
Eur. Phys. J. D (2022) 76 :103
https://doi.org/10.1140/epjd/s10053-022-00426-2

THE EUROPEAN
PHYSICAL JOURNAL D

Regular Article – Cold Matter and Quantum Gases

Localization properties of the asymptotic density
distribution of a one-dimensional disordered system
Clément Hainaut1 , Jean-François Clément1, Pascal Szriftgiser1, Jean Claude Garreau1 , Adam Rançon1,a ,
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F-59000 Lille, France

Received 21 March 2022 / Accepted 24 May 2022 / Published online 10 June 2022
© The Author(s) 2022, corrected publication 2022

Abstract. Anderson localization is the ubiquitous phenomenon of inhibition of transport of classical and
quantum waves in a disordered medium. In dimension one, it is well known that all states are localized,
implying that the distribution of an initially narrow wave packet released in a disordered potential will,
at long time, decay exponentially on the scale of the localization length. However, the exact shape of the
stationary localized distribution differs from a purely exponential profile and has been computed almost
fifty years ago by Gogolin. Using the atomic quantum kicked rotor, a paradigmatic quantum simulator of
Anderson localization physics, we study this asymptotic distribution by two complementary approaches.
First, we discuss the connection of the statistical properties of the system’s localized eigenfunctions and
their exponential decay with the localization length of the Gogolin distribution. Next, we make use of our
experimental platform, realizing an ideal Floquet disordered system, to measure the long-time probability
distribution and highlight the very good agreement with the analytical prediction compared to the purely
exponential one over 3 orders of magnitude.

1 Introduction

Anderson localization [1,2], the complete absence of
transport due to disorder-induced destructive quantum
interference, has been predicted more than 60 years ago
and has triggered enormous inspiration on both classi-
cal and quantum transport. The main distinctive prop-
erty of Anderson localization is the exponentially local-
ized form of its wave packet and has been observed in
various physical systems ranging from light waves [3,4],
microwaves [5,6], X-rays [7], sound waves [8], electrons
gases [9] and atomic matter waves [10,11], making it
an ubiquitous feature in physics of wave transport in
disordered media.

It is well known that in one dimension, all eigenstates
of a disordered Hamiltonian decay exponentially [2].
This implies that an initially narrow wave packet will
start to expand in the disordered medium until reaching
a localized steady-state. This state is characterized by
the probability to find a particle at a distance x from its
initial position which is given by the so-called Gogolin
distribution [12],
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ΠG(x) =
π2

16ξ

∫
z sinh(πz)

(
1 + z2

1 + cosh(πz)

)2

e− 1+z2
4ξ |x|dz. (1)

This distribution depends only on one parameter, the
localization length ξ. In this sense, the shape of the
distribution is ‘universal’, whereas the parameter ξ,
which describes the localization properties of the sys-
tem, depends on the microscopic details, such as the
disorder strength and energy of the initial state.

While this distribution has first been computed for a
strictly one-dimensional system using Berezinskii dia-
grammatic method [13], it was soon realized that it
applies to a much wider class of systems. In partic-
ular, it also applies to the asymptotic behavior of a
broad class of systems, described by Efetov’s super-
symmetric nonlinear sigma model [14], such as quasi-
one-dimensional disordered systems [15], random band
matrices [16], and the Quantum Kicked Rotor (QKR)
[17]. The latter is a paradigmatic model of quantum
chaos [18], where a quantum particle is kicked period-
ically with a sinusoidal potential, and which displays
dynamical localization [19]: an initially narrow wave
packet in momentum space will reach at long time
an exponentially localized momentum distribution. The
connection between dynamical localization and Ander-
son localization has been explicitly realized by mapping
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the QKR on a disordered tight-binding Hamiltonian,
similar to the Anderson model [20]. Thus, the Floquet
eigenstates of the evolution operator are exponentially
localized, with a similar localization length for all eigen-
states.

This makes the experimental realization of the QKR
a remarkable quantum simulator of the physics of dis-
ordered systems [21]. Indeed, the atomic QKR has
allowed the observation of dynamical localization [22,
23], Anderson localization in two dimensions [24], the
Anderson transition in three dimensions [11,25] as well
as detailed studies of weak-localization effects [26–29]

The creation of narrow and monochromatic matter
wavepackets is generally very difficult experimentally,
and this is expected to hinder a precise observation of
the Gogolin density profile. Indeed, the energy depen-
dence of the localization length in ‘usual’ disordered
systems makes the asymptotic localized state a super-
position of such profiles. The energy-independence of
the QKR Floquet states is thus a very important asset
in this respect, both numerically and experimentally.

In this paper, we investigate the asymptotic local-
ization properties of Anderson-localized wavepackets in
the atomic QKR. Using numerical simulations, we show
that the length ξ that appears in the Gogolin distri-
bution corresponds to the average localization length
of the Floquet eigenstates, the distribution of which is
shown to be in good agreement with the supersymmet-
ric predictions for the eigenstate statistics. Then, using
our experimental realization of the atomic QKR, we
show that the long-time momentum distribution is in
excellent agreement with the Gogolin distribution (con-
volved with the initial momentum distribution), while
a purely exponential form does not fit the data.

Our manuscript is organized as follows. In Sect. 2,
we recall the basic properties of the QKR as well as
the relevant theoretical predictions, and present some
numerical simulations in very good agreement with the
supersymmetric predictions. We present our experimen-
tal observation of the Gogolin distribution in Sect. 4,
and present our conclusions in Sect. 5.

2 Statistical properties of the QKR
eigenstates

The QKR Hamiltonian is defined as

ĤQKR =
p̂2

2
+ K cos x̂

∞∑
n=0

δ (t − n) , (2)

where K cos x̂ represents a sinusoidal potential cre-
ated by a standing wave (formed by counterpropagat-
ing lasers of wave number kL), with length in units
of (2kL)−1 and time in units of the kick period T1.
Momenta are measured in units such that x̂ and p̂ obey
the canonical commutation relation [x̂, p̂] = ik̄, with
k̄ = 4h̄k2

LT1/M the effective Planck constant (for par-
ticles of mass M). The kick strength K, as well as k̄,

can be tuned in the experiment (see below). For an
initial state with a well-defined initial momentum, one
observes that the kinetic energy of the system initially
grows linearly in time, before saturating to a constant
value, the hallmark of dynamical localization.

Due to the spatial periodicity of the potential, the
kicks can only change the particle’s momentum by
increments of k̄, and writing momenta as p = (q + �)k̄,
with � ∈ Z and q ∈ (−1/2, 1/2], the quasi-momentum
q is a conserved quantity. The evolution operator over
one period reads, for a given quasi-momentum q (the
dependence on quasi-momentum of all quantities is left
implicit from now on):

Û(1) = exp

(
−i

(�̂ + q)2

2
k̄

)
exp

(
−i

K

k̄
cos x̂

)
, (3)

with �̂ |�〉 = � |�〉, and the operator splits into a kick-
ing part and a free propagation due to the instan-
taneous character of the kicks. In practice, it suf-
fices that the kick duration is short enough such
that pT1/M � 2π/kL. Dynamical localization can
be understood by noting that the Floquet eigenstates
Û(1) |φω〉 = exp(−iω) |φω〉 are, up to some technicali-
ties, eigenstates of a disordered tight-binding Hamilto-
nian Ĥeff displaying Anderson localization [20,30,31].
For the QKR, one finds

Ĥeff =
∑

�

ε� |�〉 〈�| +
∑
�,�′

t|�−�′| |�〉 〈�′| , (4)

with on-site energy ε�= tan
(
ω/2−k̄(�+q)2/4

)
and hop-

ping amplitude tr=(2π)−1
∫ 2π

0
dxe−irx tan (K cos x/2k̄).

The on-site energies are deterministic, but for k̄ incom-
mensurate with π, they oscillate strongly enough to
play the role of a pseudo-disorder, while each q plays
the role of a different disorder realization. Finally, the
hopping tr has a range of order K/k̄, and the Hamil-
tonian is thus similar to a random band matrix in the
limit K/k̄ � 1.

It comes out of the mapping of Ref. [20] that all
Floquet eigenstates are eigenvectors of Ĥeff with zero
energy and are thus expected to have the same localiza-
tion properties (e.g. same localization length). This is
in contrast with disordered systems and random band
matrices, where the localization properties depend on
the position of the states in the spectrum.

The QKR can be described by the same supersym-
metric field theory that is used to describe random band
matrices and quasi-one-dimensional systems, and as a
consequence possesses the same universal features. The
characterization of these features can be done by study-
ing the statistical properties of the system’s spectrum
and eigenstates, as was initially recognized by Wigner
[32], starting the field of Random Matrix Theory [33].
In the present context, the supersymmetric method has
allowed for detailed calculation of the statistics of the
eigenstates, see [34] for a review. Following [34,35], we
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recall here only the relevant results necessary for the
discussion.

The exponential decay of an eigenstate |φω〉, |φω(�)|2
∝ e−|�|/ξω can be characterized by introducing the
quantity rω(�, L) = |φω(�)|2|φω(� + L)|2, since

ξ−1
ω = − lim

L→∞
L−1 ln rω(�, L). (5)

The statistical properties of rω have been studied in
detail [34], as it also describes the Inverse Participation
Ratio (IPR) of each eigenstate Pω =

∑
� rω(�, 0), as well

as the asymptotic long-time probability Π(�, L) to find
a particle in � + L knowing that it has started at �, for
a given disorder realization,

Π(�, L) = lim
t→∞ |〈� + L|

[
Û(1)

]t
|�〉|2,

= lim
t→∞

∑
ω,ω′

e−i(ω−ω′)tφω(�)φ∗
ω(� + L)φ∗

ω′(�)φω′(� + L),

=
∑
ω

rω(�, L),

(6)

where we have used the fact that due to localization the
spectrum is discrete and fluctuates, and that therefore
the cross-terms in the sum interfere destructively.

Denoting with a bracket the average over disorder
realizations, for a narrow energy part of the spectrum,
the probability distribution of v = − ln rω has been
shown to be Gaussian in the limit L � ξ̃ [35], with
ξ̃−1 = 〈v〉/L the average inverse localization length of
the eigenstates,

P(v) =
exp

(
− (v−〈v〉)2

4〈v〉
)

√
4π〈v〉 . (7)

Noting that the variance of v is twice its mean, this
implies that the distribution of 1/ξω is sharply peaked
as L → ∞, and therefore 〈ξω〉 = ξ̃.

Using similar supersymmetric methods, one shows
that the momentum distribution at long time is given
by the Gogolin distribution

〈Π(�, L)〉 = ΠG(L), (8)

with the same localization length as the Floquet eigen-
states, i.e. ξ = ξ̃ [15,35]. The result is independent of
the starting position � thanks to translation invariance
after averaging over disorder.

Lastly, we point out that, since all the QKR Flo-
quet eigenstates have the same eigenenergy, the energy
selection introduced in [35] is no longer required and
can be replaced (and used in the following section) by
a broader averaging, also denoted with brackets from
now on, over both disorder and the whole ensemble of
eigenstates.

3 Numerical investigations

We shall now investigate numerically the relation
between the typical localization length of the Kicked
Rotor’s Floquet eigenstates and the Gogolin distribu-
tion (see also [36–38] for early numerical studies of the
spectral properties of the QKR). In order to realize an
accurate investigation, we will make use of an ideal-
ized version of the model, the so-called Random Kicked
Rotor (RKR) where the kinetic term (�̂+q)2

2 k̄ is replaced
by a purely random, uniformly distributed phase θ� ∈
[0, 2π[. This allows us to suppress the undesired corre-
lation effects that usually complicate the analysis of the
QKR [39–41]. Recently, it has been shown that a mod-
ified and experimentally feasible version of the QKR
reproduces the features of this idealized Kicked Rotor
[42].

The Floquet eigenstates φω(�) of the RKR can be
computed by realizing exact diagonalization of the evo-
lution operator Û(1). The numerical implementation of
the Floquet operator implies periodic boundary condi-
tions in momentum space; we therefore choose a cut-off
in momentum which is much larger than the localiza-
tion length of the eigenstates. Figure 1a shows an exam-
ple of few such eigenstates, obtained for K/k̄ = 16. In
order to compare all the Floquet states, we translate
them in momentum by a value �0 that corresponds to
their centroid. Doing so we obtain the distribution pre-

(a)

(b)

Fig. 1 a Examples of Floquet eigenstates (square modu-
lus, semilog scale), for K/k̄ = 16. b Same distributions as
in (a), recentered around � = 0. The dashed line is an expo-

nential distribution with ξ̃ = 35.2
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sented in Fig. 1b illustrating the fact that they all decay
exponentially with similar rates.

Without loss of generality, we study the statistical
properties of these ‘shifted’ Floquet states, which pos-
sess all the same center implying that rω(�, L) now
only depends on L : rω(�, L) 
→ rω(L). We calculate
the histograms of − ln rω(L)/L for various L using 105

Floquet states with K/k̄ = 16 and present the results
in Fig. 2a. We see that the distribution gets narrower
as L increases. The mean value of each distribution,
represented by the circles, slowly converges to ξ̃−1, as
∝ 1/L, and in practice we can infer the asymptotic
value ξ̃ = 35.2 ± 2.1 by extrapolating (via a fit) its L-
dependence, see the inset of Fig. 2a. For completeness,

(a)

(b)

Fig. 2 a Histograms of the probability distribution of
− ln(rω)/L for various L and K/k̄ = 16. The circles show the
position of the mean, while the vertical dashed line shows
the extrapolated mean for L → ∞. The inset shows the posi-
tion of the means as a function of 1/L (symbols), while the
line is a fit f(L) = f0 + a0/L, used to extrapolate the data

and infer ξ̃ = f−1
0 (ξ̃ = 35.2±2.1 in this case). b Evolution of

the ratio R between the variance and mean value of − ln r̃ω,
as a function of y = L/ξ̃, for K/k̄ = 16. The shaded area
represents numerical uncertainty. At large values of y, the
ratio tends towards a value close to R = 2 within the numer-
ical uncertainty, compatible with the prediction of Ref. [43].
The inset shows a histogram of the probability distribution
of − ln r̃ω, calculated for y � 35, which is well fitted by a
Gaussian distribution with R � 2 (dashed red line)

we plot (dashed line) the distribution corresponding to
the obtained average rate ξ̃−1 in Fig. 1b.

To go one step further, we investigate the statisti-
cal properties of the dimensionless quantity r̃ω(y) ≡
4ξ̃2rω(y), with y ≡ L/ξ̃. First, we compute the ratio
between the variance and the mean value of − ln r̃ω:

R(y) = −〈δ2(ln r̃ω)〉
〈ln r̃ω〉 , (9)

as a function of y. The results are shown in Fig. 2b. At
large y (L � ξ̃), we obtain that the ratio R(y) tends
to a constant value, close to the theoretical prediction
R → 2 of Eq. (7). As shown in the inset, we find that,
for y � 1, the probability density of − ln r̃ω is well fit-
ted by a Gaussian satisfying: 〈δ2(ln r̃ω)〉 = −2〈ln r̃ω〉, in
excellent agreement with Ref. [35]. Similar conclusions
have been obtained numerically in [44] for the conduc-
tance fluctuations in quasi-one-dimensional weakly dis-
ordered system. We have also analyzed the IPR prob-
ability distribution and found a very good agreement
with the corresponding supersymmetric predictions, see
Appendix A for details.

These results can be used to analyze the station-
ary probability distribution of the QKR at long times,
deep in the localized regime. This quantity is accessible
numerically, as well as in experiments, and is obtained
by studying the evolution of a narrow initial momentum
distribution after a time much longer than the localiza-
tion time tloc. We first focus on numerical aspects.

Numerical simulations of the dynamics of the (ran-
dom) Kicked Rotor are straightforward [45]. The free
evolution between two consecutive kicks is diagonal in
momentum representation, while the kick operator is
diagonal in position representation. Switching between
momentum and position representation is easily done
through a Fast Fourier Transform. Such a procedure
is equivalent to applying the evolution operator Û(1)
once, and thus one can of course repeat the procedure
a sufficient number of times until dynamical localization
is reached. We truncate the momentum basis ensuring
that the final state has a support much smaller than
the momentum cut-off. Using this procedure, we com-
pute the evolution of a large number of random phase
realizations, and average the resulting momentum dis-
tributions.

We present results for K/k̄ = 16. At short times, the
momentum variance 〈�2(t)〉 � 2Dt has a linear growth
characterized by a diffusion coefficient D, while at
longer time 〈�2(t)〉 saturates to a value 〈�2loc〉, see Fig. 3.
The typical time scale is the so-called localization time
tloc, which is formally defined as tloc = �2loc/2D. Fur-
thermore, the momentum distribution becomes station-
ary. This can be seen in Fig. 4, which shows the momen-
tum distribution at two different times much larger
than tloc. We find an excellent agreement with the
Gogolin distribution given by Eq. (1), if we choose
ξ = ξ̃, with ξ̃ obtained as described above for the
same value of K/k̄, see Fig. 4. This proves that the
length scale ξ̃, which characterizes the decay of the Flo-
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Fig. 3 Time evolution of 〈�2(t)〉 for K/k̄ = 16. The steady-
state value corresponds to 〈�2loc〉 = 12.4 × 103. The inset

shows 〈�2loc〉 vs 8ζ(3)ξ̃2, which are expected to be equal, for
various values of K/k̄. The horizontal error bars correspond
to statistical fitting error, the vertical error bars are smaller
than the symbol size. The dashed line is a fit with slope 1.05

Fig. 4 Steady-state momentum distributions at two dif-
ferent times t � tloc, for K/k̄ = 16, showing an excellent
agreement with the Gogolin distribution (dashed line) with

parameter ξ = 35.2 = ξ̃. The dotted line is the exponential
approximation, valid close to � � 0, whereas the dash-dotted
line is the asymptotic limit for � � ξ̃

quet eigenfunctions corresponds exactly to the single-
parameter ξ which characterizes the functional form of
the asymptotic probability density. Close to the center
of the distribution (� ≈ 0), the decay is exponential
with a rate ξ̃−1, whereas the large-momentum wings
also decrease exponentially (up to an algebraic factor),
with a rate four times lower: 1/(4ξ̃). This difference is
attributed to the strong fluctuations of |φω(�)|2 [31], as
it is exemplified in Fig. 1.

In addition, we checked for different values of K/k̄
the very good agreement between: (1) the asymptotic
momentum distributions obtained numerically; and (2)
the Gogolin distribution with ξ = ξ̃. To be more quanti-
tative, using that

∫
d��2ΠG(�) = 8ζ(3)ξ2 [12], we assess

this agreement by comparing 〈�2loc〉 from our RKR simu-
lations, for a given K/k̄, to 8ζ(3)ξ̃2 for the same param-

eters, see the inset of Fig. 3. This shows that the two
length scales are equal within 3%.

Finally, we checked the validity of these results for
the ‘standard’ QKR (see Appendix B). It is known that,
at low values of K/k̄, the QKR is affected by classical
correlation effects, which lead to significant discrepan-
cies with respect to a system with uncorrelated disor-
der [42]. At low K/k̄, we found that the classical kick-
correlation effects lead to deviations from the predicted
Gaussian statistics of Eq. (7). However, the correlation
effects disappear at large K/k̄, where we find an excel-
lent agreement between the QKR and the ideal RKR
model.

4 Experimental observation of the
asymptotic distribution

The previous section established numerically the rela-
tionship between the ‘intrinsic’ localization length ξ̃,
characteristic of the exponential decay of the system’s
eigenfunctions, and the long-time probability distribu-
tion, obtained when starting from a peaked initial con-
dition. We shall now focus on the experimental inves-
tigation of this characteristic asymptotic shape and on
its distinction from the commonly-thought exponential
shape associated with Anderson localization.

In order to access experimentally the question of the
exact form of the momentum distribution at long times,
it is necessary to realize experimentally an ideal version
of the QKR where the late time dynamics is not plagued
by correlation effects for the experimentally accessible
low values of the kick strength. This is rendered possible
by using a periodically phase shifted version of the QKR
[26,46], described by the Hamiltonian:

Ĥ =
p̂2

2
+ K

∑
n

cos(x̂ + an) δ(t − n). (10)

For an = 0, ∀n, Ĥ(t) reduces to the Hamiltonian of
the usual QKR. In this work, we will restrict ourselves
to a period N = 3 phase shift (an+N = an). We only
consider phase shifts such that the Hamiltonian is time-
reversal invariant, e.g. a1 = −a3 and a2 = 0, see [27,42]
for details. This insures that our phase-shifted QKR
belongs to the same (orthogonal) universality class as
the ‘standard’ QKR.

The following experiments are performed by kick-
ing a laser-cooled Cs atomic cloud (temperature T �
2μK) using a far-detuned, pulsed optical Standing Wave
(SW), with a period T1. The SW is created by two inde-
pendent laser beams, which allows us to control the
amplitude and phase of the potential, using the RF sig-
nals driving two different acousto-optic modulators. We
can thus shape the phase shift sequence an at will, and
generate the Hamiltonian of Eq. (10). The laser param-
eters are as follows: the detuning Δ = −2π × 13 GHz
(at the Cs D2 line, wavelength λ = 2π/kL = 852.2 nm),
1/e radius w0 = 800µm, and the maximum inten-
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)|2
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Fig. 5 Experimental momentum distribution after 210
kicks (K = 2.5, k̄ = 1) averaged over 100 samplings of
triplets {a0, a1, a2}, and a Gogolin fit with ξ = 3.2×2h̄kL; b
exponential fit with inverse decay rate 5.5× 2h̄kL. Both fits
are performed using the theoretical forms convolved with
the initial state. The gray curve is the initial momentum
distribution of the system

sity I = 30W/cm2 for each beam. The pulse dura-
tion is τ = 200 ns, while T1 = 9.6µs. From these
parameters, we get k̄ = 1 as well as kick ampli-
tudes K = k2

LτT1h̄IΓ2/(8MI2
satΔ) up to 6 (where

Isat � 2.71mW/cm2 is the saturation intensity and Γ =
2π × 5.22 MHz the natural linewidth of the transition).
After the desired number of kicks, the cloud expands
and the momentum probability density Π(p) = |Ψ(p)|2
is measured using a time-of-flight technique.

To realize an accurate analysis of the shape of the
final (dynamically-localized) momentum distribution,
a careful characterization of the initial state, obtained
after the laser cooling stages, is required. Indeed, to
perform a meaningful comparison with the theoretical
prediction, the initial distribution has to be measured
and taken into account through a convolution with the
Gogolin distribution. The initial momentum distribu-
tion obtained in our experiment is shown in Fig. 5 and
is well-approximated with by a Lorentzian shape [47]
D(p) � 2

πσ (1 + p2/σ2)−2, with σ � 2.31 × 2h̄kL (see
Appendix C for details).

Starting from this initial state, we utilize the Hamil-
tonian in Eq. (10), with parameters K = 2.5 and

k̄ = 1, and average over 100 realizations of the peri-
odic phase sequences an. The momentum distribution
is measured after a time t = 210 kicks, and the results
are shown in Fig. 5. We have experimentally verified
that the distribution has reached a steady-state (see
Appendix C, Fig. 8b), which proves that dynamical
localization has been attained. In panel a), we fit the
experimental distribution with a Gogolin distribution
convolved with the initial distribution and find a very
good agreement both near the center and in the wings,
with ξ = 3.2×2h̄kL. The width of the final distribution,
given by that of the Gogolin distribution

√
8ζ(3)ξ, is

about four times larger than that of the initial distri-
bution σ. Therefore, the final distribution is dominated
by the localization effects and not the initial state. In
contrast, panel b) shows a fit of the same final experi-
mental distribution, using an exponential function con-
volved with the initial state, with an inverse decay rate
of 5.5× 2h̄kL. The exponential shape does not describe
well neither the center nor the wings of the experimen-
tal data. The ratio of the χ2 values corresponding to
the two fits presented in Fig. 5 is � 0.03, which clearly
proves that the experimental long-time momentum dis-
tribution is better described by a Gogolin distribution
than by an exponential form.

5 Conclusion

In this work, we have investigated the asymptotic prop-
erties of a wave packet localized by disorder and their
connection to the statistics of the Floquet eigenstates of
the QKR. Our numerical simulations were found to be
in excellent agreement with the supersymmetric pre-
dictions. Using the versatility of the atomic quantum
kicked rotor as a quantum simulator of disordered sys-
tems, we precisely measured the localized distribution
and shown the excellent agreement with the Gogolin
prediction.

One important prediction of the supersymmetric for-
malism is that the Gogolin shape of the localized dis-
tribution is preserved in the unitary symmetry class,
when time-reversal symmetry is broken, though with
a doubling of the localization length. In perspective,
this universal feature could in principle be investigated
experimentally by using kick sequences breaking time-
reversal symmetry [27]. Finally, the detailed descrip-
tion of the dynamics, from weak to strong localization,
could also be studied experimentally, though no analyt-
ical predictions have been devised yet. We leave these
challenging problems for future works.
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A Probability distribution of the Inverse
Participation Ratio (IPR)

To complement the discussion of Sect. 3, we analyze
here the probability distribution of the IPR. It has been
thoroughly studied using supersymmetry, see [43]. The
IPR of a given Floquet eigenstate |φω〉 (at a given q) is
given by

Pω =
∑

�

|φω(�)|4. (11)

Defining z = Pω/3〈Pω〉, its probability distribution is
given by

P(z) = 2π2
∞∑

k=1

(2π2zk4 − 3k2)e−πzk2
. (12)
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Fig. 6 Histogram of the IPR statistics, computed for the
RKR with (K/k̄ = 16). Red curve: theoretical probability
distribution P(z), given by Eq. (12). The inset shows the

inverse mean IPR 〈Pω〉−1 as a function of ξ̃ for the RKR

(triangles). The line is a fit g(ξ̃) = aξ̃ + b, with a slope a =
1.253 and b = 5.14. The diamond corresponds to the same
quantity, computed for the QKR (K = 44 and k̄ = 2.85),
see Appendix B

The numerical analysis of the distribution of the IPR
for the RKR, similar to that described in the main text,
gives a very good agreement with the theoretical pre-
diction, as shown in Fig. 6. Furthermore, the mean IPR
〈Pω〉 is expected to be a function of ξ̃ only. This is ver-
ified numerically as shown in the inset.

B Statistics of eigenstates of the QKR

In this section, we show that the numerical results
obtained in the main text for the RKR are also valid
for the standard QKR for large K/k̄, i.e. in a regime
where the correlations of the disorder are weak enough.

Figure 7a shows the statistical properties of the Flo-
quet eigenstates computed for K = 44 and k̄ = 2.85. We
observe that the distribution of − ln r̃ω is well described
by a Gaussian distribution. The corresponding ratio
between the variance and the mean, obtained with a
Gaussian fit (dashed red line), is R � 1.94±0.1, close to
the expected value of 2 predicted by Eq. (7). Following
the same procedure as in the RKR case (see Eq. (5)),
we obtain an average localization length ξ̃ = 39.6 ± 3.
Furthermore, the long-time momentum distribution is
given by the Gogolin distribution with ξ = ξ̃, see
Fig. 7b.

Finally, the IPR probability distribution of the QKR,
shown in Fig. 7c, is in very good agreement with
Eq. (12). The relation between the IPR mean value and
ξ̃ also agrees with the RKR results (see Appendix A,
and the diamond data point in the inset of Fig. 6).
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Fig. 7 a Histogram of the probability distribution of
− ln r̃ω, computed for the QKR with K = 44 and k̄ = 2.85,
and L/ξ̃ � 35. The distribution is well fitted by a Gaus-
sian function (dashed red line). The extrapolation given by

Eq. (5) yields ξ̃ = 39.6 ± 3. b Corresponding momentum
distributions of the QKR, at long times, compared to the
Gogolin distribution with ξ = 39.6. c Histogram of the IPR
statistics, computed for K = 44 and k̄ = 2.85, compared to
the analytical prediction of Eq. (12) (red line)

C Experimental initial and final momentum
distributions

In the experiment, we produce a relatively cold Cs
cloud (optical molasses, T � 2µK). As shown in Ref.
[47], this implies that the shape of the momentum dis-
tribution differs slightly from a usual Gaussian form.

p/2h̄kL
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)|2
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p/2h̄kL

|ψ
(p
)|2

(a)

(b)

Fig. 8 a Comparison between the initial experimental
momentum distribution (full line) with two different fit
forms. The fit parameters obtained for the form D(p) =
p0(1 + (p − p1)

2/p2
2)

−p3 are p0 = 0.256/2h̄kL, p1 = 0.098 ×
2h̄kL, p2 = 2.311 × 2h̄kL and p3 = 1.946 (dashed red line).
The Gaussian fit gives a standard deviation of 1.433×2h̄kL

(dotted-dashed blue line). b Experimental momentum dis-
tributions, measured at t = 150 (green) and t = 210 kicks
(red), showing that the asymptotic stationary state has been
reached at these times

Indeed, when operated near the lower end of the tem-
perature range, the optical molasses momentum dis-
tribution displays more weight into its tails and can
be accurately described by a Lorentzian distribution
D(p) = p0(1 + (p − p1)2/p2

2)
−p3 [47]. We use this func-

tional form, with p0, p1, p2 and p3 as free parame-
ters, to fit the measured momentum distribution of
the molasses. As shown in Fig. 8a, the data are well
described by the red dashed-curve corresponding to
such distribution. On the other hand, a Gaussian fit
(blue dashed curve) clearly shows a significant discrep-
ancy, as it especially underestimates the wings of the
initial state distribution.

Figure 8b presents two experimental distributions
measured at long times for the parameters mentioned
in Sect. 4. The two distributions have barely evolved,
showing that the system is indeed deep in the localized
regime.
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Szriftgiser, G. Lemarié, N. Cherroret, D. Delande, R.
Chicireanu, Controlling symmetry and localization with
an artificial gauge field in a disordered quantum system.
Nat. Commun. 9(1) (2018)
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