Skip to main content
Log in

Quantum beat laser as a source of nonclassical wave–particle complementarity

  • Regular Article – Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Quantum decoherence tends to bring about the quantum-to-classical transition via the system–reservoir interaction, which is the main obstacle to the realization of quantum information processing. We propose a scheme to unconditionally create the quantum light source satisfying the nonclassical wave–particle complementary relation in the framework of the quantum theory of second-order coherence. The scheme uses the efficient and controllable two-mode squeezed vacuum reservoir coupled to the combination modes of interest rather than the original cavity modes in the two-level quantum beat laser. We investigate the complementarity of the generated two-mode squeezed state including the dependencies of the visibility and which-path information on the ratio of detuning and decay rate. The visibility is shown to be larger than unity, different from the vanishing which-path information. The resultant complementary reaches the quantum regime without any classical analogue.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.]

References

  1. L. Broglie, Nature (London) 112, 540 (1923)

    ADS  Google Scholar 

  2. A. Einstein, Ann. Phys. (Berlin) 322, 132 (1905)

    ADS  Google Scholar 

  3. A. Einstein, Relativity: The Special and General Theory (Henry Holt and Company, New York, 1920)

    MATH  Google Scholar 

  4. N. Bohr, Nature (London) 121, 580 (1928)

    ADS  Google Scholar 

  5. N. Bohr, Naturwissenschaften 16, 245 (1928)

    ADS  Google Scholar 

  6. W.K. Wootters, W.H. Zurek, Phys. Rev. D 19, 473 (1979)

    ADS  Google Scholar 

  7. D.M. Greenberger, A. Yasin, Phys. Lett. A 128, 391 (1988)

    ADS  Google Scholar 

  8. G. Jaeger, A. Shimony, L. Vaidman, Phys. Rev. A 51, 54 (1995)

    ADS  Google Scholar 

  9. B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996)

    ADS  Google Scholar 

  10. J.H. Huang, S. Wölk, S.Y. Zhu, M.S. Zubairy, Phys. Rev. A 87, 022107 (2013)

    ADS  Google Scholar 

  11. V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, J.-F. Roch, Phys. Rev. Lett. 100, 220402 (2008)

    ADS  MathSciNet  Google Scholar 

  12. Y. Yuan, Z. Hou, Y.Y. Zhao, H.S. Zhong, G.Y. Xiang, C.F. Li, G.C. Guo, Opt. Express 26, 4470 (2018)

    ADS  Google Scholar 

  13. X.F. Qian, G.S. Agarwal, Phys. Rev. Res. 2, 012031(R) (2020)

    Google Scholar 

  14. R. Ikuta, Opt. Express 30, 46972 (2022)

    ADS  Google Scholar 

  15. R.P. Feynman, R.B. Leighton, M.L. Sands, The Feynman Lectures on Physics, vol. 3 (Addison-Wesley, Reading, 1971)

    MATH  Google Scholar 

  16. M. Jammer, The Philosophy of Quantum Mechanics (Wiley, New York, 1974)

    Google Scholar 

  17. M.O. Scully, B.-G. Englert, H. Walther, Nature (London) 351, 111 (1991)

    ADS  Google Scholar 

  18. S. Dürr, T. Nonn, G. Rempe, Nature (London) 395, 33 (1998)

    ADS  Google Scholar 

  19. T. Yu, J.H. Eberly, Science 323, 598 (2009)

    ADS  MathSciNet  Google Scholar 

  20. T. Yu, J.H. Eberly, Opt. Commun. 264, 393 (2006)

    ADS  Google Scholar 

  21. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)

    ADS  Google Scholar 

  22. Q. Xu, X.M. Hu, Phys. Rev. A 86, 032337 (2012)

    ADS  Google Scholar 

  23. Q. Xu, X.M. Hu, J. Phys. B 46, 185501 (2013)

    ADS  Google Scholar 

  24. J.Y. Li, X.M. Hu, Phys. Rev. A 80, 053829 (2009)

    ADS  Google Scholar 

  25. J.H. Eberly, T. Yu, Science 316, 555 (2007)

    Google Scholar 

  26. A. Al-Qasimi, D.F.V. James, Phys. Rev. A 77, 012117 (2008)

    ADS  Google Scholar 

  27. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  28. R.J. Glauber, Phys. Rev. 130, 2529 (1963)

    ADS  MathSciNet  Google Scholar 

  29. R.J. Glauber, Quantum Theory of Optical Coherence (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  30. L. Mandel, Rev. Mod. Phys. 71, S274 (1999)

    Google Scholar 

  31. H.J. Kimble, L. Mandel, Phys. Rev. A 13, 2123 (1978)

    ADS  Google Scholar 

  32. H. Huang, S.Y. Zhu, M.S. Zubairy, M.O. Scully, Phys. Rev. A 53, 1834 (1996)

    ADS  Google Scholar 

  33. Z. Ficek, R. Tanaś, Phys. Rep. 372, 369 (2002)

    ADS  MathSciNet  Google Scholar 

  34. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  35. D.F. Walls, G.J. Milburn, Quantum Optics, 2nd edn. (Springer, Berlin, 2008)

    MATH  Google Scholar 

  36. M. Orszag, Quantum Optics, 3rd edn. (Springer, Cham, 2006)

    Google Scholar 

  37. W.H. Zurek, Phys. Today 44, 36 (1991)

    Google Scholar 

  38. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)

    ADS  Google Scholar 

  39. H.J. Kimble, Nature (London) 453, 1023 (2008)

    ADS  Google Scholar 

  40. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    ADS  Google Scholar 

  41. M.O. Scully, M.S. Zubairy, Phys. Rev. Lett. 35, 752 (1987)

    ADS  Google Scholar 

  42. N.A. Ansari, M.S. Zubairy, Phys. Rev. A 40, 5690 (1989)

    ADS  Google Scholar 

  43. C.M. Caves, K.S. Thorne, R.W.P. Drever, V.D. Sandberg, M. Zimmermann, Rev. Mod. Phys. 52, 341 (1980)

    ADS  Google Scholar 

  44. J.I. Cirac, L.L. Sanchez-Soto, Phys. Rev. A 44, 1948 (1991)

    ADS  Google Scholar 

  45. J.I. Cirac, Phys. Rev. A 46, 4354 (1992)

    ADS  Google Scholar 

  46. P.R. Rice, L.M. Pedrotti, J. Opt. Soc. Am. B 9, 2008 (1992)

    ADS  Google Scholar 

  47. P.R. Rice, C.A. Baird, Phys. Rev. A 53, 3633 (1996)

    ADS  Google Scholar 

  48. W.S. Smyth, S. Swain, Phys. Rev. A 53, 2846 (1996)

    ADS  Google Scholar 

  49. D. Erenso, R. Vyas, Phys. Rev. A 65, 063808 (2002)

    ADS  Google Scholar 

  50. K.S. Choi, H. Deng, J. Laurat, H.J. Kimble, Nature (London) 452, 67 (2008)

    ADS  Google Scholar 

  51. B. Julsgaard, A. Kozhekin, E.S. Polzik, Nature (London) 413, 400 (2001)

    ADS  Google Scholar 

  52. T. Wilk, S.C. Webster, A. Kuhn, G. Rempe, Science 317, 488 (2007)

    ADS  Google Scholar 

  53. D.N. Matsukevich, T. Chanelière, S.D. Jenkins, S.-Y. Lan, T.A.B. Kennedy, A. Kuzmich, Phys. Rev. Lett. 96, 030405 (2006)

    ADS  Google Scholar 

  54. B.B. Blinov, D.L. Moehring, L.M. Duan, C. Monroe, Nature (London) 428, 153 (2004)

    ADS  Google Scholar 

  55. J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, H. Weinfurter, Phys. Rev. Lett. 96, 030404 (2006)

    ADS  Google Scholar 

  56. C.W. Chou, H. de Riedmatten, D. Felinto, S.V. Polyakov, S.J. van Enk, H.J. Kimble, Nature (London) 438, 828 (2005)

    ADS  Google Scholar 

  57. S. Pielawa, G. Morigi, D. Vitali, L. Davidovich, Phys. Rev. Lett. 98, 240401 (2007)

    ADS  Google Scholar 

  58. A.S. Parkins, E. Solano, J.I. Cirac, Phys. Rev. Lett. 96, 053602 (2006)

    ADS  Google Scholar 

  59. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynbery, Atom-Photon Interactions (Wiley, New York, 1992)

    Google Scholar 

  60. R. Hanbury-Brown, R.Q. Twiss, Nature (London) 177, 27 (1956)

    ADS  Google Scholar 

  61. C.K. Hong, Z.Y. Ou, L. Mandel, Phys. Rev. Lett. 59, 2044 (1987)

    ADS  Google Scholar 

  62. F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, P. Grangier, Phys. Rev. Lett. 75, 4606 (1995)

    ADS  Google Scholar 

  63. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    ADS  Google Scholar 

Download references

Acknowledgements

One of us (QX) acknowledges the support from the Doctoral Startup Fund of Huainan Normal University.

Author information

Authors and Affiliations

Authors

Contributions

QX conceived the project, carried out the first calculations, and wrote the paper; HX carefully read the manuscript.

Corresponding author

Correspondence to Qing Xu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Xu, H. Quantum beat laser as a source of nonclassical wave–particle complementarity. Eur. Phys. J. D 77, 180 (2023). https://doi.org/10.1140/epjd/s10053-023-00751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00751-0

Navigation