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Abstract. Positron bound state properties in hydrogen cyanide are studied via many-body theory cal-
culations that account for strong positron-electron correlations including positron-induced polarization,
screening of the electron–positron Coulomb interaction, virtual-positronium formation and positron–hole
repulsion. Specifically, the Dyson equation is solved using a Gaussian basis, with the positron self-energy in
the field of the molecule calculated using the Bethe–Salpeter equations for the two-particle and particle–hole
propagators. The present results suggest near cancellation of screening corrections to the bare polariza-
tion, and the non-negligible role of the positron–hole interaction. There are no existing measurements to
compare to for HCN. Previous configuration interaction (CI) and fixed-node diffusion Monte Carlo (FN-
DMC) calculations give positron binding energies in the range 35–44 meV, most of which used a single
even-tempered basis centred near the nitrogen atom. Using a similar single-centre positron basis we calcu-
late a positron binding energy of 41 meV, in good agreement. However, we find that including additional
basis centres gives an improved description of the positron wave function near the nuclei, and results in
a converged binding energy in the range 63–73 meV (depending on geometry and approximation to the
positron–molecule correlation potential used).

1 Introduction

Positrons are unique probes of matter, with applica-
tions in materials science (ultra-sensitive diagnostic
studies of surfaces, defects and porosity) [1], medical
imaging (PET) [2–7], astrophysics [8–11], molecular
spectroscopy [12–14], and creation of positronium and
antihydrogen for tests of fundamental physics including
gravity (see e.g., [15–25]).

Positron interactions with matter are characterized
by strong many-body correlations. They significantly
modify scattering, enhance annihilation rates by orders
of magnitudes (see [12] for a review), and lead to
positron binding in atoms and molecules [12,26–32].
They also make the theoretical description of positron-
matter interactions very challenging. Whilst positron
binding energies have to date been measured for over
90 molecules (via vibrational-Feshbach resonant anni-
hilation spectra) [12,33–41], it was only recently that
we developed a many-body theory approach that pro-
vided the first ab initio calculated binding energies in
agreement with experiment (for a handful of polar and
non-polar molecules) [32,42]. We have since extended
the method to successfully describe positron annihila-
tion on the small non-binding molecules H2, N2 and
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CH4 [43], and positronic bonding in molecular dianions
[44].

In this paper, we apply the many-body approach
to investigate positron binding to hydrogen cyanide
(HCN). This molecule has a substantial dipole moment
of about 3 D [45] meaning that positron binding hap-
pens even at the mean-field HF level of theory.1 Whilst
we are not aware of any reported experimental results
to date, previous ab initio calculations of the HCN
positron binding energy have been carried out using
the Hartree-Fock (HF), Configuration Interaction (CI),
and diffusion Monte Carlo (DMC) methods. The CI
calculations [47–49] reported binding energies εb = 35,
40, and 44 meV, using different Gaussian basis sets
with a limited number of positron basis functions, with
configurational state functions limited to ground state,
single excitations and electron-positron double excita-
tions. The DMC calculations [50] produced the result of
εb = 38±5 meV. As CI and DMC are variational meth-
ods, their predictions should be considered as lower
bounds on the true binding energy. Notably, the calcula-
tions of [48–50] all employed a single positron basis cen-
tre (close to the nitrogen atom) to expand the positron
wave function, and it is known that the CI expansion

1 A polar molecule in its rotational ground state with
dipole moment μ > 1.625 D possesses an infinite number
of positron bound states [46].
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for positronic systems converges slowly [47,49]. In addi-
tion to the ab initio methods, a recent model-potential
calculation, which assumed an isotropic dipole polariz-
ability, found a binding energy in the range 31–81 meV
(dependent on the ‘cut-off parameter’ used in the model
potential), with a recommended value of 47 meV [51].

Using the same positron basis size as the DMC calcu-
lation, our many-body approach gives a binding energy
of 41 meV, in good agreement with the DMC result of
38 ± 5 meV. However, we performed a basis-set sensi-
tivity study and found that by including Gaussians on
additional centres, notably the atoms of the molecule,
and additional ghost centres, we obtain converged bind-
ing energy that is in the range 63–73 meV (depend-
ing on the molecular geometry, and the approximation
used for the positron-molecule correlation potential).
Moreover, we calculate the anisotropic dipole polariz-
ability tensor, and find that it is highly anisotropic: the
component along the molecular axis (of most impor-
tance for positron binding, see below) is about 1.3
times larger than the isotropic polarizability, explain-
ing our relative larger binding energy compared with
the isotropic-polarizability-based model-potential cal-
culations of [51].

We present the essentials of our many-body theory
method and the numerical details for the present calcu-
lations, and then discuss our binding energy and anni-
hilation rate calculations, including considerations of
basis set convergence.

2 Theory and numerical implementation

A comprehensive description of the many-body theory
method and its implementation in our EXCITON+ code
is provided in [32], so here we give only a brief overview
and detail the basis parameters used for the present
calculations. We calculate the positron wave function
ψε and binding energy ε by solving the Dyson equation

(
H(0) + Σ̂ε

)
ψε(r) = εψε(r), (1)

where H(0) is the zeroth-order Hamiltonian for the
positron in the field of the ground-state molecule, and
Σ̂ε is the positron-molecule correlation potential (irre-
ducible self-energy, equivalent to an optical potential
[52]), which is non-local and energy-dependent. For
positron bound states, the latter property means the
equation is to be solved self-consistently at the bound
state energy E = εb.

We construct the self-energy diagrammatically via
its expansion in the residual electron–electron and
electron–positron interactions (see Fig. 1 of Hofierka et
al. [32]). Three infinite classes of diagrams are included.
The first is the so-called GW diagram that describes the
polarization of the electron cloud by the positron, and
corrections to it that describe screening of the electron–
positron Coulomb interaction (random phase approxi-
mation) and additional electron–hole attraction (time-

dependent Hartree–Fock, or, if screened electron–hole
interactions are used as done in this work, the so-called
Bethe-Salpeter Equation approximation, GW@BSE).
For the positron the GW diagram alone is insufficient,
as one must take accurate account of strong attraction
due to virtual positronium (Ps) formation (where an
electron temporarily tunnels from the molecule to the
positron), which is described by the diagram ΣΓ that
includes the infinite ladder series of electron–positron
interactions. Finally, we also consider the (screened)
infinite series of positron-hole repulsive interactions
Λ, which is similar to Γ in structure. The total self-
energy we consider here is the sum of the three chan-
nels Σ = ΣGW+Γ+Λ. In practice we work with the
matrix elements of Σ in the Hartree-Fock molecu-
lar orbital (MO) basis, and construct the individual
contributions to Σ by solving the respective Bethe-
Salpeter equations for the electron–hole polarization
propagator Π, the two-particle electron-positron prop-
agator Gep

II and the positron-hole propagator Gph
II [53].

Their general form is L(ω) = L(0)(ω) + L(0)(ω)KL(ω)
where the L(0) are non-interacting two-body propa-
gators and K are the interaction kernels [53,54]. In
the excitation space of pair product HF orbitals L =
(Cω − H)−1 = ξ(ω − Ω)−1ξ−1C−1, where the pair
transition amplitudes ξ are the solutions of the pseudo-
Hermitian linear-response generalized eigenvalue equa-
tions [55–57] of the form

Hξ = CξΩ, (2)

with ξ†Cξ = C. The explicit form of the individ-
ual matrices can be found in [32]. Here the H matrix
depends on the particular two-particle propagator L
under consideration and the approximation used for it
(see Extended Table 4 in [32] for the explicit matrix ele-
ments), and ξ is the matrix of (de-)excitation eigenvec-
tors Xn (Y n) with the corresponding (de-)excitation
energies Ω+

n (Ω−
n ). Expanding the positron Dyson wave

function (see Eq. 1) in the positron HF MO basis
as ψε(r) =

∑
ν Dε

νϕ+
ν (r) transforms the Dyson equa-

tion to the linear matrix equation FD = εD, where
〈ν1|F |ν2〉 = εν1δν1ν2 + 〈ν1|Σε|ν2〉.

The electron (−) and positron (+) Hartree-Fock
molecular orbitals are themselves expanded in distinct
Gaussian basis sets as

ϕ±
a (r) =

N±
c∑

A

N±
A∑

k=1

C±
aAkχ±

Ak
(r), (3)

where A labels the N±
c basis centres, k labels the N±

A
different Gaussians on centre A, each taken to be of
Cartesian type with angular momentum lx + ly + lz,
such that
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χAk
(r) =NAk

(x − xA)lxAk(y − yA)lyAk

× (z − zA)lzAke−ζAk|r−rA|2 , (4)

where NAk
is a normalization constant, and C are the

expansion coefficients determined from the solution of
the Roothaan equations.

For the electrons we include aug-cc-pVQZ [58] basis
sets centred on the H, C and N atoms. For the positron,
we likewise place aug-cc-pVQZ basis sets on the H and
C atoms, but, to capture the long-range correlation and
full extent of the positron wave function,2 We place a
diffuse even-tempered Gaussian basis on the N atom of
10s9p8d7f form (unless otherwise stated) with expo-
nents ζj = ζ1β

j−1,with j = 1, . . . , N l, for angular
momentum l and parameters ζ1 > 0 and β > 1. In
practice we performed binding energy calculations for
a range of ζ1 and β finding that there are broad ranges
of stability. For Hartree-Fock calculations, the optimal
β = 3.0 and ζ1 was set to 10−5 for s- and p-type Gaus-
sians and 10−4 for d- and f -type Gaussians (atomic
units are used throughout unless otherwise stated). For
many-body theory calculations, β = 2.2 and ζ1 was
10−3 for s- and p-type Gaussians and 10−2 for d- and
f -type Gaussians. It is known that the convergence
of many-body theory calculations with respect to the
maximal orbital angular momentum is quite slow [59]
and arises from the need to describe virtual Ps localized
outside the atom by an expansion in terms of single-
particle orbitals centred on the nuclei. Finally, to more
accurately describe virtual-Ps we place (hydrogen) aug-
cc-pVQZ electron and positron basis sets on additional
‘ghost’ centres (up to 18) at manually optimized loca-
tions near the molecule; they generate effectively higher
angular momenta basis functions (see, e.g. Appendix B
in [51]).

The most computationally demanding part of our
approach is in the calculation of the virtual-Ps self-
energy contribution ΣΓ. For this, the BSE matrix
dimension is Nν × Nμ, the product of total number of
positron and excited electron MOs. For the largest cal-
culation considered here, which employed 18 additional
ghost centres, Nν = 600 and Nμ = 453, resulting in
the matrix of 271, 8002 elements, the diagonalisation of
which demanded about 4.8 TB of RAM.3

Solution of the Dyson equation yields not only the
positron binding energy but also the positron-bound
state wave function ψε. Using it, the 2γ annihilation
rate in the bound state Γ = πr2

0cδep (Γ[ns−1] =
50.47 δep[a.u.]), whose inverse is the lifetime of the

2 The bound positron wave function behaves asymptoti-
cally as ψ ∝ e−κr, where κ =

√
2εb. Thus, to ensure that

the expansion describes the wave function well at r ∼ 1/κ,
i.e., that the broadest Gaussian covers the extent of the
positron wave function, one must have ζ1 � κ2 = 2εb.
3 The calculations were performed in EXCITON+

using ScaLAPACK, running on three AMD EPYC
128 CPU@ 2GHz, 2 TB RAM nodes of the United King-
dom Tier-2 supercomputer ‘Kelvin-2’ at Queen’s University
Belfast.

positron-molecule complex with respect to annihila-
tion, can be calculated. Here r0 is the classical electron
radius, c is the speed of light and δep is the contact
density

δep =
Ne∑

n=1

γn

∫
|ϕn(r)|2|ψε(r)|2dr, (5)

where γn are orbital dependent enhancement fac-
tors that account for the short-range electron-positron
attraction [60,61]. Previous many-body calculations for
atoms by one of us determined the enhancement factors
to follow a physically motivated scaling with the orbital
energy εn in atomic units [60,61]

γn = 1 +
√

1.31/|εn| + (0.834/|εn|)2.15
, (6)

which we assume to hold here.
Finally, we also calculate the dipole polarizability

tensor as [62,63]

αij(E) = 2
∑

n

Ωn

μT
i XnXT

nμj

Ω2
n − E2

, (7)

where μi are vectors of transition dipole moment one-
electron integrals for i = x, y, z. Note that in the HF
approximation, the eigenvector matrix Xn (see above)
is a unit matrix and the eigenvalues Ωn reduce to
the HF orbital energy differences. The isotropic static
dipole polarizability is

ᾱ =
1
3

[αxx(0) + αyy(0) + αzz(0)] . (8)

3 Results and discussion

Table 1 presents our calculated HCN positron binding
energies, as well as contact densities, dipole moments,
and static dipole polarizabilities, compared with earlier
CI, DMC and model-potential calculations. We con-
sider two molecular geometries: one optimized at the
HF/aug-cc-pVQZ level via minimization of the total
electronic HF energy using the Molpro [64,65] pack-
age, ensuring an internally consistent ab initio calcu-
lation, while the second is the experimental geometry
[45]. Comparing the results obtained for the two geome-
tries, we observe 3% increase in the C-N bond length
rCN going from HF-optimized to experimental geom-
etry, leading to 3% change in HF binding energy but
9% difference in many-body binding energies. Further,
the static dipole polarizability increases by about 4%
while ionization energies decrease by about 0.3 eV. We
note that the dipole moments are reported at Hartree–
Fock level only, while the ionization energies and polar-
izabilities have been computed at both HF and GW -
BSE levels of theory, as shown in Table 2. Table 2 lists
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Table 1 Comparison of HCN positron binding energies εb for optimized and experimental geometries and previously
calculated results

Binding energies (meV)

rCN(Å) μ (D) α (Å3) εHF
b εBSE

b εbest
b δep (a.u.)

This work
Opt. geom. (single e+ centre) 1.123 3.26 2.35 1.83 21 41, 44 3.0, 3.3×10−3

Opt. geom. (converged) 1.123 3.26 2.35 1.89 23 63, 68 4.7, 5.0×10−3

Experim. geom. (converged) 1.156 3.29 2.43 1.95 24 69, 73 5.0, 5.3×10−3

Previous theory
CI [48] 1.124 3.26 – 1.66 – 44 –
CI [49] 1.160 3.32 2.28 – – 40 –
CI [47] 1.167 3.31 2.29 1.63 – 35 –
DMC [50] 1.167 – – 2.00 – 38 ± 5 –
Model potential [51] 1.126 – 2.63 1.94 – 47 4.1×10−3

The first row shows results for a single e+ centre calculation, which used an even-tempered basis 15s15p6d2f on nitrogen
with ζ1 = 10−5 for s and p-Gaussians, ζ1 = 10−3 for d-Gaussians, and ζ1 = 10−1 for f -Gaussians, with β = 3.0 in all cases.
Converged calculations used 21 positron basis centres on 3 atoms and 18 ghost centres, with an even-tempered 10s9p8d7f
basis on nitrogen and aug-cc-pVQZ basis sets on the remaining centres. Binding energies εbest

b and positron–electron contact

densities δep are calculated at ΣGW@BSE+Γ̃+Λ̃ level of theory using either HF or GW energies in the diagram sums (first
and second number). Also shown are the C-N bond length rCN, dipole moment μ, and static dipole polarizability α.
Positron-electron contact densities include the enhancement factors (Eq. 6) and the quasi-particle normalization constant
a (Eq. 9)

Table 2 Calculated static dipole polarizabilities and ionization energies of HCN for optimized and experimental geometries
along principal Cartesian axes (diagonal elements of the polarizability tensor) at HF and BSE levels of theory (Eq. 7) with
ᾱ their average

HF polarizability (Å3) BSE polarizability (Å3) Ionization energy (eV)
xx yy zz ᾱ xx yy zz ᾱ ᾱref. HF GW Ref. [45]

Opt. geom. 1.81 1.81 3.13 2.26 1.97 1.97 3.08 2.35 – 13.78 14.05 –
Exp. geom. 1.88 1.88 3.37 2.37 2.04 2.04 3.23 2.43 2.46 13.50 13.88 13.60

The reference data are from [45]

Fig. 1 Positron bound state wave function in the xz plane (with the H, C, and N atoms located at −2.00, 0, and 2.12 a.u.

along the z axis) for three different approximations to the positron self-energy: ΣBSE (left), ΣBSE+Γ (middle) and ΣBSE+Γ̃+Λ̃

(right)
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Fig. 2 Convergence of positron binding energy with
respect to the total number of positron and electron excited
states included in the calculation (with the positron states
accounting for about 60% of the total) for a number of dif-
ferent approximations to Σ: the GW@BSE (circles); includ-
ing the virtual-Ps ladder series of screened electron-positron
interactions; the ΣΓ (squares); and additionally the lad-
der series of positron-hole interactions ΣΛ (triangles up).
Results obtained using screened Coulomb interactions in
the ‘Γ’ and ‘Λ-block’ are shown as triangles down, with the
additional use of GW energies instead of HF ones in the
diagrams leading to the results shown as diamonds

the main components of the static dipole polarizabil-
ity tensor at both HF and GW -BSE levels of theory,
with the molecule aligned along the z-axis. Regarding
basis-set dependency, these values are not appreciably
affected by addition of ghost basis centres, whose pri-
mary purpose is to enlarge the virtual basis space in the
many-body theory calculations; e.g., dipole polarizabil-
ities remain the same within the stated precision, while
the GW ionization energies fluctuate between 14.13 and
14.05 eV. As far as the experimental geometry is con-

Fig. 4 Convergence of positron-electron annihilation con-
tact density in the bound state with respect to the total
number of positron and electron excited states included
in the calculation (with the positron states accounting for
about 60% of the total) for the electron valence MOs of HCN
(HOMO-3: triangles down, HOMO-2: squares, HOMO-1:
triangles up, HOMO: diamonds, and the total sum shown
as circles) with enhancement factors (see Eq. 6). Here, the

positron Dyson wave function is computed at ΣGW+Γ̃+Λ̃

level of theory

cerned, excellent agreement with the reference polariz-
ability and ionization energy data is found [45].

Being a strongly polar molecule, HCN binds the
positron even at the level of a static-potential approx-
imation, with a binding energy of ∼1.89 meV and con-
tact density δ

(0)
ep = 1.00 × 10−5 a.u., in excellent

agreement with the corresponding earlier HF results
1.94 meV and 0.967×10−5 a.u. [51]. Other methods
reported HF binding energies of 1.6 meV [47,48] and
2.0 meV [50] (see Table 1). Differences are due to
slightly different bond lengths, basis sets, and the par-

Fig. 3 Convergence of the positron bound state wave function for HCN projected along the main symmetry axis (with
H,C,N atoms indicated by circles located at −2.0, 0, and 2.12 a.u.) with respect to the basis size (represented by the number

of ghost centres) at the ΣGW+Γ̃+Λ̃ level of theory. The single atom basis calculation (dotted line) used a 15s15p6d2f positron
basis on the nitrogen atom (as done in [50]), while the remaining calculations used a 10s9p8d7f positron basis on nitrogen and
aug-cc-pVQZ basis sets on hydrogen, carbon, and ghost atoms. The dashed line corresponds to the zero ghost calculation,
the dot-dashed line a calculation with 5 ghost centres, and the solid line a calculation with 14 ghost centres
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Fig. 5 Electron valence MOs in HCN (red and blue show positive and negative electron wave function regions at ±0.006
isovalue, respectively). The highest occupied MO in (a) is doubly degenerate at 13.8 eV and has π character while the
others are σ-type with energies 15.8 eV (b), 22.1 eV (c), and 34.0 eV (d), respectively. The corresponding electron-positron

contact density amplitude (magenta) is shown at the ΣGW+Γ̃+Λ̃ level at 0.001 isovalue

Table 3 Total annihilation contact density δep and fractional contribution of individual molecular orbitals, at the Hartree-
Fock (HF) level of the theory and using the positron Dyson wave function either without (“unenh.”) or with (“enh.”)
enhancement factors accounting for the short-range annihilation vertex corrections (Eq. 6)

HF Dyson unenh. Dyson enh.

Total δep 1.00×10−5 0.98×10−3 4.72×10−3

HOMO 0.19 0.20 0.22
HOMO-1 0.44 0.41 0.45
HOMO-2 0.05 0.05 0.04
HOMO-3 0.11 0.12 0.06
Core MOs 0.01 0.02 0.01

Note that the highest occupied MO (HOMO) is doubly degenerate: the number quoted is for only one of the two contribu-

tions. Positron Dyson wave function is computed at ΣGW+Γ̃+Λ̃ level of theory

ticular HF method (e.g.,“frozen target” versus “relaxed
target” [51]).

Starting with the second-order GW bare polarization
diagram Σ(2), the HF binding energy increases substan-
tially to εb = 27 meV. Using the RPA polarizability in
the GW self-energy decreases the binding energy con-
siderably down to 7 meV. Adding in the exchange dia-
grams within the TDHF approximation (or RPA with
exchange) increases the binding energy to 24 meV.

The inclusion of BSE screening in GW diagrams
reduces this slightly to 23 meV. The inclusion of the
virtual-positronium block diagram Γ increases the GW
binding energy by a factor of 5 (see Fig. 2) and causes
the positron wave function to be strongly peaked near
the nitrogen atom (see Fig. 3). Moreover, considerable
positron density protrudes into the region of the HOMO
π bond, as seen in Fig. 1. Overall, the subsequent inclu-
sion of positron-hole ladder series Λ down by about 40%
while the inclusion of screening within the rungs of the
ladder diagrams is relatively less important, lowering
the binding energies by 2–5% depending on the choice
of SCF or GW energies used in the BSE screening ker-
nel.

It is important to note that many-body binding ener-
gies converge with the basis set size (and maximum
angular momentum) significantly slower than HF bind-
ing energies, with the Γ contribution being the slowest

(see Fig. 2). We found that using up to 18 ghost atoms
located 1.0 Å away from the main symmetry axis with
2 more along the axis next to nitrogen (in the region of
maximum positron density, see Fig. 1) increased many-
body binding energies by as much as 5% in the case of
GW approximation and up to 50% for the virtual-Ps
level of theory results compared to a calculation with
basis centres on the atoms only (see Fig. 2).

Our final converged results are higher than the pre-
vious CI [47,48] and diffusion Monte Carlo (DMC)
[50] calculations by 20–30 meV. However, as CI and
DMC are variational methods, their predictions should
be considered as lower bounds on the true binding
energy. The DMC calculation [50] employed a single
even-tempered 15s15p6d2f positron basis centre near
the nitrogen atom. Using this basis in our method, a
binding energy of 41 meV was obtained, in excellent
agreement with the DMC calculation (38±5 meV [50]).
However, using this single-centre basis results in the
positron wave function repulsion from the nuclei being
poorly resolved, as shown in Fig. 3. Adding the even-
tempered 10s9p8d7f on nitrogen and aug-cc-pVQZ
basis sets on hydrogen, carbon, and ghost atoms (with
the ghost atoms employing the basis of hydrogen) sub-
stantially improves the description around the atoms,
and enhances the peak near the nitrogen, raising the
binding energy to 63 meV. The recent model correla-
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tion potential approach of Swann and Gribakin [51] pro-
duced a range of binding energies: 31, 47, and 82 meV
(with corresponding contact densities equal to 2.3, 4.1,
8.6×10−3 a.u.) obtained for cut-off radii of 2.25, 2.0,
and 1.75 a.u., with smaller cut-off radii meaning a
stronger correlation potential. The recommended value
was 47 meV. This model potential approach assumed an
isotropic molecular dipole polarizability. However, we
see from Table 2 that the crucial zz component of the
polarizability tensor (along the molecular axis) is ∼1.3
times larger than the isotropic value. Our many-body
theory approach describes the anisotropic positron-
molecule potential ab initio. Thus the larger binding
energy we find compared to the model-potential rec-
ommended value is to be expected.

The convergence of positron-electron annihilation
contact density δep with the number of virtual states
is shown in Fig. 4. The enhancement factors account-
ing for the short-range annihilation vertex corrections
(Eq. 6) average to about 4.7, with the largest value of
about 5.3 for the doubly degenerate HOMO decreasing
with the orbital energies through 5.1 and 3.4 down to
about 2.5 for the valence orbitals shown in Fig. 5. The
relative contributions to the contact density of individ-
ual MOs depend on their overlaps with the positron
wave function, which is affected by their shape and
magnitude in the vicinity of the positron. Notably, the
HOMO-1 (at 15.8 eV) contributes more to the overall
contact density than HOMO, and also the HOMO-3 (at
34.0 eV) has overlap with the positron wave function
than HOMO-2 (at 22.1 eV) as seen in Table 3 and Fig. 5.
Finally, we note that the contact densities contain the
positron Dyson wave function normalization constant

∫
|ψε(r)|2dr = (1 − ∂ε/∂E|εb

)−1 ≡ a < 1, (9)

which estimates the degree to which the positron-
molecule bound state is a single-particle state, with
smaller values of a signifying a more strongly-correlated
state. Here we find a = 0.986 at the final GW + Γ + Λ
level of theory, mirroring the binding energies at each
level of theory (a = 0.997 for the GW level of theory,
decreasing to 0.977 at GW + Γ level).

4 Summary and conclusion

Many-body theory calculations of positron binding to
HCN were performed using the Gaussian basis code
EXCITON+. The effects of correlations were studied: the
process of virtual-Ps formation was found to substan-
tially enhance the binding, a near cancellation of screen-
ing corrections to the bare polarization was found, as
was a non-negligible role of the positron-hole interac-
tion. Our converged results are about 50% larger (20–
30 meV in absolute terms) than previous CI or FN-
DMC calculations that used a single positron basis cen-
tre. Using a similar basis we obtain results in good
agreement, but find that including additional basis cen-

tres gives an improved description of the positron wave
function (cusps) at the nuclei and also is required to
obtain convergence of the virtual-positronium contribu-
tion to the positron-molecule correlation potential. We
hope this work will stimulate further theoretical and
experimental work, to shed light on this discrepancy.
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M. Charlton, P. Cladé, P. Comini, P. Crivelli, O. Dalka-
rov, P. Debu, A. Douillet, G. Dufour, P. Dupré, S.
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P. Grandemange, P. Granum, J.S. Hangst, M.E. Hay-
den, D. Hodgkinson, E.D. Hunter, C.A. Isaac, A.J.U.
Jimenez, M.A. Johnson, J.M. Jones, S.A. Jones, S. Jon-
sell, A. Khramov, N. Madsen, L. Martin, N. Massacret,
D. Maxwell, J.T.K. McKenna, S. Menary, T. Momose,
M. Mostamand, P.S. Mullan, J. Nauta, K. Olchanski,
A.N. Oliveira, J. Peszka, A. Powell, C.Ø. Rasmussen,
F. Robicheaux, R.L. Sacramento, M. Sameed, E. Sarid,

J. Schoonwater, D.M. Silveira, J. Singh, G. Smith, C.
So, S. Stracka, G. Stutter, T.D. Tharp, K.A. Thomp-
son, R.I. Thompson, E. Thorpe-Woods, C. Torkza-
ban, M. Urioni, P. Woosaree, J.S. Wurtele, Observa-
tion of the effect of gravity on the motion of antimatter.
Nature 621(7980), 716–722 (2023). https://doi.org/10.
1038/s41586-023-06527-1

26. V.A. Dzuba, V.V. Flambaum, G.F. Gribakin, W.A.
King, Bound states of positrons and neutral atoms.
Phys. Rev. A 52(6), 4541 (1995). https://doi.org/10.
1103/PhysRevA.52.4541

27. G.G. Ryzhikh, J. Mitroy, Positronic lithium, an elec-
tronically stable Li-e+ ground state. Phys. Rev.
Lett. 79(21), 4124 (1997). https://doi.org/10.1103/
PhysRevLett.79.4124

28. C. Harabati, V.A. Dzuba, V.V. Flambaum, Identifica-
tion of atoms that can bind positrons. Phys. Rev. A
89, 022517 (2014). https://doi.org/10.1103/PhysRevA.
89.022517

29. V.V. Flambaum, C. Harabati, V.A. Dzuba, G.F. Grib-
akin, Periodic table of positronic atoms. J. Phys. Conf.
Ser. 635(5), 052028 (2015). https://doi.org/10.1088/
1742-6596/635/5/052028

30. A.R. Swann, G.F. Gribakin, Model-potential calcula-
tions of positron binding, scattering, and annihilation
for atoms and small molecules using a gaussian basis.
Phys. Rev. A 101, 022702 (2020). https://doi.org/10.
1103/PhysRevA.101.022702

31. A.R. Swann, G.F. Gribakin, Positron binding and anni-
hilation in alkane molecules. Phys. Rev. Lett. 123,
113402 (2019). https://doi.org/10.1103/PhysRevLett.
123.113402

32. J. Hofierka, B. Cunningham, C.M. Rawlins, C.H. Pat-
terson, D.G. Green, Many-body theory of positron bind-
ing to polyatomic molecules. Nature 606(7915), 688–693
(2022). https://doi.org/10.1038/s41586-022-04703-3

33. S.J. Gilbert, L.D. Barnes, J.P. Sullivan, C.M. Surko,
Vibrational-resonance enhancement of positron annihi-
lation in molecules. Phys. Rev. Lett. 88, 043201 (2002).
https://doi.org/10.1103/PhysRevLett.88.043201

34. J.R. Danielson, J.A. Young, C.M. Surko, Dependence of
positron-molecule binding energies on molecular proper-
ties. J. Phys. B 42, 235203 (2009). https://doi.org/10.
1088/0953-4075/42/23/235203

35. J.R. Danielson, J.J. Gosselin, C.M. Surko, Dipole
enhancement of positron binding to molecules. Phys.
Rev. Lett. 104, 233201 (2010). https://doi.org/10.1103/
PhysRevLett.104.233201

36. J.R. Danielson, A.C.L. Jones, J.J. Gosselin, M.R.
Natisin, C.M. Surko, Interplay between permanent
dipole moments and polarizability in positron-molecule
binding. Phys. Rev. A 85, 022709 (2012). https://doi.
org/10.1103/PhysRevA.85.022709

37. J.R. Danielson, A.C.L. Jones, M.R. Natisin, C.M.
Surko, Comparisons of positron and electron binding to
molecules. Phys. Rev. Lett. 109, 113201 (2012). https://
doi.org/10.1103/PhysRevLett.109.113201

38. A.R. Swann, G.F. Gribakin, J.R. Danielson, S. Ghosh,
M.R. Natisin, C.M. Surko, Effect of chlorination on
positron binding to hydrocarbons: experiment and the-
ory. Phys. Rev. A 104, 012813 (2021). https://doi.org/
10.1103/PhysRevA.104.012813

123

https://doi.org/10.1098/rsta.2017.0273
https://doi.org/10.1098/rsta.2017.0273
https://doi.org/10.1038/s41467-021-26086-1
https://doi.org/10.1038/s41467-021-26086-1
https://doi.org/10.1038/s42005-020-00494-z
https://doi.org/10.1038/s41586-023-06527-1
https://doi.org/10.1038/s41586-023-06527-1
https://doi.org/10.1103/PhysRevA.52.4541
https://doi.org/10.1103/PhysRevA.52.4541
https://doi.org/10.1103/PhysRevLett.79.4124
https://doi.org/10.1103/PhysRevLett.79.4124
https://doi.org/10.1103/PhysRevA.89.022517
https://doi.org/10.1103/PhysRevA.89.022517
https://doi.org/10.1088/1742-6596/635/5/052028
https://doi.org/10.1088/1742-6596/635/5/052028
https://doi.org/10.1103/PhysRevA.101.022702
https://doi.org/10.1103/PhysRevA.101.022702
https://doi.org/10.1103/PhysRevLett.123.113402
https://doi.org/10.1103/PhysRevLett.123.113402
https://doi.org/10.1038/s41586-022-04703-3
https://doi.org/10.1103/PhysRevLett.88.043201
https://doi.org/10.1088/0953-4075/42/23/235203
https://doi.org/10.1088/0953-4075/42/23/235203
https://doi.org/10.1103/PhysRevLett.104.233201
https://doi.org/10.1103/PhysRevLett.104.233201
https://doi.org/10.1103/PhysRevA.85.022709
https://doi.org/10.1103/PhysRevA.85.022709
https://doi.org/10.1103/PhysRevLett.109.113201
https://doi.org/10.1103/PhysRevLett.109.113201
https://doi.org/10.1103/PhysRevA.104.012813
https://doi.org/10.1103/PhysRevA.104.012813


   37 Page 10 of 10 Eur. Phys. J. D           (2024) 78:37 

39. J.R. Danielson, S. Ghosh, C.M. Surko, Influence of
geometry on positron binding to molecules. J. Phys.
B 54(22), 225201 (2021). https://doi.org/10.1088/
1361-6455/ac3e78

40. S. Ghosh, J.R. Danielson, C.M. Surko, Resonant anni-
hilation and positron bound states in benzene. Phys.
Rev. Lett. 129, 123401 (2022). https://doi.org/10.1103/
PhysRevLett.129.123401

41. J.R. Danielson, S. Ghosh, C.M. Surko, Enhancement
of positron binding energy in molecules containing π
bonds. Phys. Rev. A 106, 032811 (2022). https://doi.
org/10.1103/PhysRevA.106.032811

42. J.P. Cassidy, J. Hofierka, B. Cunningham, C.M. Rawl-
ins, C.H. Patterson, and D.G. Green, Many-body The-
ory Calculations of Positron Binding to Halogenated
Hydrocarbons (2023)

43. C.M. Rawlins, J. Hofierka, B. Cunningham, C.H. Pat-
terson, and D.G. Green, Many-body theory calculations
of positron scattering and annihilation in H2, N2, and
CH4 (2023) 2303.02083

44. J. P. Cassidy, J. Hofierka, B. Cunningham, D. G. Green;
Many-body theory calculations of positronic-bonded
molecular dianions. J. Chem. Phys. 160(8), 084304
(2023). https://doi.org/10.1063/5.0188719

45. W.M. Haynes (ed.), CRC Handbook of Chemistry and
Physics, 97th edn. (CRC Press, Boca Raton, 2016)

46. O.H. Crawford, Bound states of a charged particle in a
dipole field. Proc. Phys. Soc. 91, 279 (1967). https://
doi.org/10.1088/0370-1328/91/2/303

47. H. Chojnacki, K. Strasburger, Configuration interac-
tion study of the positronic hydrogen cyanide molecule.
Mol. Phys. 104, 2273 (2006). https://doi.org/10.1080/
00268970600655477

48. M. Tachikawa, Y. Kita, R.J. Buenker, Bound states
of the positron with nitrile species with a configu-
ration interaction multi-component molecular orbital
approach. Phys. Chem. Chem. Phys. 13, 2701 (2011).
https://doi.org/10.1039/C0CP01650K

49. Y. Kita, M. Tachikawa, Theoretical investigation of the
binding of a positron to vibrational excited states of
hydrogen cyanide molecule. Eur. Phys. J. D 68(5), 116
(2014). https://doi.org/10.1140/epjd/e2014-40799-9

50. Y. Kita, R. Maezono, M. Tachikawa, M. Towler, R.J.
Needs, Ab initio quantum Monte Carlo study of the
positronic hydrogen cyanide molecule. J. Chem. Phys.
131, 134310 (2009). https://doi.org/10.1063/1.3239502

51. A.R. Swann, G.F. Gribakin, Calculations of positron
binding and annihilation in polyatomic molecules. J.
Chem. Phys. 149(24), 244305 (2018). https://doi.org/
10.1063/1.5055724

52. J.S. Bell, E.J. Squires, A formal optical model. Phys.
Rev. Lett. 3(2), 96 (1959). https://doi.org/10.1103/
PhysRevLett.3.96

53. W.H. Dickhoff, D.V. Neck, Many-body Theory Exposed!
- Propagator Description of Quantum Mechanics in
Many-Body Systems, 2nd edn. (World Scientific, Singa-
pore, 2008)

54. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-
particle Systems (Dover, New York, 2003)

55. P. Ring, P. Schuck, The Nuclear Many-Body Problem
(Springer, Berlin, 1980)

56. Y. Öhrn, Propagators in Quantum Chemistry, 2nd edn.
(Wiley, Hoboken, New Jersey, 2004)

57. A. Dreuw, M. Head-Gordon, Single-reference ab initio
methods for the calculation of excited states of large
molecules. Chem. Rev. 105(11), 4009 (2005). https://
doi.org/10.1021/cr0505627

58. R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, Electron
affinities of the first-row atoms revisited systematic basis
sets and wave functions. J. Chem. Phys. 96(9), 6796–
6806 (1992). https://doi.org/10.1063/1.462569

59. G.F. Gribakin, J. Ludlow, Many-body theory of
positron-atom interactions. Phys. Rev. A 70(3), 032720
(2004). https://doi.org/10.1103/PhysRevA.70.032720

60. D.G. Green, G.F. Gribakin, γ spectra and enhancement
factors for positron annihilation with core electrons.
Phys. Rev. Lett. 114, 093201 (2015). https://doi.org/
10.1103/PhysRevLett.114.093201

61. D.G. Green, G.F. Gribakin, Enhancement factors for
positron annihilation on valence and core orbitals of
noble-gas atoms. Concepts, Methods and Applications
of Quantum Systems in Chemistry and Physics. Prog.
Theor. Chem. Phys. 31, 243 (2018). https://doi.org/10.
1007/978-3-319-74582-4_14

62. C.H. Patterson, Photoabsorption spectra of small Na
clusters: TDHF and BSE versus CI and experiment.
Phys. Rev. Mat. 3, 043804 (2019). https://doi.org/10.
1103/PhysRevMaterials.3.043804

63. C.H. Patterson, Density fitting in periodic systems:
application to TDHF in diamond and oxides. J. Chem.
Phys. 153(6), 064107 (2020). https://doi.org/10.1063/
5.0014106

64. H.-J. Werner, P.J. Knowles et al., The Molpro quan-
tum chemistry package. J. Chem. Phys. 152(14), 144107
(2020). https://doi.org/10.1063/5.0005081

65. F. Eckert, P. Pulay, H.-J. Werner, Ab initio geome-
try optimization for large molecules. J. Comput. Chem.
18(12), 1473–1483 (1997)

123

https://doi.org/10.1088/1361-6455/ac3e78
https://doi.org/10.1088/1361-6455/ac3e78
https://doi.org/10.1103/PhysRevLett.129.123401
https://doi.org/10.1103/PhysRevLett.129.123401
https://doi.org/10.1103/PhysRevA.106.032811
https://doi.org/10.1103/PhysRevA.106.032811
https://doi.org/10.1063/5.0188719
https://doi.org/10.1088/0370-1328/91/2/303
https://doi.org/10.1088/0370-1328/91/2/303
https://doi.org/10.1080/00268970600655477
https://doi.org/10.1080/00268970600655477
https://doi.org/10.1039/C0CP01650K
https://doi.org/10.1140/epjd/e2014-40799-9
https://doi.org/10.1063/1.3239502
https://doi.org/10.1063/1.5055724
https://doi.org/10.1063/1.5055724
https://doi.org/10.1103/PhysRevLett.3.96
https://doi.org/10.1103/PhysRevLett.3.96
https://doi.org/10.1021/cr0505627
https://doi.org/10.1021/cr0505627
https://doi.org/10.1063/1.462569
https://doi.org/10.1103/PhysRevA.70.032720
https://doi.org/10.1103/PhysRevLett.114.093201
https://doi.org/10.1103/PhysRevLett.114.093201
https://doi.org/10.1007/978-3-319-74582-4_14
https://doi.org/10.1007/978-3-319-74582-4_14
https://doi.org/10.1103/PhysRevMaterials.3.043804
https://doi.org/10.1103/PhysRevMaterials.3.043804
https://doi.org/10.1063/5.0014106
https://doi.org/10.1063/5.0014106
https://doi.org/10.1063/5.0005081

	Many-body theory calculations of positron binding to hydrogen cyanide
	1 Introduction
	2 Theory and numerical implementation
	3 Results and discussion
	4 Summary and conclusion
	Author contributions
	References
	References


