To extract the most
reliable and accurate data, one should always consult
the literature. Lists of relevant references are conve-
niently rendered in the links provided in the NIST ASD.
These lists are extracted from the NIST bibliographic
databases (see Sect. 4), which are fairly complete and up
to date.) In the absence of reliable external benchmarks,
one can resort to internal comparisons, in which differ-
ent results of the same computer code can be compared
with each other. The most commonly used method is to
compare the results for transition rates computed in the
length and velocity forms (in a non-relativistic approx-
imation; these two forms roughly correspond to results
obtained in the Babushkin and Coulomb gauges in a
relativistic calculation). Some of the widely used mod-
ern atomic codes do produce transition rates in these
two forms, e.g., the General Relativistic Atomic Struc-
ture Package (GRASP; see Froese Fischer et al. [23])
and the Flexible Atomic Code (FAC). The latter code
was originally developed by Gu [24] and subsequently
parallelized and extended to include many-body per-
turbation theory (MBPT) calculations [25].
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To facilitate uncertainty estimation, the GRASP
code outputs the so-called uncertainty indicator dT (see
the GRASP2018 manual included in the Supplementary
Materials for Ref. [23]):

dT =
|Al − Av|

max(Al, Av)
, (5)

where Al and Av are the length and velocity forms of
transition rate.

This was apparently inspired by the articles of Froese
Fischer [26] and Ekman et al. [27]. However, this defi-
nition of the uncertainty indicator differs from the one
originally proposed in the above papers:

δA′

A′ = (δE + δS), (6)

where A′ is the energy-adjusted transition rate (see
Eq. (13) below) computed from the observed transi-
tion energy (Eobs), δE = |Ecalc − Eobs|/Eobs is the
relative error in the transition energy, and δS = |Sl −
Sv|/max(Sl, Sv) is the relative discrepancy between the
length and velocity forms of the line strength (see Eqs.
(4–7) of Ekman et al. [27]).

The quantity δE in the above equation practically
never goes to zero, while its absence in Eq. (5) results
in dT equal to zero in too many cases just due to chance
coincidences of Al and Av. However, in most cases on
which theorists work nowadays, experimental energies
are not known. This prompted Ekman et al. [27] to give
a truncated recipe in their Eq. (8): δA = (δS)A, which
ultimately reduces to Eq. (5).

It is important to understand that the above equa-
tions (5, 6) are meant to be only uncertainty indicators
and not estimates of uncertainty. Many theorists for-
get about it and give dT in their tables describing it
as “the uncertainties in the computed transition rates”
(see, e.g., Atalay et al. [28] and Manai et al. [29]). As
follows from the examples of application of dT to evalu-
ation of uncertainties in Ekman et al. [27], the initially
proposed use of dT is strictly statistical: the estimate
of uncertainty of calculated rates for a certain group
of transitions expected to be calculated with a similar
accuracy is given as some average of the magnitude of
dT for this group of transitions. How exactly to divide
all transitions into groups with similar accuracy is still
an open question (see below).

It must be noted that the original uncertainty esti-
mator proposed by Froese Fischer [26], given by Eq. (6),
has no statistical justification.

Furthermore, there is a big problem in the defini-
tion of dT : due to the use of the max function in the
denominator of Eq. (5), it always underestimates the
uncertainties. This is because, for any statistically sig-
nificant data set, there are similar numbers of cases
when Av < Al and when Av > Al. Always using the
maximum value in the denominator results in roughly
half the cases in which the value of dT is smaller than
the actual relative discrepancy. When the differences

between Al and Av are small, this underestimation is
insignificant, but unfortunately, in most calculations of
complex spectra, the vast majority of calculated transi-
tion rates have very poor accuracy, with discrepancies
between Al and Av reaching orders of magnitude for
very weak transitions. To some extent, this drawback
of Eq. (5) can be rectified by using min instead of max
in the denominator. This, however, would lead to over-
estimation of uncertainties. Arguably, it would give a
more prudent estimate of uncertainty, since it neglects
the errors in the transition energies.

A somewhat better statistical indicator of uncer-
tainty could be given as

dL = ln(S1/S2), (7)

where S1 and S2 are any two forms of line strength
of the same transition. For example, they can be the
length and velocity forms (Sl and Sv) from the same
calculation, or the results from two adjacent layers of a
series of active-space calculation (for explanation of this
terminology, see, e.g., Jönsson et al. [30], Section 3.2),
or the results of two different calculations. To give a rea-
sonable estimate of uncertainty, S1 and S2 in Eq. (7)
should be calculated in sufficiently developed physical
models. For example, if both S1 and S2 are calculated
with a limited number of interacting configurations,
they can be close to each other; then Eq. (7) would
give an unreasonably small uncertainty estimate. An
indication of a sufficiently good quality of the models
can be obtained, e.g., by examining convergence trends
in a series of calculations with increasing complexity.

For a group of transitions with similar accuracy, the
relative uncertainty of the line strength can be esti-
mated from the root mean square (rms) of dL, 〈dL〉:

uS ≈ e〈dL〉 − 1. (8)

In the limit of Sl being very close to Sv, when they
are used as S1 and S2 in Eq. (7), uS tends to dT , which
is the main reason for using the natural logarithm and
natural exponent in these equations.

To my knowledge, the first implementation of this
method with the use of results of two successive layers
of an active-space multiconfiguration Dirac–Hartree–
Fock (MCDHF) calculation was made by El-Sayed in
her work on Pd XLII [31]. In that work, as well as in sev-
eral others, including Ref. [10] mentioned in the Intro-
duction, she uses decimal logarithms instead of natu-
ral ones, but the difference from Eqs. (7, 8) is only
technical. Her works illustrate an important fact: the
dL estimator can be used for evaluating uncertainties
not only of electric-dipole (E1) and electric-quadrupole
(E2) transitions, but also for magnetic-dipole (M1) and
magnetic quadrupole (M2) transitions, where there is
no velocity form to compare with.

In another large series of works, a similar method
was employed to estimate the uncertainties of transi-
tion rates based on comparison of results of two differ-
ent calculations—MCDHF and MBPT—implemented
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Fig. 2 Line strength S (left), weighted oscillator strength gf (middle), and weighted transition probability gA (right) as
a function of transition wavelength λ for the 1s − np3/2 (n = 2 to 6) resonance transitions of H-like Ne (Ne X). The data
are from the NIST ASD [19] (originating from Jitrik and Bunge [37]). Smooth curves are quadratic interpolations

in GRASP and FAC, respectively; see. e.g., Zhao et al.
[32].

One should keep in mind that Eqs. (7) and (8) are
also statistically unjustified in the sense that there is
no evidence for statistical distribution of dL to be close
to normal. In fact, my numerical experiments on M1
and E2 transitions in Fe V [9] showed that it is not the
best choice of function from this point of view. Differ-
ent groups of transitions have different shapes of statis-
tical distributions even when the input parameters of
the computing code [33,34] are varied randomly with
a normal statistical distribution. It was found that for
most M1 and E2 transitions of Fe V the best function
(i.e., having statistical distribution closest to normal)
is not ln(S1/S2) but [(S1/S2)1/3 − 1]/(1/3). Neverthe-
less, its asymptotic for S1 → S2 is the same, while for
large discrepancies, there is not much sense in exactly
answering the question: is the uncertainty one or two
orders of magnitude?

As mentioned above, the big outstanding question
is: how to divide all transitions into groups with sim-
ilar expected uncertainties? In my article of 2013 [3],
it was argued that the line strength S (in length form)
is a natural choice on which such grouping should be
made, because it does not explicitly depend on transi-
tion energies. However, this is true to some extent only
for non-relativistic calculations, and probably not for
all of them. For example, in several textbooks (see, e.g.,
Cowan [33] and Corney [35]) it was shown that for reso-
nance lines of H-like ions, the oscillator strength f does
not depend on nuclear charge Z, while the line strength
is proportional to Z−2, which is close to the dependence
of wavelength on Z (see also Wiese and Fuhr [36]). How-
ever, if one plots the dependencies of either S or f on
transition energy along any chosen series of transitions
with increasing principal quantum number for the same
Z or for several values of Z, neither shows a constant
behavior in practically any spectrum. This is illustrated
in Fig. 2 showing the line strength S, weighted oscillator
strength gf , and weighted transition probability gA5 as

5 One should keep in mind that the statistical weight g
entering the commonly used designations gf and gA pertain

a function of transition wavelength λ for the 1s−np3/2

resonance transition of H-like Ne (Ne X) for n = (2–6).
The dynamic range of variation of the three quanti-

ties plotted in Fig. 2 can be taken as the ratio of the
n = 2 and n = 6 values (the rightmost and leftmost
points on the plots, respectively). It turns out that it is
the smallest for gA (32), while for gf and S it is 53 and
69, respectively. Thus, in this case, the line strength S
displays the strongest dependence on transition energy.

Nevertheless, it is an empirical fact that for the vast
majority of calculated sets of transition rates, uncer-
tainties in the calculated values are strongly correlated
with line strength, S, while correlation with other quan-
tities, such as gf , gA, and also the cancellation factor is
much weaker. There are exceptions that can be found
in the literature. Most notably, in the recent MCDHF
calculations of transition rates for neutral nitrogen and
oxygen [38,39], the differences between the Babushkin
and Coulomb gauges were found to be most strongly
correlated with the A values rather than S. Thus, the
general methodology outlined in [3] should be amended
by an additional step: one should compare the distri-
bution of computational errors when plotted against
different quantities, such as S, gf , gA, or perhaps the
branching fractions for radiative decay and choose the
quantity that displays the strongest correlation with
computational errors. This is illustrated in Fig. 3.

As one can see in the top right panel of Fig. 3, dis-
crepancies between the Babushkin- and Coulomb-gauge
results (SB and SC) do not correlate with SB. Correla-
tion with SC is even worse and is not shown here. On
the other hand, there is a good correlation with gAC

(top left), which justifies the use of this quantity as a
guide to uncertainties. The bottom panel is discussed
further below.

Most textbooks, as well as a majority of research arti-
cles, recommend using the length form (or Babushkin
gauge) as producing more reliable values of transition
rates. However, recent research indicates that this is
not universally correct. E.g., the MCDHF study of
Papoulia et al. [40] indicated that in some cases, par-

to different levels of a transition: the lower level in the case
of gf and the upper level in the case of gA.
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Fig. 3 Discrepancy between the line strengths computed in the Babushkin and Coulomb gauges (SB and SC) plotted
against weighted transition probability computed in the Coulomb gauge (gAC; upper left), against SB (upper right), and
against SC/λ2 (bottom; λ is transition wavelength). The data are from the MCDHF calculation of atomic nitrogen [38]

ticularly for transitions involving high Rydberg states,
the results in the Coulomb gauge may converge faster
and be more reliable than the results in the Babushkin
gauge, depending on the chosen computational scheme.
One should also keep in mind that the line strength
computed in the length and velocity forms have dif-
ferent sensitivity to errors in the computed transition
energy. From Eqs. (8) and (9) of Bilal et al. [41], one
can see that the leading term of S in the length form
(Babushkin gauge) does not depend on transition wave-
length, while the velocity form (Coulomb gauge) is
proportional to its square. This can be derived from
relativistic formulae given by Grant [42]. Relativistic
atomic codes, such as GRASP [23] and FAC [24,25],
do not directly compute line strengths. Instead, they
compute reduced transition matrix elements, and then
the transition rates (A) are derived from them. Formu-
lae for them can be found, e.g., in the paper of Grant
quoted above [42]. From these formulae, by using a
standard relation between A and S [36], one can derive
approximate expressions for line strength as a function
of transition frequency (ω). For magnetic transitions,

Sm
αβ ∝

[∫ ∞

0

(PαQβ − QαPβ) rLdr

]2

, (9)

where L is the multipolarity (1 for dipole transitions,
2 for quadrupole, etc.), while for electric transitions
the formulae depend on gauge. In the Babushkin gauge

(equivalent to length form),

Se
αβ (B) ∝

[∫ ∞

0

RαRβrLdr

]2

, (10)

and in the Coulomb gauge (equivalent to velocity
form),

Se
αβ (C) ∝ 1

ω2

[∫ ∞

0

Rβr(L−1)/2
{ d

dr
+

(lα − lβ) (lα + lβ + 1)
2r

}
r(L−1)/2Rαdr

]2

. (11)

In Eqs. (9), (10), and (11), α and β denote the lower
and upper states of a transition, P and Q are the real
and imaginary components of the wave function, and
definitions of other quantities can be found either in
Grant’s paper [42] or in his book [43]. As noted above,
these equations are approximate. They were obtained
by using the leading terms in Taylor series expansion
of Bessel functions of ωr

c entering radial integrals in
relativistic formulae of Grant [42].

Equations (9) and (10) seem to confirm the idea
of Ref. [3]: the line strength (of any magnetic transi-
tion or of the length form of electric transitions) does
not explicitly depend on transition energy and thus
should be a good discriminating quantity in evaluation
of uncertainties of line strengths. However, as follows
from Eq. (11), the velocity form of line strength is not
a good quantity in this regard, as it is inversely propor-
tional to transition frequency. It seems reasonable to
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assume that, if we divide it by squared wavelength, this
would cancel the energy dependence, so SC/λ2 should
be a good discriminating quantity. This is confirmed to
some extent by the lower panel of Fig. 3: it looks quite
regular, with only one strongly deviating point having
ln(SB/SC) ≈ 12. This point corresponds to the transi-
tion having the longest wavelength in the tables of Ref.
[38].

There is an important consequence of Eq.(11): in
high-precision calculations, the results in the Coulomb
gauge should be adjusted to experimental wavelengths
(if known):

Sv
adj = Sv

calc

λ2
exp

λ2
calc

. (12)

To my knowledge, this adjustment was first intro-
duced by Bilal et al. [41]. Note that this adjustment is
additional to the well-known adjustment factors for A-
and f -values (of E1 transitions, in the length form):

Alen
adj = Alen

calc

λ3
calc

λ3
exp

,

f len
adj = f len

calc

λcalc

λexp
,

(13)

meaning that, for the velocity form, the right parts of
Eq. (13) must be additionally multiplied by the same
factor as used in Eq. (12), yielding

Avel
adj = Avel

calc

λcalc

λexp
,

fvel
adj = fvel

calc

λexp

λcalc
.

(14)

Another interesting development in comparisons of
length and velocity forms was recently introduced by
Zhang et al. [11]. These authors have found that occa-
sional closeness of results obtained in different gauges
is not always random. Sometimes it is due to insen-
sitivity of the calculation to the choice of gauge; then
the closeness of results in different gauges indicates real
high accuracy of these results. The idea stems from the
work of Grant [42] whose treatment allows one to con-
sider gauge not as a strictly discreet choice between a
few options but as a continuously varying parameter
G. If the wavefunctions are exact, the results have no
dependence on G. However, in imprecise numerical cal-
culations, there will be a difference depending on G.
The dependence of line strength on gauge is parabolic,
with a positive quadratic term [44,45]:

S(G) = aG2 + bG + c. (15)

Its coefficients can be determined from three data
points. Two are provided by the values of S in the
Coulomb (G = 0) and Babushkin (G =

√
(L + 1)/L)

gauges, where L is the multipolarity (1 for E1 transi-
tions, 2 for E2, etc.). The third point is provided by the
non-trivial fact that S equals zero at exactly one point
given by Eq. (9) of Rynkun et al. [45]:

GS=0 =
√

2
1 − (MB/MC)

, (16)

where MC and MB are reduced matrix elements com-
puted in the Coulomb and Babushkin gauges. In the
special case of MB = MC , GS=0 goes to infinity, and S
becomes independent of G.

Radžiūtė and Gaigalas [46] have investigated the
dependence of dL (with S1 = SB and S2 = SC) on the
parameter GS=0 in several As-like spectra from Br III to
Sr VI. As seen from their Figures 8 and 10, in all these
spectra, accuracy better than 50 % is achieved when
|GS=0| � 5 for both the E1 and E2 transitions, and the
dependence of dL on GS=0 looks very regular, which
prompted a discussion of the use of this dependence
in evaluation of uncertainties: “Function (S(G)) mini-
mum position correlate[s] well with accuracy class: tran-
sitions with [greater] |GS=0| values are in better accu-
racy class” [46]. However, this behavior is a simple con-
sequence of definition of GS=0 (see Eq. 16). Inverting
this equation and noting that SB/SC = (MB/MC)2,
one obtains

SB

SC
= (1 −

√
2

GS=0
)2, (17)

from which it follows that SB → SC when |GS=0|
increases beyond

√
2, and the precise boundaries of the

50 % accuracy (0.5 < SB/SC < 1.5) are at GS=0 =
2√

2−√
3

≈ −6.29 and GS=0 = 2√
2−1

≈ 4.83. In my view,
the methodology described by Radžiūtė and Gaigalas
[46] reflects a simple fact: these authors are assum-
ing that there is no randomness in cases when length
and velocity forms give close results, and this closeness
always implies a high accuracy of those results. This is
not justified, as discussed below.

Various ideas described in the articles mentioned
above [11,45,46]) seem interesting, as they give new
insights into possible ways to analyze the discrepan-
cies between the length and velocity forms of calculated
transition rates. However, at present I do not see any
clear-cut recipe to decide whether occasional closeness
of these two forms indicates real accuracy of the calcu-
lation or it is a quasi-random computational artifact. In
the literature, there are many examples of calculations
yielding very close results in the length and velocity
forms, both being very wrong. This was spelled out by
Hibbert [47]: “However, even though exact agreement
between the two forms is achieved in a local poten-
tial approximation, the common value is not necessarily
correct. It is sometimes possible to achieve good length
and velocity agreement even in the HF approximation
(a non-local potential method), but again the common
value can be incorrect” (here, ‘HF’ means Hartree–

123



Eur. Phys. J. D           (2024) 78:36 Page 11 of 15    36 

Fock). He further gives some examples of such com-
putational artifacts.

One of the ideas tried by Rynkun et al. [45] and
Gaigalas et al. [48] is investigation of the dependence
of cancellation effects on gauge. The cancellation fac-
tor (CF) originally used in Cowan’s atomic structure
codes [33] is a numerical measure of the extent to
which contributions of different sign cancel each other
in the computation of transition matrix elements (see
Eq. (6) of Gaigalas et al. [48]). Its smallness (gener-
ally, being smaller than about 0.1) indicates a high
degree of cancellation, resulting in unreliable computed
values of S and all other related parameters. It was
found in both these works [45,48] that calculations in
Babushkin gauge are less sensitive to cancellations than
in Coulomb gauge. Rynkun et al. [45] also reported a
few transitions of Ce IV for which the largest values of
CF (hence, more reliable results for S) were achieved
with G = 1, which is in between the Coulomb (G = 0)
and Babushkin (G =

√
2) gauges for E1 transitions.

The extension of the GRASP code package, with which
these computations were made, is not yet publicly avail-
able at the distribution site of GRASP2018 (https://
www.github.com/compas/grasp2018), but it would be
very beneficial for atomic physics research to have it
there.

It should be kept in mind that the smallness of the
cancellation factor does not always mean that the cal-
culation is hopelessly unreliable. As demonstrated in
my work on forbidden transitions of Fe V [9], there are
many cases when transitions with very small CF val-
ues still have very accurate A values. For the spectrum
studied in that work, uncertainties in A correlated much
stronger with S than with CF.

Figure 24 of Rynkun et al. [45] illustrates an impor-
tant subtlety: distributions of errors in the computed
line strengths may be different for certain subgroups of
transitions. One of the most common reasons for some
transitions to be less accurate than others is a sharp dif-
ference in the amount of correlation effects included in
the calculation for energy levels with different principle
quantum numbers n. For example, in the work of Rathi
and Sharma [49] on Na-like Ar, Kr, and Xe, the active
layers included in the calculations were restricted by
n ≤ 11, while the results include transitions from lev-
els with n up to 9. It is clear that the wavefunctions
of states with n = 8 and 9 must be less accurate than
those with smaller n, which was confirmed numerically
by comparison of results of MCDHF and MBPT calcu-
lations performed by these authors. Thus, transitions
from the n = 8, 9 levels should be separated from the
rest, which was done in that work in estimation of their
uncertainties.

3.1 Uncertainties in computed lifetimes: error
propagation

The best method to estimate the uncertainties of theo-
retical radiative lifetimes is to compare them with accu-
rately measured experimental values. However, such

benchmark data are available for only a limited number
of energy levels in a limited number of spectra. More-
over, a database providing critically evaluated reference
data for lifetimes does not exist. So, in estimating their
uncertainties, theorists resort to scouring the literature
and extracting the data they think are the most reliable.
The most convenient way to do it is by using the NIST
Atomic Transition Probability Bibliographic Database
[50]. Even if the literature search provides some refer-
ence data, it is usually incomplete. So, theorists resort
to alternative methods of uncertainty estimation.

The most commonly encountered incorrect practice is
to compare the results in the length and velocity forms
– similar to the method used for line strengths, but
applied directly to lifetimes. One of the drawbacks of
this method is that it cannot be complete: there exist
metastable levels that decay only via magnetic transi-
tions, for which the velocity form does not exist and
cannot be used for comparisons. Second, comparison
of length and velocity forms is controversial even for
line strengths (see the previous section). Third, the life-
times are computed from transition probability values,
which have contributions not only from errors in line
strengths, but also from wavelengths. These contribu-
tions can be eliminated when all transition probabil-
ities are rescaled to experimental wavelengths. How-
ever, those are often unavailable for some levels, which
requires careful estimation of uncertainties of calculated
wavelengths. Many theorists do it incorrectly, by assum-
ing a fixed percentage error assigned to all excited levels
and applying the same percentage error to transition
energies. Even for excitation energies, it is often incor-
rect, because excitation energies are small differences
between two large quantities, the total energies of the
two levels: the ground level and an excited level. The
error in the total energy of the ground level is usually
rather large and produces a systematic error in calcu-
lation of all excitation energies. An example of correct
estimation of errors in calculated energy levels can be
found in the work of Li et al. on N I [38]; see their Fig-
ure 1 and its discussion in the text. The work of that
group on O I [39] provides a similar example of good
practice.

Even when uncertainties of calculated excitation
energies, Ecalc, can be expressed as percentage errors
p, wave numbers of transitions between excited levels
have uncertainties that are not proportional to wave
number (σ). If the errors in Ecalc can be treated as
uncorrelated, uncertainties of the calculated wave num-
bers are combinations in quadrature of the uncertain-
ties of the two levels. If the levels are close (i.e., there
is a long-wavelength transition between two close lev-
els), the wave number uncertainty, uσ, can easily be
hundreds of times greater than p:

uσ ≈
√

2pEcalc (18)

(when σ is much smaller than both calculated levels).
The work of Rathi and Sharma [49] gives an example

of a correct account of contributions from uncertainties
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in line strengths S and in transition wavelengths in the
total uncertainties of calculated transition probabilities;
see their Eqs. (1) and (2).

If the computational errors in individual Aki val-
ues (for transition from upper level k to lower level
i) are statistically independent, relative uncertainty in
the computed lifetime of level k, u(τk), can easily be
determined using the standard formula for error prop-
agation:

u(τk)
τk

= τk

√∑

i

u(Aki)2, (19)

where the summation goes over all transitions to lower
levels. This formula was applied, e.g., in the work of
Ruczkowski and Elantkowska [51], see their Eq. (14);
the paper of Rathi and Sharma [49] is another good
example, see their Eq. (3).

An alternate method for estimation of lifetime uncer-
tainties was used, e.g., by Singh et al. [52]. These
authors have calculated the lifetimes of n ≤ 3 levels
of He-like W and Au for each successive layer of their
active state calculations, which included virtual states
up to n = 7, and compared the lifetime values from the
last two layers. Although there is no evidence that their
calculation has converged with respect to line strengths
and lifetimes, and the contribution of errors in the com-
puted wavelengths was not accounted for, such com-
parison can provide a reasonable estimate of possible
errors.

4 Conclusions and outlook

This work has reviewed several recent developments
in evaluation of uncertainties of transition wavelengths
and calculated transition rates, which appeared in the
literature after the publication of my last review [3].
The fact that many new interesting ideas have been
published in the last several years is very encouraging,
as it testifies to a certain success of my attempts to pro-
mote good practices of uncertainty estimation in atomic
physics. The greatly increased percentage of theoretical
papers containing uncertainty estimates (from < 2 %
seven years ago to about 10 % in the last few years) is
also very gratifying. However, the remaining 90 % are
still published without uncertainty evaluation. Consid-
ering the rate at which these papers are published (for
the topic of transition probabilities, steady at about 150
papers per year, see Fig. 46), it is clear that no single

6 The data for most recent years are not shown in Fig. 4
because of their incompleteness. They are always available
by directly querying the databases referred to in the Figure
caption. One should keep in mind that about 70 % of the
relevant references are usually found with only a short time
delay of about two months. To find the remaining 30 % takes
a few years. Completeness of coverage varies depending on
the subject. The most complete coverage of literature is for

Fig. 4 Number of new papers added to the three NIST
bibliographic databases per publication year, see Refs. [50,
53,54]

person or agency is able to critically evaluate the mas-
sive amount of theoretical results continuing to appear
in literature. I intentionally call them “results” rather
than “data,” because without uncertainties they are not
data. In my opinion, publication of any results, whether
experimental or theoretical, without carefully analyzed
uncertainties should be banned altogether, as their only
effect is confusion.

With experimental papers, there is a similar problem.
Although they usually do contain estimates of mea-
surement uncertainties for new reported measurements,
most of them are limited to a small number of observed
spectral lines in a narrow range of wavelengths. To be
incorporated in updated sets of reference atomic data,
these newly measured wavelengths must be considered
together with all other previously published data on the
studied spectrum to derive a consistent set of energy
levels that fit all observations. This means that, if the
authors are revising the previous data on energy levels
by using their new line measurements, they should eval-
uate not only their own wavelength uncertainties, but
also those of previous works, which may concern dif-
ferent sets of spectral lines not directly related to the
authors’ measurements but affecting the energy levels
involved. In such cases, which are very common, ensur-
ing consistency requires careful assessment of old mea-
surements, which often do not provide uncertainties for
every measured line.

I hope that the methods of uncertainty evaluation
described in the present work will help researchers to
make progress in these matters, and deficiencies in the
existing methodology will receive further treatment.
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Appendix A: Statistical toolbox user guide

The Statistical Toolbox included as a supplementary
online material for this article contains the following
groups of functions:

• Functions for estimation of dark uncertainties;
• Functions for calculation of weighted mean and its

uncertainty;
• A function for making normal probability plots;
• A function for generating normally distributed ran-

dom numbers;
• A number of functions internally used by the above.

The functions for estimation of dark uncertainties are
dark_unc_MP (Mandel–Paule estimator), dark_unc_DL
(DerSimonian–Laird estimator), dark_unc_CMLE (clus-
tered maximum likelihood estimator), and dark_unc_
CRMLE (clustered reduced maximum likelihood esti-
mator). All of them follow definitions given by Rukhin
[4–6] and take the same input parameters: a set of
spreadsheet cells containing values of the analyzed
quantity and a set of cells containing the corresponding
standard uncertainties.

The function dark_unc_MP is most often used in my
practice, so its interface is somewhat better developed.
Its input arrays of cells can either be both vertical
(columns) or both horizontal (rows) of cells, and these
arrays can contain empty cells, which is convenient
when analyzing large arrays of data. The only require-
ment is that every non-blank value of the analyzed
quantity must have a corresponding non-zero uncer-

tainty. This function can be called directly from an
Excel spreadsheet by writing “=dark_unc_MP(...)” in
a cell; the returned value of the dark uncertainty will
be in the same cell.

All other dark uncertainty functions accept only ver-
tical ranges of cells as input, and they do not accept
blank values between non-blank ones.

The function dark_unc_DL is included only for com-
pleteness, as some users may be curious about its results
as compared to the MP estimator. So far, I did not
find any cases where it could be useful for atomic spec-
troscopy measurements. However, it has some statis-
tical foundation and has been used in other applied
sciences.

The functions dark_unc_CMLE and dark_unc_
CRMLE are “safe” (i.e., do not result in data corrup-
tion) only when called from a subroutine such as the one
included in the toolbox. It is possible to call them from
a spreadsheet by specifying the formulae in certain cells,
e.g., “=dark_unc_CMLE(...)”. However, after each use
of such a formula, the user must delete the equation,
e.g., by copying the cell with it and pasting its value
back in the same cell. This is because, unlike normal
Excel functions, these two modify contents not only of
the cell with the formula, but also of several cells below
it.

The functions WMDU and unc_WMDU are used for
calculation of the weighted mean and its uncertainty,
respectively, in presence of non-zero dark uncertainties.
Both take the same three input parameters, which are
columnar ranges of cells containing the quantity values,
their nominal uncertainties, and the corresponding dark
uncertainties. It can also be used for calculating the
weighted mean without dark uncertainties. For that,
the cells specified for the dark uncertainties must be
empty or zero.

For making a normal probability (NP) plot, it is nec-
essary to sort the normalized residual values, Ri in
increasing order, number them sequentially, and calcu-
late the value of the percent point function of the uni-
form order statistic median of the normal distribution
[16] for each value of the sequential index i. For the lat-
ter calculation, the function included in the Toolbox is
called “G”. The calculation of the uniform order statis-
tic median, Ui, is not used anywhere outside of this
function, so it is simply hard-coded within the G func-
tion, making its use very simple. It takes two param-
eters: the sequential index, i, and the total number of
residuals, N . The sorted Ri values are plotted against
the values of G(i,N) to display the NP plot.

Function RandNormal() is used to generate normally
distributed random numbers for numerical simulations.
It takes two parameters: the mean and standard devi-
ation of the normal distribution.
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