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Abstract. Spontaneous parametric down-conversion (SPDC) is a widely used process to prepare entangled
photon pairs. In SPDC, a second-order nonlinear crystal is pumped by a coherent laser beam to generate
photon pairs. The photon pairs are usually detected by single-mode fibers (SMF), where only photons in
a Gaussian mode can be collected. The collection modes possess typical Gaussian parameters, namely a
beam waist and a focal plane position. The collection efficiency of photons highly depends on the choice of
both parameters. The exact focal plane position of the pump beam relative to those of the detection modes
is difficult to determine in a real experiment. Usually, theoretical and experimental studies assume that the
focal plane positions of the pump and the generated beams are positioned in the center of the crystal. The
displacement of beam focal planes can lead to deviations from expected results and the coupling efficiency
into SMF can decrease. In this study, we theoretically examine variable positions of focal planes in the
Laguerre–Gaussian basis, a popular experimental modal decomposition of the spatial biphoton state. We
explore how the choice of focal plane positions affects the spatial and temporal properties and the purity of
the photon pairs. We present SPDC setups where precise knowledge of the focal plane position is essential
and scenarios where focal plane displacements have negligible impact on experimental outcomes.

1 Introduction

Quantum-based technologies are increasingly explored
and integrated into today’s applications. In this con-
text, quantum entanglement is an inseparable part of
quantum communication protocols [1,2]. The process
of spontaneous parametric down-conversion (SPDC) is
the most reputable source of photonic entanglement
[3,4] and provides an experimental platform for fun-
damental quantum science [5].

In SPDC, a nonlinear crystal is illuminated with a
strong, high-energetic laser field called pump beam.
Photon pairs with lower energies, also known as signal
and idler photons, are subsequently down-converted.
The generated signal and idler photons fulfill the energy
ωp = ωs+ωi and the momentum kp = ks+ki conserva-
tions. The momentum conservation, also known as the
phase-matching (PM) condition, ensures constructive
interference between the three interacting beams and
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inherently determines the spectral and spatial proper-
ties of signal and idler photons. Spectrally and spatially
engineered photons are important ingredients in current
research on quantum information [6–8], quantum com-
puting [9], and quantum communication [10,11]. Addi-
tionally to the PM, the pump beam properties also have
a large impact on the spectral and spatial properties
of signal and idler photons [12–14]. The pump charac-
teristics include the beam width, the focal plane posi-
tion relative to the crystal, and its spatial and temporal
degrees of freedom (DOFs) [15,16].

Besides the generation of photon pairs, optimal
experimental verification is an essential part of quan-
tum fundamental research too. Usually, the spatial
shape of signal and idler photons are detected by multi-
plane light conversion (MPLC) [17,18], where an arbi-
trary spatial mode is projected to a Gaussian mode [19],
in order to couple it into a single-mode fiber (SMF)
[20,21]. The coupling efficiency into SMF depends on
the beforehand chosen focal planes and beams widths
of the pump, signal, and idler modes. Optimizing the
coupling efficiency of collecting a photon pair in funda-
mental Gaussian modes (FGMs) is a particularly inter-
esting aspect from an experimental perspective [22–25].
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Fig. 1 Schematic paths of pump and signal beam in a nonlinear crystal. For the sake of simplicity, only the signal beam
is shown, the idler beam can be similarly imagined. The beams are described as Gaussian beams with beam widths wp and
ws. Most calculations assume that the focal planes of the pump, signal, and idler lie in the center of the crystal z = 0 as
shown in the left picture. On the contrary, we allow in the right picture that the pump, signal, and idler focal planes are
not fixed. The parameters for focal plane shifts along the propagation axis are zp for the pump beam and zs, zi for the
generated beams

We distinguish between the single-mode coupling effi-
ciency for a certain frequency (within a narrowband fil-
ter bandwidth) [26], and the spectral brightness, which
pertains to the maximal collection probability on a
broadband of frequencies [27,28].

In the past, there were several theoretical and exper-
imental approaches to modify the pump or the detec-
tion scheme of the generated modes with linear optical
systems [29–33], in order to improve the pair collec-
tion efficiency. The variation of the pump intensity or
the pump beam width has also been explored to opti-
mize the photon pair collection efficiency or transverse
spatial correlations [34–36]. In this regard, the manip-
ulation of the purity between the signal and idler pho-
tons via pump focusing was shown [37,38]. Moreover, it
has been proposed in Refs. [39,40] how to consider the
change of the angular spectrum of the pump at different
positions beyond the crystal center. In analogy to the
change of the pump focal plane position, the position
of the nonlinear crystal has been varied to control the
time delay between signal and idler photons and the
coincidence rate [16].

All these considerations were primarily concerned
with optimal pump focusing or the right choice of
optical elements in beam paths, in order to achieve
enhanced photon collection efficiency in SPDC. In this
work, we theoretically consider variable focal planes for
pump, signal, and idler explicitly and describe their
impact on experimentally measurable quantities such
as the coupling efficiency into SMF, spatial and tempo-
ral correlations of generated photons and the spectral
purity between down-converted photons. We describe
the biphoton state in the Laguerre–Gaussian (LG)
basis, an experimentally readily accessible basis approx-
imating the Schmidt decomposition [41] with great
practical relevance in experiments that leverage fiber
coupling or optical orbital angular momentum (OAM)
[42–44]. In this regard, we will compare scenarios of
focal planes fixed at different positions and investigate if
the measurement probability of signal and idler photons
remain unaffected. We discuss setup conditions with
noteworthy influence on the spectral brightness and the

coupling efficiency. The alignment of focal plane posi-
tions in these scenarios will require more careful effort
in order to increase the coupling efficiency. We also con-
template scenarios where the precise position of focal
planes becomes insignificant. These findings are of par-
ticular interest in terms of enhancing the efficiency of
SPDC experiments utilizing LG modes.

2 Theory

We start our investigation with the theoretical descrip-
tion of the SPDC process. Our group published a paper
on the characterization of spatio-temporal DOFs in
SPDC, where a general expression for the SPDC-state,
also known as biphoton state, has been derived [45] and
later verified experimentally [19]. First, we briefly recap
the derivation of the expression from [45], where the
focal planes of the pump, signal, and idler beams are
assumed to be at z = 0, i.e., in the crystal center. This
assumption, as shown in Fig. 1 on the left, is common
in theoretical as well as experimental studies. Next, we
extend the expression to consider variable focal planes
for the pump, signal, and idler beams, which is illus-
trated on the right side of Fig. 1.

2.1 Biphoton state of SPDC decomposed in
Laguerre–Gaussian Basis

The common expression of the general biphoton state in
the wave vector representation of the interacting beams
is [40]

|Ψ〉SPDC =
∫∫

dqs dqi dωs dωi Φ(qs, qi, ωs, ωi)

× â†
s(qs, ωs) â†

i (qi, ωi)|vac〉, (1)

where we consider the paraxial approximation by the
separation into longitudinal and transversal compo-
nents of the wave vector k = q + kz(ω) z, where z
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is the propagation direction of the pump beam. The
paraxial approximation is valid in most experimental
SPDC setups since typical optical apparatuses support
only paraxial rays about the central axis. The bipho-
ton state (1) is an integral over all possible transverse
wave vectors qs,i and frequencies ωs,i of a signal and
idler pair that is created from the vacuum state |vac〉
by creation operators â†

s,i(qs,i, ωs,i) of signal and idler
photons, respectively.

The so-called biphoton mode function Φ(qs, qi, ωs, ωi)
encodes the coupling between the wave vectors of the
pump, signal, and idler beams [39]:

Φ(qs, qi, ωs, ωi) =N Vp(qs + qi) Sp(ωs + ωi)

×
∫ L/2

−L/2

dz ei(kp,z−ks,z−ki,z)z,

where N is the normalization constant, Vp is the spatial
distribution of the pump beam, whereas Sp character-
izes the spectral DOF of the pump. The integral over
the propagation direction z describes the phase mis-
match Δkz = kp,z − ks,z − ki,z in the z direction. The
exact expression of Δkz depends on the features of the
crystal and the geometry between the interacting beams
and the crystal.

Since discrete modes are easier to detect and manipu-
late in experiments [46,47] than continuous modes, the
continuous transverse spatial variables in (1) are often
discretized by a set of optical modes. Furthermore, an
appropriate choice of the set can reduce the dimension-
ality of a state. In Ref. [45], Laguerre–Gaussian (LG)
modes have been used as a basis for the description
of the spatial distribution of the down-converted pho-
tons. This choice is reasonable since LG modes carry
well-defined projection of orbital angular momentum
(OAM) [48], which is conserved in collinear SPDC [49–
51]. The biphoton state decomposed in the LG basis
|p, �, ω〉 =

∫
dq LG�

p(q) â†(q, ω)|vac〉 reads then

|Ψ〉SPDC =
∫∫

dωs dωi

∑
ps,�s

∑
pi,�i

C�s,�i
ps,pi

(ωs, ωi)

× |ps, �s, ωs〉|pi, �i, ωi〉,

where the overlap amplitudes C�s,�i
ps,pi

of the LG
decomposition are frequency-dependent. The probabil-
ity to find signal and idler photons in spatial modes
(ps|�s) and (pi|�i) at frequencies ωs and ωi is given by
P �s,�i

ps,pi
(ωs, ωi) = |C�s,�i

ps,pi
(ωs, ωi)|2. We can also call this

quantity the single-mode coupling efficiency. On the
other hand, the maximal value of P �s,�i

ps,pi
(ωs, ωi) over all

possible energies ωs and ωi is called the spectral bright-
ness.

The following assumptions and approximations have
been applied in Ref. [45], in order to derive a compre-
hensive expression for C�s,�i

ps,pi
(ωs, ωi):

• Pump, signal, and idler beams are focused in the
middle of the crystal.

• A small deviation Ω of generated frequencies from
the central frequency ω0 has been assumed, i.e.,
Ω � ω0, so that we can write ω = ω0 + Ω. The
central frequencies fulfill the energy conservation
ωp,0 = ωs,0 + ωi,0.

• In the paraxial regime, where |q| � k, the so-
called Fresnel approximation can be applied on kz =√

k2 − |q|2:

kz = k(Ω)

√
1 − |q|2

k(Ω)2

≈ k +
Ω
u

+
GΩ2

2
− |q|2

2k
, (2)

with the group velocity u = 1/(∂k/∂Ω) and the
group velocity dispersion G = ∂/∂Ω(1/u) at the
corresponding central frequency.

• Momentum conservation for the central frequen-
cies Δk = kp − ks − ki = 0 is assumed. When
a periodically poled crystal with poling period Λ
along the crystal axis is used, this is achieved by
Δk = kp − ks − ki − 2π

Λ = 0.

We shall expand now the formalism from Ref. [45],
to support variable positions of the focal planes for the
pump, signal, and idler beams.

2.2 Shift of focal plane positions

We briefly recap the angular spectrum propagation of
beams. Mathematically, electromagnetic field distribu-
tions can be described by a propagator factor obtained
via the angular spectrum representation in momentum
space. This is a well-investigated formalism, with the
following main key ideas. We can choose the z-direction
as the propagation axis and write the Fourier transfor-
mation of an arbitrary field E in the transverse x-y-
plane of a fixed point z = const. as

Ẽ(q; z) ∝
∫∫ ∞

−∞
dx dy E(x, y, z) e−ikxx e−ikyy .

Here are q = (kx, ky) the transverse wave vector compo-
nents. The amplitude in momentum-space Ẽ(q; z) can
also be used for the inverse Fourier transform for the
field in real space

E(x, y, z) ∝
∫∫ ∞

−∞
dkx dky Ẽ(q; z) eikxx eikyy .

When we split the field in a spatial and time-dependent
part E = E(x, y, z) e−iωt +c.c and also write |k| = k =
ω2n2

c2 , the Helmholtz equation reads as

(∇2 + k2
)
E(x, y, z) = 0.
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We insert E(x, y, z) into the Helmholtz equation and
arrive at a differential equation for the spatial evolution:

(∂2
z + k2 − k2

x − k2
y) Ẽ(q; z) = 0.

When setting kz =
√

k2 − k2
x − k2

y, the solution of the
angular spectrum of an electric field evolving along the
z-axis can be written as

Ẽ(q; z) = Ẽ(q; 0) e±ikzz (3)

(see also Refs. [39,40]). The positive signs in the expo-
nential indicate a wave propagation into z > 0, while
the negative sign describes a wave propagating into the
region z < 0.

We apply Eq. (3) to the pump, signal, and idler
beams. The PM function renewed with the pump, sig-
nal, and idler focused at positions zp, zs, and zi, respec-
tively (see Fig. 1), is now

Φ(qs, qi, ωs, ωi) = Vp(qs + qi) Sp(ωs + ωi)

×
∫ L/2

−L/2

dz ei[kp,z(z+zp)−ks,z(z+zs)−ki,z(z+zi)] .

Note that we continue to consider paraxial beams for
pump, signal, and idler and use the Fresnel approxima-
tion from Eq. (2) for kz.

To specify our setup, we assume a Gaussian envelope
of pulse duration T0 for the spectral part of the pump.
Due to ωp − ωp,0 = Ωp = Ωs + Ωi we can write

Sp(Ωp) =
T0√
π

exp
(

−T 2
0

4
(Ωs + Ωi)2

)
. (4)

The spatial distribution of the pump beam is also
described as a Gaussian with beam width wp,

V(qs + qi) =
wp√
2π

exp
(

−w2
p

4
|qs + qi|2

)
.

This reduces and simplifies the expression from Ref. [45]
enormously. The final formula reads then

C�s,�i
ps,pi

∝ δ�s,−�i exp

(
−T2

0

4
(Ωs + Ωi)

2
)

ps∑
s=0

pi∑
i=0

(T ps,�s
s )∗ (T pi,�i

i )∗ Γ[h] Γ[b]

×
∫ L/2

−L/2
dz exp

[
iz

(
Ωs + Ωi

up
− Ωs

us
− Ωi

ui

+
Gp

2
(Ωs + Ωi)

2 − Gs

2
Ω2

s − Gi

2
Ω2

i

)]

D�i

Hh Bb 2F̃1

[
h, b, 1 + �i,

D2

H B

]
(5)

with the abbreviations

h = 1 + s +
1
2

(�i + |�s|),

b = 1 + i +
1
2

(�i + |�i|),

D = −w2
p

4
− i

2kp
(z + zp),

H =
w2

p

4
+

w2
s

4
− i

2

[ (z + zp)
kp

− (z + zs)
ks

]
,

B =
w2

p

4
+

w2
i

4
− i

2

[ (z + zp)
kp

− (z + zi)
ki

]
,

T p,�
k =

(−1)p+k(i)�

(p − k)! (|�| + k)!k!

√
p! (p + |�|)!

π

(
w√
2

)2k+|�|+1

and the regularized hypergeometric function 2F̃1 [52].
The collecting widths of the generated signal and idler
modes are denoted by ws and wi. The expression (5)
gives full insight into the spatial distribution of the
biphoton state decomposed in LG modes and also into
the spatio-temporal coupling in SPDC [53,54]. Note
that the overlap amplitudes C�s,�i

ps,pi
from Eq. (5) depend

only on |�|, where � = �s = −�i (see Ref. [19]), but we
keep the notation of Eq. (5) for a proper illustration of
our results.

3 Results and discussion

3.1 Justifying the choice zs = zi

In this section, we study the impact of zp, zs, and zi

on the probability to detect the signal and idler pho-
tons in FGMs, or in other words, the efficiency of direct
coupling of generated photons into SMF. In the follow-
ing sections, unless otherwise stated, we assume spec-
trally a continuous-wave pump such that Sp(ωs +ωi) =
δ(Ωs +Ωi) which leads to the same amount of deviation
from the center frequency for signal and idler photons,
Ωs = −Ωi.

In general, we identify that the coupling efficiency
into SMF decreases, when the pump focal plane is dis-
placed from the crystal center (see Fig. 2). The ampli-
tude becomes more robust to the change of zp if the
beam width ratio γ = wp

ws
increases (ws = wi is

assumed).
In order to increase the amplitude for a given pump

focal plane shift zp, we should adjust the signal and idler
focal plane positions. The optimal choice of a pair zs

and zi strongly depends on the beam width of collection
modes, ws and wi. We distinguish two scenarios of equal
ws = wi or unequal beam widths.

Figure 3 represents the coupling efficiency for sig-
nal photons filtered at λs = 810 nm for unequal beam
widths ws �= wi as a function of zs and zi. The calcu-
lations have been carried out for three different pump
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Fig. 2 Normalized amplitude of the single-mode coupling
for λs = 810 nm depending on the pump focal position zp

for a crystal with L = 30mm centered at z = 0mm. The
focal plane positions of signal and idler are set at zs = zi =
0 mm. Two scenarios are examined: a γ = 10 µm

20 µm and b γ =
40 µm
20 µm . The full width at half maximum is independent of the
crystal length but determined by the beam width ratio γ.
As γ increases, the influence of the pump focal plane shifts
on the normalized amplitude decrease.

focal plane positions zp. The star corresponds to the
(zs|zi) combination that optimizes the single-mode cou-
pling efficiency. If zp and for instance, zs are fixed in
the experimental setup, the efficiency strongly depends
on the focal plane position of the corresponding part-
ner zi. An edge case is visualized in Fig. 3a, where the
pump is fixed in the crystal center. The maximum is
attained when the signal focus plane and the idler focus
plane displacements are equal in magnitude but point
in opposite directions, i.e., zi = −zs. The initial depen-
dence of the amplitude on zs and zi from (a) is more dis-
torted and moves away from the plot center the larger
zp is. Moreover, the maximum amplitudes lay not on
the diagonal zs = zi and move further away for increas-
ing zp.

However, in experiments ws = wi is more common
and we observe more symmetric dependencies of the
single mode coupling efficiency on zs and zi. Figure 4
shows the same as Fig. 3 but for a constant focal plane
position zp = 10 mm and the same beam width for sig-
nal and idler ws = wi. We distinguish between two
different crystal lengths L and beam width ratios γ.

Fig. 4 Like in Fig. 3 The single-mode coupling efficiency
for FGMs is shown in dependence of signal and idler focal
plane shifts for a fixed pump focal plane position zp =
10mm. We considered wp = 20µm, 40 µm, ws = wi =
20µm, λs = 810 nm. The black star refers to the pair (zs|zi)
that maximizes the coupling efficiency. The high amplitude
areas widen and the exact focal plane position of signal and
idler is less relevant for thicker crystals or higher beam width
ratios

Since we choose zp �= 0 mm, the area of high efficiency
lies not around zs = zi = 0 mm. This area resembles
a circle laying on the diagonal zs = zi. The higher the
length or the beam width ratio, the bigger the red circle
which means a larger range of zs, zi where the ampli-
tude is constant. This enables fixing the focal planes of
signal and idler at the same location.

Our results show that for a fixed frequency when con-
sidering the single-mode coupling efficiency, zp = 0 mm

Fig. 3 The single-mode coupling efficiency for FGMs in dependence of signal and idler focal plane shits zs, zi for different
pump focal plane shifts zp. The setup parameters are L = 1mm, wp = ws = 10µm, wi = 20µm and λs = 810 nm. The black
star refers to the pair (zs|zi) that maximizes the coupling efficiency. a The pump has its focal plane in the center of the
crystal, so optimal coupling would imply that the focal planes of the signal and idler move in opposite directions. b and c
If zp �= 0 mm, the optimum amplitudes are reached for signal and idler focal planes shifted from the center. These findings
are in line with the advanced-wave picture
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not always implies zs = zi = 0 mm for the highest
amplitude. This is shown in more detail in chapter 3.2.2.
If the total frequency spectrum on contrary is consid-
ered, zp = 0 mm always implies zs = zi = 0 mm for
maximal “spectral brightness”. The focal planes of all
beams should lie in the center of the crystal.

Our findings that focal plane shifts of the pump, sig-
nal, or idler beam from the crystal center affect the effi-
ciency and have to compensate each other is consistent
with the advanced-wave picture (AWP) [29,40,55–57],
which provides a classical analog to understand bipho-
ton coincidence experiments.

To summarize, the choice of pump, signal, and idler
focal plane position can greatly influence the coupling
efficiency. When choosing equal collecting widths for
signal and idler ws = wi, it is sufficient to assume signal
and idler focal plane positions at the same spot zs = zi

for maximum efficiency.

3.2 Spatial and temporal characteristics for zs = zi

The subsequent sections address how the pump, sig-
nal, and idler focal plane positions influence the spatio-
temporal biphoton state. As we discussed in the previ-
ous section, we can set zs = zi for equal signal and idler
beam widths. This assumption provides for our results
99.99 % agreement compared to the actual maximizing
focal plane shits zs and zi. We distinguish four different
combinations of zp relative to zs = zi:

(i) The focal plane of the pump, signal, and idler are
laying all in the middle of the crystal, i.e., zp =
zs = zi = 0 mm.

(ii) The focal plane of the pump is shifted by a certain
amount zp (experimentally perhaps unintention-
ally and therefore not noticed). However, signal
and idler beams are still positioned at the crystal
center, zs = zi = 0 mm.

(iii) The pump, signal, and idler focal planes are
shifted by the same amount as the pump in (ii)
so that they are focused on the same spot, i.e.,
zp = zs = zi �= 0 mm.

(iv) The pump beam is positioned on the same spot
as in (ii) and (iii), but the focal plane positions of
signal and idler are chosen in such a configuration,
that maximizes the amplitude for the Fundamen-
tal Gaussian Mode |C0,0

0,0 |2 for the given zp.

In the following, we will probe a ppKTP crystal
pumped with a coherent laser operating at λp =
405 nm. The procedure (i)–(iv) will be accomplished for
different crystal lengths L and beam width ratios γ.

3.2.1 Influence of zp, zs, and zi on spatial biphoton
states

Firstly we analyze if the spatial DOF of generated
photons is affected by the change of the focal plane
positions. We apply the narrowband regime and assume
signal photons filtered at λs = 810 nm. The normalized

coupling efficiency of finding a pair of photons in the
Laguerre–Gaussian modes with radial number p and
OAM number � is shown in Figs. 5 and 6. We trun-
cate the infinite space of mode numbers p and � to the
subspace of ps,i ∈ {0, 1, 2} and �s,i ∈ {−2,−1, 0, 1, 2},
where the highest contributions of the overlap ampli-
tudes C�s,�i

ps,pi
occur. The OAM conservation is easy to

see for both figures since only the modes fulfilling the
condition �p = �s + �i = 0 are nonzero. The scenarios
(i)–(iv) are depicted in four columns, shown from left
to right.

Figure 5 corresponds to the mode distribution for the
crystal lengths L = 10 mm and L = 25 mm, where the
beam width ratio is fixed to the value γ =

√
2. The

pump focal plane shift according to (ii) is zp = 5 mm.
The FGMs (ps|�s) = (pi|�i) = (0|0) have always the
largest amplitude in each frame. Moreover, this ampli-
tude is the highest for the crystal with L = 10 mm when
all beams are center-focused, see case (i). The proba-
bility decreases when zp �= 0mm (ii). However, this
can be compensated by focal plane shifts of signal and
idler. If the signal and idler modes are shifted to the
same position as the pump according to scenario (iii),
the amplitude decreases further. The focal plane posi-
tion zs = zi = 2.17 mm in (iv) maximizes the FGMs for
zp = 5 mm. The ratios of the amplitude in comparison
to (i) are in (ii) 0.89, in (iii) 0.76, and in (iv) 0.94. The
more distant the focal plane positions are from zmax

s ,
the lower the efficiency.

The situation is different for the crystal length L =
25 mm in the second row. The scenario (i) zp = zs =
zi = 0 mm is no longer the best choice for achieving
the highest efficiency. The ratios relative to scenario
(i) now are the following: (ii) 0.89, (iii) 1.03, and (iv)
1.04. The coupling efficiency is not maximized at zp =
zi = 0 mm, since we filtered the signal at 810 nm. We
will show in the next section that the coupling into
SMF strongly depends on the considered wavelength.
Particularly, we find the optimal value at zs = zi =
5.67 mm that maximize the coupling efficiency for given
zp = 5 mm.

Figure 6 analyzes the same as Fig. 5, but for for dif-
ferent beam width ratio values γ = 1,

√
2. The crystal

length remains constant at L = 1 mm. Each column
indicates the scenarios (i)–(iv) of focal plane positions
exactly like those described before. We make similar
observations from left to right as in the upper row of
Fig. 5: when all focal planes are in the center, the high-
est amplitude is achieved. These probabilities decrease
again for a shifted pump. The optimal shift zs,i for a
displaced pump focal plane (zp = 5 mm) is close to
the middle of the crystal with zs = zi = 0.17 mm.
The efficiency is significantly reduced for the shifts
zp = zs = zi = 5 mm, so these focal plane positions are
not recommended. Higher beam width ratios γ even
allow more mode combinations, which corresponds to
an increasing spiral bandwidth [50].

We can conclude that the single-mode coupling effi-
ciency of the spatial spectrum is affected by focal plane
position. There is always a certain combination of zp, zs,
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Fig. 5 Mode distribution of the biphoton state in LG basis filtered at λs = 810 nm for four different arrangements of focal
plane shifts zp and zs = zi: (i) pump, signal, and idler focal planes are assumed to be at z = 0mm, (ii) only the pump
beam is shifted (by 5 mm), but signal and idler remain in the center of the crystal, (iii) pump, signal, and idler are shifted
by the same amount of 5mm, (iv) value zs = zi that maximizes the coincidence amplitude for the given pump shift zp. The
upper shows a crystal with length L = 10 mm, the lower row represents L = 25 mm. The mode numbers (ps|�s) for signal
and (pi|�i) for idler run over p = 0, 1, 2 and � = −2, . . . , 2. The thick bars mark p=0 and the two following thin bars p=1,2.
Each row is normalized by its maximum (corresponding to crystal length). If the pump is not focused in the center, the
signal and idler beams should be shifted as well, to maximize the coupling efficiency

and zi that maximizes the efficiency for a given setup.
However, the positioning of all beam focal planes in
the center of the crystal may not be the most effective
choice to achieve the peak amplitude for all frequencies.
The optimal choice of zp, zs, and zi depends strongly on
the filtered frequency.

3.2.2 Influence of zp, zs, and zi on spectral biphoton
states

Apart from the spatial DOF, we should also ana-
lyze the influence of the focal plane shifts on the spec-
tral DOF of the biphoton state. We consider here the
spectral response of the Fundamental Gaussian Mode
|C0,0

0,0 (Ω)|2. It is enough to look only at the spectral
response of the signal mode since the spectrum of sig-
nal and idler modes are symmetric with respect to the
central frequency due to the continuous-wave pump,
Ωs = −Ωi.

Figure 7 shows |C0,0
0,0 (Ω)|2 for different focal plane

positions and for different combinations of parameters
L = 1mm, 20 mm and γ = 2

3 , 1. The four colors in

each plot represent four different setups of combina-
tions of zp = 5 mm and zs = zi according to scenar-
ios (i)–(iv). The spectrum of signal photons is much
broader for the thin crystal regime on the left com-
pared to a thick crystal shown in the right column of
Fig. 7. In terms of focal plane shifts, the blue curves
corresponding to zp = zs = zi = 0 mm show always
the highest brightness. When the pump focal plane is
shifted (green, red, yellow curves), the magnitude of the
corresponding amplitudes changes.

Furthermore, in (d), we readily discernible that shifts
of signal and idler directly shape the frequency spec-
trum and position of the maximum. The larger the sig-
nal and idler shifts are, the more the maximum is moved
away from the value of the blue curve. We observe in
Figs. 7b and d that for small wavelengths the blue curve
lies under the green and red curves. This implies that
the focusing of all modes in the middle of the crystal
is not preferable anymore at this frequency. However,
when considering the possible highest brightness, the
condition zp = zs = zi = 0 mm always provides the
highest brightness.
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Fig. 6 Same as in Fig. 5, but for a crystal with length L = 1mm and different beam width ratios, γ =
wp

ws,i
= 1 (upper

row) and γ =
√

2 (lower row). When all three beam focal planes are positioned in the middle of the crystal, the coincidence
amplitude for (ps|�s) = (0|0) and (pi|�i) = (0|0) is the highest. The amplitude decreases if the focal plane of the pump beam
is shifted. For this particular pump shift exists a certain shift for signal and idler zs = zi �= 0 mm (d), that maximizes the
amplitude and improves the efficiency. The focal plane positions of signal and idler in c) are distant from the maximizing
focal plane shift. The probability of measuring photon pairs in these modes is very low

Fig. 7 Influence of focal plane shifts on the wavelength spectrum for signal photons. We show crystal configurations with
L = 1 mm, 20 mm and γ = 2

3
, 1. The different focal plane positions of pump, signal, and idler are illustrated in each plot

with different colors. Again, a pump shift of zp = 5 mm was chosen. The red curves represent zs = zi = zmax
s . The highest

spectral brightness is achieved when the focal planes of pump, signal, and idler are laying in the center of the crystal. Note
that for thinner crystals the spectrum is much wider. It is also easy to notice that for longer crystals, focal plane shifts have
a more vivid influence on the brightness. The larger the focal plane shift, the further the maximum from the initial position
is shifted
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Fig. 8 a The maximizing signal/idler focal shifts zmax
s for pump focal shifts zp from −10 mm to 10 mm. We compare six

different beam width ratios γ from 1
2

to 2. The larger γ, the more horizontal the curves. A horizontal curve indicates that
signal and idler focal plane should be positioned in the crystal center for all shifts of the pump focal plane. b For every point
zmax

s (zp) from above in a the corresponding amplitude is shown. The values are normalized to the maximum amplitude.
The amplitudes are comparatively small for larger beam width ratios γ, but a shift of the pump focal plane has only a
small influence on the amplitude. c Like in a) the dependence zmax

s (zp) is shown. Four different crystal lengths from 1 mm
to 30mm are compared. The smaller L, the more horizontal the curves. d The corresponding amplitude for every point
zmax

s (zp) from above in c is shown. The amplitudes for larger L are higher, which is only possible when the demanding PM
conditions in longer crystals are properly fulfilled

3.3 Generalizing the impact of zp , zs and zi on
spectral brightness

We observed from Figs. 5, 6, 7 that for a given shift
zp = 5 mm, a zmax

s exists, which maximizes the coupling
efficiency. In this section, we generalize our results and
consider the dependence zmax

s (zp) for different beam
width ratios γ and crystal lengths L. The upper plots
of Fig. 8 show the shift zs = zi for a given zp, that max-
imizes the spectral brightness. The normalized ampli-
tude is shown at the bottom of the figures. This means
points that overlap vertically belong to the same zp

value, see the example in Fig. 8a and b. Note that the
maximum spectral brightness is not always achieved at
the same frequency for different focal plane considera-
tions.

In Fig. 8 a, we plot the maximizing signal and idler
focal plane shifts zmax

s for given pump focal shifts in the
range from −10 mm to 10 mm for a crystal of length
L = 20 mm. Six different values for the beam width
ratio are displayed. The maximizing shift zmax

s changes
linearly with zp, whereby the slope of the line depends
on the beam width ratio. The higher γ, the smaller the
slope of the lines. Hence signal and idler focal plane can

be positioned in the middle at zs = 0 mm, regardless of
zp. The shift of the pump focal plane has no significant
impact.

The spectral brightness is highest for zp = zs = 0 mm
for all γ in Fig. 8b. Whenever the pump focal plane
is shifted away from the crystal center, the amplitude
drops. At high values for γ, the zmax

s (zp) dependence
becomes almost constant. The explanation is that a
high beam width ratio results in a less divergent pump
with big width and a more constant beam radius over
the length of the crystal. This means no major notice-
able change in the system and therefore less impact on
the yield. The optimum beam width ratio for maximum
spectral brightness in Fig. 8 is γ = 3

2 .
It is important to mention that the photons for

every zmax
s (zp) value are spectrally filtered at the corre-

sponding maximum. The frequency that maximizes the
spectral brightness lies in a very small range between
809.88 nm and 809.90 nm.

Similarly, Fig. 8c and d shows the maximizing beam
shifts for given pump shifts between −10 mm to 10 mm
at a constant beam width ratio γ = 3

2 = 30 µm
20 µm display-

ing four different crystal lengths. Again, linear lines can
be seen in the top chart. The thinner L, the more hori-
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Fig. 9 Spectral purity Tr(ρ2
s,SMF) as a function of the focal

plane position of the pump zp and signal beam zs with the
assumption zs = zi and a setup with crystal length L =
30 mm, beam width ratio γ = 1√

2
and pulse duration T0 =

0.5 ps. The purity reaches its maximum when all beams are
focused in the crystal center, zp = zs = zi = 0 mm

zontal these lines are. This corresponds to the expecta-
tions of a thin crystal since the pump beam radius does
not change significantly over the length of the crystal
[58,59]. As a consequence, pump shifts have almost no
effect on the spectral brightness in thin crystals. Pump
focal plane shifts should be taken into account by a
proper signal and idler focal plane positions zmax

s in
thicker crystals.

3.4 Spatio-temporal correlations between signal and
idler photons

In general, we can distinguish two kinds of correla-
tions in the SPDC process: the correlation between sig-
nal and idler photons (see Figs. 5 and 6) or the cor-
relation between spatial and spectral DOF of gener-
ated photons. The spatio-spectral correlation implies
that the spatial characteristics of signal (idler) pho-
tons cannot be considered independently of the spec-
tral DOF, they are coupled. Mathematically, it means
that the biphoton mode function cannot be written
as the product state of spatial and spectral DOFs
Φ(qs, qi,Ωs,Ωi) �= Φq (qs, qi)ΦΩ(Ωs,Ωi). Correspond-
ingly, the correlation between signal and idler photons
implies that the biphoton mode function cannot be
written as Φ(qs, qi,Ωs,Ωi) �= Φs(qs,Ωs)Φi(qi,Ωi).

Here, we quantify explicitly how the focal plane shifts
affect both types of correlations. We consider for this
section the Gaussian envelope Eq. (4) for the spectral
DOF of the pump.

We look at the purity of the spatial (spectral) bipho-
ton state [53]

Tr(ρ2
q ) =

∫
dqs dΩs dqi dΩi dq′

s dΩ′
s dq′

i dΩ′
s

× Φ(qs, qi,Ωs,Ωi) Φ∗(q′
s, q

′
i,Ωs,Ωi)

× Φ(q′
s, q

′
i,Ω

′
s,Ω

′
i) Φ∗(qs, qi,Ω

′
s,Ω

′
i)

as a measure for the correlations between space and fre-
quency DOF. It turns out that all dependencies of the
spatial purity Tr(ρ2

q ) on zp, zs, and zi cancel out. Since
zs and zi are parameters associated with detection
mechanisms, this seems logical. Therefore, the spatio-
spectral correlation cannot be manipulated by the beam
shifts zp, zs, and zi.

The situation is different for the purity of the signal
(idler) photon [53]

Tr(ρ2
s ) =

∫
dqs dΩs dqi dΩi dq′

s dΩ′
s dq′

i dΩ′
s

× Φ(qs,Ωs, qi,Ωi) Φ∗(q′
s,Ω

′
s, qi,Ωi)

× Φ(q′
s,Ω

′
s, q

′
i,Ω

′
i) Φ∗(qs,Ωs, q

′
i,Ω

′
i),

(6)

where its dependence on zp, zs, and zi does not drop
off. The purity (6) gives the strength of the correla-
tion between signal and idler photons, i.e., how entan-
gled the two photons are. In the last years, one of the
most important goals of photonic quantum technolo-
gies has been the reduction of the correlation between
signal and idler photons. The heralded pure single pho-
tons from SPDC are believed to be a good candidate
for an indistinguishable single-photon source [60–62],
which is required for a successful photonic boson sam-
pling [63]. Usually, the spatial DOF of the biphoton
state is doped off by just collecting the photons into
SMF, which accepts only the Gaussian mode. We can
then talk about the spectral purity of the biphoton state
which can be estimated by

Tr(ρ2
s,SMF) =

∫
dΩs dΩi dΩ′

s dΩ′
i

× C0,0
0,0 (Ωs,Ωi) C0,0

0,0 (Ω′
s,Ω

′
i)

× [C0,0
0,0 (Ω′

s,Ωi)]∗ [C0,0
0,0 (Ωs,Ω′

i)]
∗.

Figure 9 shows the dependence of the spectral purity
Tr(ρ2

s,SMF) on zp and zs for a crystal length L = 30 mm
and pulse duration of T0 = 0.5 ps. The combination
zp = zs = zi = 0 mm, which corresponds to the crystal
center, yields the maximum purity. Additionally, high
levels of purity can also be observed along the diagonal
zp = zs = zi.

4 Conclusions

In this work, we have assumed paraxial pump and col-
lecting signal and idler beams with defined beam widths
and focal plane positions. We theoretically investigated
the dependence of spatial and temporal DOFs of the
biphoton state on these focal plane positions. In addi-
tion, the single-mode coupling efficiency and the spec-
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tral brightness of fundamental Gaussian modes were
studied. Generally, the spectral brightness reaches the
maximum if all involved beams are positioned in the
center of the crystal. The single-mode coupling effi-
ciency strongly depends on the frequency: for certain
narrow-band filtered frequencies, positioning all focal
planes in the crystal center would not attain the high-
est efficiency.

Depending on the setup, small deviations of the focal
plane positions from the crystal center can have a
large impact on the coupling efficiency. In sense of the
advanced-wave picture, pump, signal, and idler focal
plane shifts must compensate each other for higher effi-
ciency. However, equal positioning of signal and idler
focal planes is sufficient in most setups. Thus, we advise
choosing a suitable signal and idler focal plane position
zs = zi = zmax

s for higher efficiency if the pump beam
is not center-focused. Regardless of zp, zs = zi = 0 mm
can be assumed for high beam width ratios γ or short
lengths L, see results in Sect. 3.3.

We also find that correlations between space and fre-
quency degrees of freedom are not affected by focal
plane shifts. In contrast, the entanglement between sig-
nal and idler photons depends on the focal plane posi-
tions of involved beams. We recommend placing all
focal planes of SPDC beams in the center of the crystal
to achieve the highest purity.
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