Skip to main content
Log in

Overview of photo-neutralization techniques for negative ion-based neutral beam injectors in future fusion reactors

  • Colloquium - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Photo-neutralization of negative ions (\(H^-/D^-\)) is now regarded as a promising technique to increase the efficiency of neutral beam heating systems in future fusions reactors. In a gas or plasma neutralizer, the extra electron in the negative ion is detached by stripping, while in photo-neutralizers it detaches by absorbing a visible or near-infrared photon. The main technological challenge is the level of optical power required (several MW), which forbids the use of direct illumination and requires some form of light trapping: the research focuses on the development of suitable coherent sources and enhancement cavities. This overview discusses the different concepts so far developed, describing their working principles, advantages and critical points as well as new possible methodologies to realize photo-neutralization for nuclear fusion reactor applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s Comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. R.S. Hemsworth, T. Inoue, Positive and negative ion sources for magnetic fusion. IEEE Trans Plasma Sci. 33(6), 1799–1813 (2005)

    Article  ADS  Google Scholar 

  2. J.H. Fink, Neutralizer options for high energy H- Beams. in Production and Neutralization of Negative Ions and Beams: 4th International Symposium, (Upton, New York, 1986). https://digital.library.unt.edu/ark:/67531/metadc1204049

  3. M. Hanada et al., Experimental comparison between plasma and gas neutralization of high-energy negative ion beams. Rev. Sci. Instrum. 75(5), 1813–1815 (2004). https://doi.org/10.1063/1.1699462

    Article  ADS  Google Scholar 

  4. V. Toigo et al., Progress in the realization of the PRIMA neutral beam test facility. Nuclear Fusion 55(8), 083025 (2015). https://doi.org/10.1088/0029-5515/55/8/083025

    Article  ADS  Google Scholar 

  5. W. Chaibi et al., Photoneutralization of negative ion beam for future fusion reactor. AIP Conf. Proc. 1097, 385–394 (2009)

    Article  ADS  Google Scholar 

  6. B. Mclaughlin et al., H - photodetachment and radiative attachment for astrophysical applications. J. Phys. B Atom. Molecular Opt. Phys. 50, 114001 (2017). https://doi.org/10.1088/1361-6455/aa6c1f_1

    Article  ADS  Google Scholar 

  7. A. Simonin et al., SIPHORE: conceptual study of a high efficiency neutral beam injector based on photodetachment for future fusion reactors. AIP Conf. Proc. 1390(1), 494–504 (2011). https://doi.org/10.1063/1.3637421

    Article  ADS  Google Scholar 

  8. A. Simonin et al., Negative ion source development for a photoneutralization based neutral beam system for future fusion reactors. New J. Phys. 18(12) (2016)

  9. V. Vanek et al., Technology of a laser resonator for the photodetachment neutralizer. AIP Conf. Proc. 111(1), 568–586 (1984). https://doi.org/10.1063/1.34386

    Article  ADS  Google Scholar 

  10. A. E. Siegman, Lasers, (Oxford University Press, University Science Books, Oxford, England, 1987), 1283 p

  11. J.C. Petersen, A.N. Luiten, Short pulses in optical resonators. Opt. Express 11(22), 2975–2981 (2003). https://doi.org/10.1364/OE.11.002975

    Article  ADS  Google Scholar 

  12. S. S. Popov et al., High effective neutralizer for negative hydrogen and deuterium ion beams on base of nonresonance adiabatic trap of photons. in AIP Conference Proceedings vol 1869 no. 1 (2017), p. 050005. https://doi.org/10.1063/1.4995786

  13. S.S. Popov et al., Eutralization of negative hydrogen and deuterium ion beams using non-resonance adiabatic photon trap. Nuclear Fusion 58(9), 096016 (2018). https://doi.org/10.1088/1741-4326/aacb02

    Article  ADS  Google Scholar 

  14. M. Kovari, B. Crowley, Laser photodetachment neutraliser for negative ion beams. Fusion Eng. Des. 85(5), 745–751 (2010). https://doi.org/10.1016/j.fusengdes.2010.04.055

    Article  Google Scholar 

  15. C. Blondel, D. Bresteau, C. Drag, Cavity- Enhanced photodetachment of H\(^-\) as a means to produce energetic neutral beams for plasma heating. Atoms 7, 32 (2019)

    Article  Google Scholar 

  16. A. Simonin et al., R &D around a photoneutralizerbased NBI system (Siphore) in view of a DEMO Tokamak steady state fusion reactor. in Nuclear Fusion 55 (2015)

  17. D. Fiorucci, et al., Thermal effects in high power cavities for photoneutralization of D\(^-\) beams in future neutral beam injectors. in AIP Conference Proceedings 1655 (2015)

  18. D. Fiorucci, A. Hreibi, W. Chaibi, Telescope-based cavity for negative ion beam neutralization in future fusion reactors. Appl. Opt. 57(7), B122–B134 (2018)

    Article  Google Scholar 

  19. D. Eric, Black, An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 69(1), 79–87 (2001)

    Article  Google Scholar 

  20. W.M.J. Green et al., Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 15(25) (2007)

  21. T. Theeg et al., All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power. IEEE Photon. Technol. Lett. 24(20) (2012)

  22. S.W. Chiow et al., Generation of 43 W of quasi-continuous 780 nm laser light via highefficiency, single-pass frequency doubling in periodically poled lithium niobate crystals. Optics Lett. 37(18) (2012)

  23. D. Fiorucci, W. Chaibi, Private discussion on thermal effects in resonant cavities for NBI sytem application (2020)

  24. D. Bresteau, C. Blondel, C. Drag, Saturation of the photoneutralization of a H?? beam in continuous operation. Rev. Scientif. Instrum. 88(11), 113103 (2017). https://doi.org/10.1063/1.4995390

    Article  ADS  Google Scholar 

  25. S.S. Popov et al., High efficiency radiation accumulator for powerful lasers with low beam quality. Laser Phys. 28(9), 096201 (2018). https://doi.org/10.1088/1555-6611/aacb54

    Article  ADS  Google Scholar 

  26. J.H. Fink, Photodetachment technology. in Production and Neutralization of Negative Ions and Beams: 3th International Symposium, (Brookhaven, New York, 1984), pp. 547-560

  27. S.V. Benson et al., The Jefferson lab free electron laser program. J. Phys. Conf. Ser. 299, 012014 (2011). https://doi.org/10.1088/1742-6596/299/1/012014

    Article  Google Scholar 

  28. E. Giovenale, Free electron laser: operating principles. in Spectroscopy of Sys- tems with Spatially Confined Structures, edited by Di Bartolo B. Vol. 90. NATO Science Series (Series II: Mathematics, Physics and Chemistry), Springer, Dordrecht, 2003. https://doi.org/10.1007/978-94-010-0287-5_17

  29. V. Kumar, S. Krishnagopal, A simple theory of gain and saturation in FEL oscillators. in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec- trometers, Detectors and Associated Equipment407(1) (1998), pp. 130-135. ISSN: 0168-9002. https://doi.org/10.1016/S0168-9002(97)01372-7

  30. Giuseppe Dattoli, Luca Giannessi, Stefano Cabrini, Intensity saturation mechanism in freeelectron lasers. Q. Electron. IEEE J. 28, 770–772 (1992). https://doi.org/10.1109/3.135191

    Article  ADS  Google Scholar 

  31. A. Mizuhara, An L-band 100 kW CW klystron for FEL driver accelerator. in Third IEEE in- ternational vacuum electronics conference (IEEE Cat. No.02EX524). (2002), pp. 288-289. https://doi.org/10.1109/IVELEC.2002.999383

  32. J.W. Zimmerman et al., Gain and continuouswave laser power enhancement with a multiple discharge electric oxygen-iodine laser. Appl. Phys. Lett. 92(24), 241115 (2008). https://doi.org/10.1063/1.2948860

    Article  ADS  Google Scholar 

  33. D.L. Carroll et al., Super-linear enhancement of the electric oxygen-iodine laser. in XIX International Symposium on High-Power Laser Systems and Applications 2012, edited by K. R. Allakhverdiev. Vol. 8677. (International Society for Optics and Photonics. SPIE, 2013), pp. 1-12. https://doi.org/10.1117/12.2010402

  34. E.M. Parmentier, R.A. Greenberg, Supersonic flow aerodynamic windows for high-power lasers. AIAA J. 11(7), 943–949 (1973). https://doi.org/10.2514/3.50545

    Article  ADS  Google Scholar 

  35. A. Fassina et al., A feasibility study of a NBI photoneutralizer based on nonlinear gating laser recirculation. Rev. Sci. Instrum. 87(2), 02B318 (2016). https://doi.org/10.1063/1.4935897

    Article  MathSciNet  Google Scholar 

  36. M.Y. Shverdin et al., High-power picosecond laser pulse recirculation. Optics Lett. 35(13), 2224–6 (2010)

    Article  ADS  Google Scholar 

  37. B. E. A. Saleh, M.C. Teich. Nonlinear optics. in Fundamentals of Photonics. (John Wiley & Sons, Ltd, 2001). Chap. 19, pp. 737-798. isbn: 9780471213741. https://doi.org/10.1002/0471213748.ch19. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471213748.ch19

  38. A. Kornev, Personal Communication. (2017)

  39. Sukesh Roy et al., 100-ps-pulse-duration, 100-J burst-mode laser for kHz-MHz ow diagnostics. Optics Lett. 39, 6462–6465 (2014). https://doi.org/10.1364/OL.39.006462

    Article  ADS  Google Scholar 

  40. P. Vincenzi et al., Design and mockup tests of the RING photo-neutralizer optical cavity for DEMO NBI. in Fusion Eng. Des.146 (2019). SI:SOFT-30, pp. 1360-1363. issn: 0920-3796. https://doi.org/10.1016/j.fusengdes.2019.02.076

  41. D. Eimerl, High average power harmonic generation. IEEE J. Quant. Electron. 23(5), 575–592 (1987)

    Article  ADS  Google Scholar 

  42. D. Nikogosyan, Nonlinear optical crystals: a complete survey, (Springer Science+Business Media, Inc.), (2005). https://doi.org/10.1007/b138685

  43. E. Sartori et al., Improving the transported negative ion beam current in NIO1. AIP Conf. Proc. 2052(1), 070002 (2018). https://doi.org/10.1063/1.5083782

    Article  Google Scholar 

  44. A. Fassina et al., Performance analysis and application study of a laser enhancement cavity for photo-neutralization of Negative Ion Beams. J. Instrument. 15(02), C02031–C02031 (2020). https://doi.org/10.1088/1748-0221/15/02/c02031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

It is underlined that since the first author worked on the resonant cavity concept and the second author worked on the harmonic trapping one, section 3 was written by the first author and section 6 was written by the second author. For the remaining sections of the paper, the two authors contributed equally.

Corresponding author

Correspondence to Donatella Fiorucci.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorucci, D., Fassina, A. Overview of photo-neutralization techniques for negative ion-based neutral beam injectors in future fusion reactors. Eur. Phys. J. D 76, 141 (2022). https://doi.org/10.1140/epjd/s10053-022-00457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00457-9

Navigation