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Abstract. The variational Monte Carlo method is applied to investigate several properties of the beryllium
atom, ions, and its iso-electronic ions. For the ground and the excited states of the beryllium atom and
ions, the energy eigenvalues were evaluated freely and under the influence of magnetic field. Furthermore,
the iso-electronic ions (B+ and C2+) are also investigated under the influence of the external magnetic field.
Suitable trial wave functions including the spin and the correlated parts are used in these investigation.
Some new excited states were included in the present work, such as the low-lying states (1s22s3s and
1s22s3p) and the core states (1s2s23s and 1s2s3s2). For the spin functions of these states, we used two
different functions for the singlet and the triplet excited states. Moreover, the energies of the beryllium
ions (Be+ and Be2+) were evaluated freely and in the presence of magnetic field. The obtained results are
in good agreement with the corresponding results of other works.

1 Introduction

The equations of correlated many-body quantum sys-
tems such as the Coulombic system, which are described
mainly by Schrödinger equation, are not possible to
solve analytically. The problem arises with the inte-
grals in the calculations of the expectation values of
energy, namely that the integrals generally are multi-
dimensional ones and can be seldom calculated analyti-
cally. For this reason, one must use appropriate approx-
imation method to solve Schrödinger equation specially
under the influence of external potentials.

Over the last decade, continuing effort has gone into
calculating, with ever increasing accuracy and with var-
ious methods, the energies of atoms and ions in neutron
star magnetic fields. The motivation comes largely from
the fact that features discovered [1, 2] in the thermal
emission spectra of isolated neutron stars may be due
to absorption of photons by heavy atoms in the hot,
thin atmospheres of these strongly magnetized cosmic
objects [3]. The accurate and detailed calculations were
carried out by Ivanov [4] and Rosner et al. [5] for hydro-
gen atom in intermediate and strong magnetic fields.
For helium atom, it was investigated at different field
strengths using 2D mesh Hartree–Fock (HF) method [6]
and by including the correlation energy using quantum
Monte Carlo approach [7]. In addition, lithium atom
and iso-electronic ions up to Z = 10 were investigated
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in [8] and [9] at different magnetic field strengths using
diffusion and variational Monte Carlo methods.

For free four electron system, Barbosa, and Nasci-
mento [10] used proper independent particle model at
the generalized valence bond and generalized multi-
structural levels (GMS) for the ground state of the
beryllium atom. The used wave functions showed that
the correlation energy of the valence shell is small. Also,
it was found that by including the 1s22p2 configuration,
the stabilization happened neither due to non-dynamic
nor dynamic correlation effects. Feng Wu and Lijuan
Meng [11] used the double-parameter double-fold per-
turbation scheme by considering spin–spin interaction
of electrons to calculate the ground state energy of the
beryllium atom. It was found that the effective nuclear
charge seen by the outer shell electrons is optimized by
the repulsion of the inner shell electrons.

Moreover, the beryllium atom under the influence of
external magnetic field was studied by Guan and Tay-
lor [12] where the authors used a modified freezing full-
core (modified FFC) method using Slater basis set and
calculated the ground and low-lying excited states of
beryllium atom in different regions of magnetic field.
The results were accurate compared with the unre-
stricted Hartree–Fock (HF) calculations of smaller base
extension. Also, O. A. Al-Hujaj and P. Schmelcher [13]
studied the ground and the excited states of the sin-
glet, triplet, and quintet multiplicity of many states
for positive and negative parity of beryllium atom in
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strong magnetic field based on full configuration inter-
action (FCI) method. They also calculated the total and
the one particle ionization energies beside the allowed
wavelengths as functions of different magnetic field
strengths. Furthermore, Wang and Qiao [14] investi-
gated the beryllium atom using the FFC method for the
weak magnetic field region of strength β, 0 ≤ β < 0.5 a.
u., and the full-core-plus-correlation calculation for the
strong magnetic field region 0.5 ≤ β ≤ 10 a. u., based
on the anisotropic Gaussian basis set. They obtained
a significant improvement in the precision of the sin-
glet states and the same precision of the triplet states
compared to the FCI method. In addition, the ener-
gies of the first and the second ions in different regions
of magnetic field beside the ionization energies of the
beryllium atom were provided.

On using such approximation methods, the quantum
Monte Carlo (QMC) techniques are used to solve the
Schrödinger equation which are classified as variational
Monte Carlo (VMC) [15, 16], diffusion Monte Carlo [17]
and Green’s function Monte Carlo methods [18]. The
VMC method is based on a combination of two ideas:
namely, the variational principle and the Monte Carlo
evaluation of integrals using importance sampling based
on the Metropolis algorithm [19].

Accordingly, the aim of the present work is to apply
the VMC method, using trial wave functions including
the correlation term, to evaluate the free ground state
of the beryllium atom, its ions, and iso- electronic ions
and under the influence of the external magnetic field
on these states. Moreover, our aim is to investigate the
excited states of this atom in external magnetic field.

2 The method of calculations

In the VMC method, the evaluation of the expectation
value of the Hamiltonian operator is obtained by mul-
tiplying and dividing the integrand by the trial wave
function, as follows

EVMC =
∫ ψ∗(R) Ĥψ(R)

ψ(R) ψ(R)dR

∫ ψ∗(R)ψ(R)dR
(1)

where ψ(R) is a trial wave function depending on vari-
ational parameters which are optimized to obtain the
minimum energy eigenvalue using importance sampling
based on the Metropolis algorithm. We rewrite Eq. (1)
as follows:

EVMC = ∫ P (R)EL(R)d(R) (2)

where P (R) = |ψ(R)|2
∫|ψ(R)|2dR

is interpreted as a probabil-

ity distribution function and EL(R) = Ĥψ(R)
ψ(R) is the

local energy function which is evaluated using a series
of points Rlj proportional to P (R) according to the
Metropolis algorithm. The trial wave function for a

given state must produce an energy which is above the
exact value of that state;EVMC ≥ Eexact.

After enough evaluations, EVMC can be written in
the form:

EV MC = 〈EL〉 = lim
N→∞

lim
M→∞

1
N

1
M

N∑

j=1

M∑

i=1

EL(Rij)

(3)

where M is the ensemble size of generated random num-
bers {R1, R2, . . . , RM} and N is the number of ensem-
bles. Also, the standard deviation of the energy of the
system is given by

σ =

√
〈E2

L〉 − 〈EL〉2
M(N − 1)

(4)

Generally, the essential idea of the VMC numerical
method is not to evaluate the integrand at every one of
many quadrature points, but rather at only a represen-
tative random sampling of abscissae. The Monte Carlo
strategy turns out to be very appropriate for a broad
class of problems in statistical and quantum mechanics,
by evaluating integrals of high dimension. The VMC
quadrature involves two basic operations: generating
abscissa randomly distributed over the integration vol-
ume with a specified distribution w(x) and then eval-
uating the average value of the function f/w, where
f is the function to be integrated, at these abscissae.
Although the methods for generating random numbers
according to a specified distribution can be very effi-
cient, it is difficult or impossible to generalize them to
sample a complicated weight function in many dimen-
sions, and so an alternative approach is required. One
very general way to produce random variables with
a given probability distribution of arbitrary form is
known as the Metropolis algorithm, as it requires only
the ability to calculate the weight function for a given
value of the integration variables. The algorithm has
been applied widely in statistical mechanics problems,
where the weight function of the canonical ensemble
can be a very complicated function of the coordinates
of the system and so cannot be sampled conveniently
by other methods.

In our work, the Metropolis algorithm within the
VMC method was implemented by a FORTRAN-95
computer program for many electron systems either in
free state or under the influence of external magnetic
field or plasma state. The most important thing in this
technique is the use of a suitably chosen trial wave func-
tion including the correlation part and the spin func-
tion in the calculations. This method proved that it
gives results in excellent agreement with previous find-
ings for few electron atoms. Specifically, when compared
with the method of Lagrange mesh [20] for helium atom
in plasma states, the direct variational and the SCF
Hartree–Fock methods for confined lithium atom [21].
In all the above-mentioned calculations, our code was
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implemented successfully for all the used many electron
systems and the code was made without any cost.

3 The Hamiltonian of the system

The Hamiltonian operator using the
Born–Oppenheimer approximation in the absence
of the field and in a. u. (e = � = m = 4πε0 = 1) is
given by

H = −1
2

n∑

i=1

(
∇2

i +
2Z

ri

)
+

∑

i<j

1
rij

(5)

where n is the total number of electrons, Z is the nuclear
charge (here, Z = 4 for Be, Be+ and Be2+, but for B+

and C2+, Z = 5 and 6, respectively), ri is the distance
between the ith electron and the nucleus, and rij are
the inter-electron distances.

In the present work, the Hamiltonian was introduced
using Hylleraas Coordinates [22] as

H = −1

2

⎛
⎝

n∑
i=1

∂2

∂r2
i

+
n∑

i=1

2

ri

∂

∂ri

+
n∑

i<j

2
∂2

∂r2
ij

+
n∑

i<j

4

rij

∂

∂rij

+
n∑

i�=j

r2
i + r2

ij − r2
j

ririj

∂2

∂ri∂rij

+
n∑

i�=j

n∑
k>j

r2
ij + r2

ik − r2
jk

rijrik

∂2

∂rij∂rik

+
n∑

i=1

1

r2
i

∂2

∂θ2
i

+
n∑

i=1

1

r2
i sin2 θi

∂2

∂ϕ2
i

+
n∑

i=1

cot θi

r2
i

∂

∂θi

+
n∑

i�=j

(
2

rj cos θj

ririj sin θi

+ cot θi

r2
ij − r2

i − r2
j

r2
i rij

)
∂2

∂θi∂rij

+
n∑

i�=j

2
rj sin θj

ririj sin θi

sin(ϕi − ϕj)
∂2

∂ϕi∂rij

⎞
⎠

+
n∑

i=1

−Z

ri

+
n∑

i<j

1

rij

(6)

The Hamiltonian of the system in the presence of a
magnetic field can be written as

HMag = H +
1
8
γ2ρ2 +

γ(Lz + 2Sz)
2

(7)

where γ is the strength of the magnetic field in a. u.,
ρ2 =

∑4
i=1 ρ2i =

∑4
i=1 x2

i +y2
i , Sz is the z-component of

the total spin, and Lz is the z-component of the total
angular momentum, γLz

2 is the diamagnetic term and
γSz is the Zeeman term. For the ground state of beryl-
lium atom and iso-electronic ions (B+ and C2+), where
Lz = 0 and Sz = 0, the term 1

8γ2ρ2 was considered
only as an additional term with H in the calculations.
But for the excited states and beryllium ions, the total
Hamiltonian was considered.

4 The trial wave functions

4.1 The ground and excited states of beryllium
atom, and its iso-electronic ions

In our calculations of the ground state energy of the
beryllium atom, iso-electronic ions, and the excited
states, we applied the VMC method and used a trial
wave function with the spin part and correlation factor
as follows

ψ (r1, r2, r3, r4)

= A

⎡

⎣ϕ (r1, r2, r3, r4) χ (1, 2, 3, 4)
∏

i<j

f (rij)

⎤

⎦ ,

(8)

where A is the antisymmetrization operator [23] which
takes the form

A = ê − P̂12 − P̂13 − P̂14 − P̂23 − P̂24 − P̂34 + P̂123

+ P̂132 + P̂124 + P̂142 + ·P̂134 + P̂143 + P̂234

P̂243 − P̂1234 − P̂1243 − P̂1324 − P̂1342 − P̂1423

− P̂1432 + P̂12 · P̂34 + P̂13 · P̂24 + P̂14 · P̂23 (9)

In Eq. (9), ê is the identity permutation, while P̂ij

is the permutation of the ith and j th particles. Anal-
ogously, the operators P̂ijk and P̂ijkl are the permuta-
tions of three particles i , j , and k and four particles i ,
j , k , and l , respectively. The spin part (χ(1, 2, 3, 4))
of the wave function for the ground state of beryllium
atom, iso-electronic ions and singlet excited states is
given by

(10)

χ (1, 2, 3, 4) =
α (1) β (2) − α (2) β (1)√

2

× α (3) β (4) − α (4) β (3)√
2

But for the triplet states, it takes the form

χ(1, 2, 3, 4) =
α(1)β(2) − α(2)β(1)√

2
β(3)β(4)

(11)

where α, β are the spinor indices.
The spatial part of the trial wave function for the

ground state of beryllium atom and its iso-electronic
ions is given by

ϕ1(r1, r2, r3, r4) =
(z′z′′)3

8π2
exp

(
−z′(r1 + r2) − z′′

( r3

2
+

r4

2

))
;

(
1 − z′′r3

2

)(
1 − z′′r4

2

)
(12)
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Table 1 The spatial wave functions with variational

parameters (z′′and κ)

State Spatial wave function [Rnl(z
′′, r)Ylm(θ, ϕ)] or

[Rnl(κ, r)Ylm(θ, ϕ)]

2s 1

4
√
2π

(z′′)
3
2 (2 − z′′r) exp

(
− z′′r

2

)

3s 1

81
√
3π

(κ)
3
2
(
27 − 18κr + 2κ2r2

)
exp

(−κr
3

)

2p 1
8
√

π
(κ)

3
2 (κr) exp

(−κr
2

)
sin θ exp(−iϕ)

3p 1
81

√
π
(κ)

3
2
(
6κr + κ2r2

)
exp

(−κr
3

)
sin θ exp(−iϕ)

But for the low-lying excited states, (1s22s2p,
1s22s3s and 1s22s3p), it is given by

ϕ2(r1, r2, r3, r4) =
(z′)3

π
exp(−z′(r1 + r2))Rnl(z′′, r3)

Ylm(θ3, ϕ3)Rnl(κ, r4)Ylm(θ4, ϕ4)
(13a)

while

ϕ3(r1, r2, r3, r4) =
(z′)

3
2√

π
exp(−z′r1)Rnl(z

′′, r2)Ylm(θ2, ϕ2)

Rnl(z
′′, r3)Ylm(θ3, ϕ3)Rnl(κ, r4)Ylm(θ4, ϕ4)

(13b)

and

ϕ4(r1, r2, r3, r4) =
(z′)

3
2√

π
exp(−z′r1)Rnl(z

′′, r2)Ylm(θ2, ϕ2)

Rnl(k, r3)Ylm(θ3, ϕ3)Rnl(κ, r4)Ylm(θ4, ϕ4)

(13c)

are the corresponding functions for the core-excited
states 1s2s23s and 1s2s3s2, respectively. The spatial
wave functions with variational parameters (z′′ and κ)
for each state are given in Table 1.

In Eq. (8), f(rij) is the Jastrow correlation function
given by

f(rij) = exp
[

rij

n(1 + μrij)

]
(14)

where n =
{

2 for unlike spins
4 for like spins

, which makes this func-

tion satisfy the cusp conditions. The four variational
parameters z′, z′′, κ and μ are varied in order to obtain
the best fit to the energy eigenvalues of the beryl-
lium atom and its isoelectronic ions by using the VMC
method.

In the presence of magnetic field, the trial wave func-
tion could be constructed using Eq. (8) as

Ψ1Mag = ψ(r1, r2, r3, r4) exp

(
−η2

4∑

i=1

ρ2i

)
,

(15)

where exp
(
−η2

∑4
i=1 ρ2i

)
is the lowest Landau orbital

wave function with η as a variational parameter.

4.2 The beryllium ions Be+ and Be2+

For Be+ ion, the used trial wave function in the presence
of magnetic field is taken in the form

Ψ2Mag

= A

[
ϕ (r1, r2, r3)χ (1, 2, 3)

∏
i<j

f (rij)

]
exp

(
−η2

3∑
i=1

ρ2i

)

(16)

where A is the three-particle antisymmetrizer

A = I − P̂12 − P̂13 − P̂23 + P̂123 + P̂132 (17)

and

(18)

ϕ (r1, r2, r3)

= ψZ′ (r1) ψZ′ (r2) Rnl (z′′, r3)Ylm (θ3, ϕ3))

=
z

′3
z′′ 32

2π
√

2π
= e−z′(r1+r2)−z′′( r3

2 )
(

1 − z′′r3
2

)

Also, the spin function χ(1, 2, 3) is given by

χ(1, 2, 3) = α(1)β(2)α(3) − β(1)α(2)α(3) (19)

For the Be++ ion, the used trial wave function is

Ψ3Mag =

⎡

⎣ψ(r1, r2)χ(1, 2)
∏

i<j

f(rij)

⎤

⎦ exp

(
−η2

2∑

i=1

ρ2i

)

(20)

where ψ(r1, r2) is constructed as

ψ(r1, r2) = ψZ′(r1)ψZ′(r2) =
Z

′3

π
e−Z′(r1+r2)

(21)

and

χ(1, 2) =
1√
2
(α(1)β(2) − β(1)α(2)) (22)
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Table 2 Energy of the
beryllium atom in a
homogeneous magnetic field
as function of the field
strength γ, in a. u

γ This work [14] [13] [12]

0.00 − 14.66720 − 14.66076 − 14.6405 − 14.66287

0.01 − 14.66620 − 14.66022 – − 14.66238

0.05 − 14.64722 − 14.64684 − 14.6298 –

0.1 − 14.61455 − 14.60985 − 14.5907 − 14.61160

0.2 − 14.48888 − 14.48720 – − 14.48793

0.5 − 13.94277 − 13.94045 − 13.9220 − 13.91717

1 − 12.94414 − 12.94260 − 12.9275 –

5 − 2.723710 − 2.72369 − 2.6936 –

7 3.22920 3.23065 – –

10 12.67501 12.67587 – –

Table 3 Energies of
iso-electronic ions in a
homogeneous magnetic field
as function of the field
strength γ, in a. u. The
correlation energy of (B+)
is also provided

γ B+ [24] Ecorr. C2+

0.00 − 24.34940 − 24.23758 − 0.11182 − 36.9507

0.01 − 24.34938 − 24.23758 − 0.1118 − 36.9507

0.05 − 24.34842 − 24.23593 − 0.11249 − 36.9482

0.1 − 24.34718 − 24.23100 − 0.11618 − 36.9417

0.2 − 24.33279 − 24.21161 − 0.12118 − 36.9133

0.5 − 24.2186 − 24.08953 − 0.12907 − 36.7024

1 − 23.88995 − 23.75518 − 0.13477 − 35.4507

2 − 23.04116 − 22.89729 − 0.14387 − 34.9507

5 − 20.05175 − 19.88877 − 0.16298 − 34.1126

7 − 17.81162 − 17.62872 − 0.1829 − 32.0133

10 − 14.12758 − 13.93583 − 0.19175 − 29.7161

Table 4 Energies of the
singlet and triplet states of
1s22s2p as function of the
field strength γ in a. u.
compared with the results
of [14]

γ Singlet [14] Triplet [14]

0.00 − 14.4642 − 14.46277 − 14.5612 − 14.55979

0.01 − 14.4751 − 14.47367 − 14.5908 − 14.58938

0.05 − 14.4928 − 14.49140 − 14.6934 − 14.69201

0.1 − 14.4908 − 14.48940 − 14.7988 − 14.79739

0.2 − 14.4382 − 14.43672 − 14.9545 − 14.95309

0.5 − 14.0956 − 14.09416 − 15.1996 − 15.19815

1 − 13.3072 − 13.30581 − 15.3617 − 15.36031

2 − 11.3778 − 11.37633 − 15.3777 − 15.37633

5 − 4.07453 − 4.073095 − 14.0788 − 14.07742

7 1.52099 1.52242 − 12.4833 − 12.48185

10 10.4645 10.46593 − 9.53909 − 9.53768

5 Results and discussion

In the present paper, the VMC method was applied
to the ground and excited states of beryllium atom in
addition to the beryllium iso-electronic ions with 107
Monte Carlo integration points. For an atom under
the effect of magnetic field strength, there are four

regimes of interaction for an excited electron. The elec-
tron moves initially through the core region of the atom
and emerges into a region where the Coulomb potential
dominates, and the diamagnetic potential is negligible.
It then enters a region where both fields are of compara-
ble strength and finally, reaches the asymptotic region
where the cylindrically symmetric magnetic field poten-
tial dominates.
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Table 5 Energies of the
singlet excited states as
function of the field
strength γ in a. u

γ 1s22s3s 1s22s3p 1s2s23s 1s2s3s2

0.00 − 14.2804 − 14.2430 − 9.0773 − 8.5241

0.01 − 14.2913 − 14.2539 − 9.0882 − 8.535

0.05 − 14.3090 − 14.2716 − 9.10593 − 8.55273

0.1 − 14.3070 − 14.2696 − 9.10393 − 8.55073

0.2 − 14.2544 − 14.2170 − 9.05125 − 8.49805

0.5 − 13.9118 − 13.8744 − 8.70869 − 8.15549

1 − 13.1234 − 13.0860 − 7.92034 − 7.36714

2 − 11.1940 − 11.1566 − 5.99086 − 5.43766

5 − 3.89073 − 3.85333 1.312375 1.865575

7 1.70479 1.74219 6.90789 7.46109

10 10.6483 10.6857 15.8514 16.4046

Table 6 Energies of the
triplet excited states as
function of the field
strength γ in a. u

γ 1s22s3s 1s22s3p 1s2s23s 1s2s3s2

0.00 − 14.3774 − 14.3400 − 9.1743 − 8.6211

0.01 − 14.4053 − 14.3679 − 9.1743 − 8.6490

0.05 − 14.4803 − 14.4429 − 9.2022 − 8.7240

0.1 − 14.5452 − 14.5078 − 9.2772 − 8.7889

0.2 − 14.6307 − 14.5933 − 9.3421 − 8.8744

0.5 − 14.8548 − 14.8174 − 9.4276 − 9.0985

1 − 15.1066 − 15.0692 − 9.6517 − 9.3503

2 − 15.2114 − 15.1740 − 9.9035 − 9.4551

5 − 13.9232 − 13.8858 − 10.0083 − 8.1669

7 − 12.3463 − 12.3089 − 8.7201 − 6.5900

10 − 7.3853 − 9.3790 − 5.1432 − 3.6601

Fig. 1 Energies of singlet excited states at different values
of magnetic field strength γ

5.1 The ground state of the beryllium atom
and iso-electronic ions

The ground state energy eigenvalues of the beryllium
atom and its isoelectronic ions B+ and C2+ were eval-
uated using the VMC. The calculations were made
without the influence of magnetic fields using the trial
wave functions of Eq. (8) and in the presence of mag-
netic field using Eq. (15). Our computational program

Fig. 2 Energies of triplet excited states at different values
of magnetic field strength γ

enables us to vary the variational parameters succes-
sively in loops until the minimum energy eigenvalue
is obtained. The comparison of the obtained results of
the ground state of beryllium atom in magnetic field
with the available previous results is shown in Table
2. These results show good agreement with the other
results. At the weak magnetic field strength region, 0
< γ ≤ 1, the Coulomb potential dominates till the
intermediate filed strength region starts to occur at
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Table 7 Energies of the
beryllium ions (Be+ and
Be2+) as functions of the
magnetic field strength γ in
a. u. compared with the
results of [14]

γ Be+ [14] Be2+ [14]

0.00 − 14.32920 − 14.32297 − 13.6609 − 13.65341

0.01 − 14.33886 − 14.33263 − 13.66085 − 13.65336

0.05 − 14.37376 − 14.36753 − 13.65992 − 13.65243

0.1 − 14.40817 − 14.40194 − 13.65868 − 13.65119

0.2 − 14.45264 − 14.44641 − 13.65529 − 13.64780

0.5 − 14.46760 − 14.46137 − 13.62248 − 13.61499

1 − 14.33302 − 14.32679 − 13.51023 − 13.50274

2 − 13.89078 − 13.88455 − 13.09344 − 13.08595

5 − 11.62914 − 11.62291 − 10.80483 − 10.79734

7 − 9.59921 − 9.59298 − 8.7507 − 8.74321

10 − 6.08744 − 6.08121 − 5.21366 − 5.20617

Fig. 3 Energies of the beryllium ions (Be + and Be2+) at
different values of magnetic field strength γ

2 ≤ γ < 5. By increasing the strength of magnetic
field, the spherical symmetry is clearly broken and the
cylindrically symmetric magnetic field potential domi-
nates.

For iso-electronic ions (B+ and C2+), the obtained
results are shown in Table 3. In this table, the results
of [24] for B+ are without correlation energy as in col-
umn 3. So, the correlation energy was provided for this
case. It is shown that for B+ at γ ≥ 2, the energy
starts to increase and then, enters the region of bro-
ken spherical symmetry, but this happen for C2+ at
γ ≥ 5 due to the increase in nuclear charges which
makes the Coulomb potential be more dominated and
needs stronger magnetic field to break the spherical
symmetry. The results of C2+ were evaluated by opti-
mizing the variational parameters to obtain the best
values, and there is no other published work to com-
pare with.

5.2 The excited states of beryllium atom

The calculations were made here for the singlet and
triplet excited states of beryllium atom (1s22s2p,
1s22s3s and 1s22s3p) and core states (1s2s23s and
1s2s3s2) using the total trial wave function of Eq. (15)
including Eqs. (13a),(13b) and (13c) as spatial parts,

respectively. Also, the two spin wave functions of Eqs.
(10) and (11) were used for the singlet and the triplet
states, respectively. The results of the 1s22s2p state are
shown in Table 4 in comparison with the results of [14]
for the singlet and triplet states at different values of
magnetic field strength. The values of the other states
are shown in Tables 5 and 6 for the singlet and triplet
states, respectively. Also, the results were plotted as a
function of γ as in Figs. 1 and 2.

For singlet states, where the diamagnetic term γLz

2
and Zeeman term γSz were vanished as Lz = 0 and
Sz = 0, there are crossovers between the low lying sin-
glet excited states (1s22s2p, 1s22s3s and 1s22s3p) and
the ground state of beryllium atom as shown in Fig. 1.
At weak field strength, the beryllium atom is still in
ground state 1s22s2 at the Coulomb region till increas-
ing the field strength slightly and then, the crossover
occurs between 1s22s2 and 1s22s2p at γ= 0.2167. Then,
the ground state configuration becomes 1s22s3s at γ=
0.3247 and at γ = 0.3447 the ground state is 1s22s3p.
There are no crossovers occurred between the ground
state and the core singlet excited states (1s2s23s and
1s2s3s2).

For triplet states as shown in Fig. 2, the crossovers
between the low-lying excited states (1s22s2p, 1s22s3s
and 1s22s3p) occurred at γ < 0.3. At γ= 0.14935,
the configuration of the ground state becomes
1s22s2p.Then, by increasing the filed till γ= 0.27035
the ground state is 1s22s3s and at γ= 0.2918 the
ground state is 1s22s3p. Unlike the singlet core excited
states, the crossovers between the core triplet states
and the ground state of beryllium atom1s22s2 occurred
at γ= 2.62849 for 1s2s23s state and at γ= 2.84446 for
1s2s3s2 state where the diamagnetic and Zeeman terms
were considered.

5.3 The beryllium ions (Be+ and Be2+)

The VMC was applied here using Eq. (16) of four
parameters and Eq. (20) of three parameters for the
beryllium ions (Be+ and Be2+), respectively. The
results were compared with those of [14] and show
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agreement with them as in Table 7. Also, the results
were plotted together with the ground state of beryl-
lium atom at different values of magnetic strength and
crossovers occurred between them as in Fig. 3. At γ=
0.2979, Be+ becomes the ground state and by increas-
ing the field till γ= 0.64165 the ground state is Be2+.

6 Conclusions

In the present paper, we applied the VMC method to
study several problems concerning the beryllium atom,
ions and iso-electronic ions. To achieve these goals, we
used suitable trial wave functions which are based on
hydrogenic wave functions multiplied by Jastrow corre-
lation functions, which represent the electron–electron
interactions, and the spin functions for singlet and
triplet states.

In the first part of the present paper, we calculated
the ground state energy and the energies of the iso-
electronic ions using trial wave functions of four varia-
tional parameters as free states and under the influence
of magnetic field. In the second part of this work, we
investigated some new singlet and triplet excited states
using trial wave functions of five variational parame-
ters. Eventually, the beryllium ions were studied using
two different trial wave functions with different two spin
functions.

The energies were plotted as functions of the mag-
netic field strengths to show graphically the effect of
the magnetic field on the behavior of the total energy.
The results showed good agreement with other works,
and this implies that the VMC method can be consid-
ered as an efficient tool to study many electron systems
under the influence of magnetic field.
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