
Eur. Phys. J. D (2022) 76 :18
https://doi.org/10.1140/epjd/s10053-021-00334-x

THE EUROPEAN
PHYSICAL JOURNAL D

Regular Article – Optical Phenomena and Photonics

Relativistic calculations of two-color two-photon K-shell
ionization
J. Fan1,2,3,a , J. Hofbrucker3,4, A. V. Volotka5, and S. Fritzsche2,3,4

1 Abbe School of Photonics, Albert-Einstein-Straße 6, 07745 Jena, Germany
2 Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
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Abstract. We investigate the two-color two-photon K -shell ionization of neutral atoms based on the rela-
tivistic second-order perturbation theory and independent particle approximation. Analytical expressions
for the relativistic and nonrelativistic total cross sections are derived in terms of radial transition ampli-
tudes and Stokes parameters. Particular attention is paid especially to how the two-photon ionization total
cross section depends on the energy sharing and polarization of the two incident photons. We construct the
nonrelativistic expressions of cross section ratios for different polarization combinations of the two incident
photons. The numerical results of total cross section and cross section ratios show that the energy sharing
of the two incident photons plays an essential role in two-photon K -shell ionization. Particularly, if the
energies of the two incident photons are identical, the total cross section and cross section ratios will reach
the minimum or maximum value. Moreover, due to the strong screening effects, we find strong deviations
of the cross section ratios near the two-photon ionization threshold of the Ne atom.

1 Introduction

The advent of high-intensity x-ray free-electron lasers
(XFELs) has opened frontiers to study nonlinear ioniza-
tion processes, such as the two-photon ionization (TPI)
[1–3]. The TPI is one of the most fundamental nonlin-
ear phenomena in the light-matter interaction process,
in which an atom absorbs two photons and emits a pho-
toelectron. Current XFEL facilities can produce pulses
with keV photon energies [4–6] and offer the possibility
to explore the inner shell TPI process. One of the first
experiments has been performed for direct two-photon
ionization of helium-like ion Ne8+ [7]. Recently, studies
were conducted for the two-photon K -shell ionization
of solid targets, such as Ge [8], solid Zr [9], as well as
metallic Cu [10,11].

From a theoretical point of view, the perturbative
nonrelativistic framework has been employed in the cal-
culations of total two-photon K -shell ionization cross
section of many-electron systems in Refs. [12–15]. Fur-
ther studies of TPI cross section have been conducted
within the full relativistic framework for ionization of
hydrogen-like atoms [16,17], and later for neutral atoms
[18,19]. Although the studies of two-photon K -shell ion-
ization of atoms by monochromatic light are well estab-
lished, the TPI process with two nondegenerate incident
photons (bichromatic light) was paid less attention in
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the past, which should be considered in the context
of this work. Nevertheless, let us first discuss the tech-
niques for the realization of the above-mentioned exper-
imental scenario.

Various schemes for generation of two-color beams at
XFEL facilities have been proposed [20–25], for instance
utilizing variable-gap undulators [21], or using a sin-
gle monochromatizing crystal as demonstrated in Ref.
[22]. Recently, the methods by using a double-slotted
foil on a chirped beam [23] or sextupole magnet [24]
have been performed. In contrast to single-photon ion-
ization, the total cross section of TPI shows a strong
dependence not only on the energies of the photons but
also on their polarizations. However, so far, the investi-
gation has been focused on two equally polarized pho-
tons. Experimentally, the polarization control at XFEL
facilities can be achieved either by various undulator
configurations or by periodic temporal modulation [26–
32]. such as by employing crossed planar undulators,
an arbitrary photon polarization can be generated as
demonstrated in Refs. [26,28,31]. These examples hint
that the techniques of generating two beams with tun-
able energies and polarizations will be available in the
near future.

In this context, an important step is to investigate
how the total cross section of two-color two-photon K -
shell ionization depends on energy sharing and polariza-
tion of the two incident photons. Therefore, in Sect. 2
we firstly employ the relativistic second-order pertur-
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bation theory based on the Dirac equation and inde-
pendent particle approximation to derive the total TPI
cross section. We then apply the nonrelativistic limit
to obtain simple expressions of cross section ratios for
different polarization combinations. In Sect. 3, numeri-
cal computations have been carried out for two-color
two-photon K -shell ionization of neutral Ne and Ge
atoms. The total cross section and cross section ratios
have been calculated as a function of energy sharing
between the two incident photons. The results for the
total cross section indicate that the minimum values
occur when the energies of the two incident photons
are identical. Similar behaviors occur in the results of
cross section ratios as well. Besides, by comparing the
analytical and numerical work of cross section ratios,
we confirm the boundary values of cross section ratios
for different polarization combinations. Finally, a sum-
mary is given in Sect. 4. For convenience, relativistic
units (� = c = m = 1) are used throughout the paper,
unless stated otherwise.

2 Theoretical background

In order to simplify the TPI process from many-electron
system to single-electron system, we employ the inde-
pendent particle approximation. We assume that an
initial bound active electron of the K -shell |naκama〉
interacts with the two incident photons. Here, na is
the principle quantum number, κa is the Dirac quan-
tum number, and ma is the projection of total angular
momentum of the initial bound active electron. The
Dirac quantum number κ is defined by the total and
orbital angular momenta j and l as κ = ∓(j + 1

2 ) for
j = l± 1

2 . In addition, we use κν and κ to represent the
Dirac quantum number of intermediate virtual state
and continuum state throughout the paper. Since in
this work, we investigate the scenario that the electron
interacts with two photons γ(k, ε) with different wave
vectors k and polarization ε. We also assume the two
incident photons propagate along the quantization axis
(k̂1 = k̂2 = k̂). The screening effect of all other inac-
tive electrons is accounted for with a screening potential
included in the Hamiltonian of the Dirac equation [18].
The two-color two-photon ionization can be presented
as follows

|naκama〉 + γ1(k1, ε1) + γ2(k2, ε2) → |peme〉,

here, we consider the ionization of K-shell electron,
the above quantum numbers take the values na = 1,
κa = −1 and ma = ± 1

2 . After the interaction, a pho-
toelectron is emitted into a continuum state |peme〉
with well-defined asymptotic momentum pe and spin
projection me. In the following subsections, we apply
the second-order relativistic perturbation theory as well
as photon helicity density matrix, in order to derive
the total cross section for the two-color two-photon K -
shell ionization of an atom with a single active electron.

In the last subsection, we investigate the cross section
ratios for different polarization combinations of ε1 and
ε2 of the two incident photons.

2.1 Evaluation of transition amplitudes

To derive the total cross section of two-color TPI, one
first has to obtain the transition amplitude. Generally,
the total transition amplitude of the two-photon ioniza-
tion consists of two terms. The first term corresponds
to the ionization process where the first photon with
energy ω1 excites the electron from the initial state
into an intermediate virtual state, and the second inci-
dent photon with energy ω2 ionizes the electron from an
intermediate virtual state into the continuum state. The
second term arises from the process where the photon
with energy ω2 is absorbed first and then the photon
with energy ω1 promotes the active electron to contin-
uum state. According to the second-order perturbation
theory based on the Dirac equation, the first term of
the transition amplitude can be written as

Mλ1λ2
peme

(ω1, ω2)

= ⨋ν
〈peme|α · Aλ2(ω2)|ν〉〈ν|α · Aλ1(ω1)|naκama〉

Enaκa
+ ω1 − Enνκν

.

(1)

Herein, α denotes the vector Dirac matrices and Aλ(ω)
represents the photon field, the dot product of α·Aλ(ω)
represents the electron–photon interaction operator in
the Coulomb gauge. The summation is carried out
over the complete spectrum of the intermediate elec-
tron states |ν〉. Enaκa

and Enνκν
represent the bind-

ing energies of initial and intermediate electron states,
respectively. For convenience, the expression for the sec-
ond term of transition amplitude Mλ2λ1

peme
(ω2, ω1) can

be easily obtained by the replacement ω1 ←→ ω2 and
λ1 ←→ λ2. The transition amplitude for two-color TPI
is given then by the sum Mλ1λ2

peme
= Mλ1λ2

peme
(ω1, ω2) +

Mλ2λ1
peme

(ω2, ω1). The single-electron transition ampli-
tudes can be expanded in terms of spherical tensors by
using the multipole decomposition of the photon field
[33]

Aλ(ω) = 4π
∑

LMp

iL−p[ε̂λ · Y
(p)∗
LM (k̂)]a(p)

LM (r), (2)

where Y
(p)
LM is vector spherical harmonic, the vector

functions a
(p)
LM (r) refer to multipole potentials, where

L represents the order of multipole, and the index p
describes the electric (p = 1) and magnetic (p = 0)
components of the electromagnetic field. If we choose
the photon propagation direction as the quantization
k̂ ‖ ez, the scalar product of the polarization vector
with the vector spherical harmonics becomes
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ε̂λ · Y
(p)∗
LM (k̂) =

√
[L]
8π

(−λ)pδλM . (3)

Apart from the radiation field, we also need to expand
the wave function of the outgoing electron into its par-
tial waves [34]

|peme〉 =
1√

Ee|pe|
∑

jmj

∑

lml

ile−iΔjl〈lml,
1
2
me|jmj〉

× |Eejlmj〉Y ∗
lml

(p̂e),

(4)

where Ee =
√

p2
e + m2 is the electron energy, Δjl is

the phase factor, the bracket 〈.., ..|..〉 represents the
Clebsch–Gordan coefficients, and |Eejlmj〉 stands for
partial waves of the continuum electron. Note that the
spherical harmonics Y ∗

lml
(p̂e) characterize the direction

of emitted electron. The summation in the expression
(4) runs over all total and orbital angular momentum
quantum numbers j and l of the continuum electron.
Furthermore, we carry out the angular integration of
the r̂ vector of the transition amplitude and expand the
expression (1) in terms of radial transition amplitude
UpLp′L′

κaκνκ . The the radial part of the transition amplitude
UpLp′L′

κaκνκ corresponds to the two-photon ionization chan-
nel: κa → κν → κ and describes the interaction inde-
pendently of the magnetic quantum numbers ma, mν ,
and mj . An explicit expression of the radial integrals
can be found in Eqs.(6.129) in Ref. [35]. By carrying
out all above simplifications, the transition amplitude
obeys the following equation

M
λ1λ2
p eme

(ω1, ω2) =
1

2

∑

p1L1

∑

p2L2

∑

nν κν mν

i
L1−p1+L2−p2

√
L1(L1 + 1)

√
L2(L2 + 1)

√
[j, ja][L1, L2, jν ](−λ1)

p1(−λ2)
p2

×
∑

κmjml

e
iΔjl(−i)l

Ylml
(p̂e)(−1)2j−mj+2jν −mν+1

〈lml, 1/2me|jmj〉〈jmj , L2 − λ2|jνmν〉

×
∑

ma

〈jνmν , L1 − λ1|jama〉〈ja
1

2
, L20|jν − 1

2
〉

〈lν
1

2
, L10|j − 1

2
〉

∏

la,L1,lν ,p1

∏

lν ,L2,l,p2

U
p1L1p2L2
κaκν κ (ω1, ω2),

(5)

where jν , lν are total and orbital angular momentum
quantum numbers of intermediate virtual state, respec-
tively. The function [L] = 2L + 1, and

∏
are defined as∏

l1,l2,l3,p = 1, if the sum l1 + l2 + l3 + p is odd, and∏
l1,l2,l3,p = 0 otherwise.
The electron wave function in the radial transition

amplitude UpLp′L′
κaκνκ was obtained using six different

screening potentials (core-Hartree, Salvat, Kohn–Sham,
Local-Dirac-Fock, Perdew–Zunger, and Slater poten-
tials). All screening potentials predict similar energy
sharing dependence of the total TPI cross section, we
choose the results presented in Core-Hartree screening
potential. The sum in transition amplitude (5) runs
over all multipole orders of the electron–photon inter-

action operator and over the complete energy spectrum
of the intermediate virtual states. However, we employ
the dipole approximation and limit the maximum value
Lmax=1 of the multipoles for each photon. This numer-
ical limitation justifies the sufficient convergence of the
total cross section less than 0.1%. The infinite summa-
tion over the intermediate virtual states can be reduced
to a finite sum over a pseudo-spectrum by employing a
finite basis set constructed from B splines [36].

In the next subsection, we investigate the dependence
of total TPI cross section on the polarization of the two
incident photons and hence derive the corresponding
expressions of the total cross section.

2.2 Density matrix and total cross section

Here, we use the photon helicity density matrix in order
to characterize the polarization of each incident photon.
The helicity density matrix for the first photon can be
conveniently expressed in terms of Stokes parameter for
any degree of linear (P l

γ =
√

P 2
1 + P 2

2 ) and circular
(P c

γ = P3) polarization [37]

〈kλ1|ρ̂γ1 |kλ
′
1〉 =

1
2

(
1 + P c

γ1
P l

γ1

P l
γ1

1 − P c
γ1

)
. (6)

As for two linearly polarized photons, it is practical to
consider a polarization angle ψ between these two co-
propagating photons, which are typically used in TPI
experiments. We can write the helicity density matrix
for the second photon in the following way

〈kλ2|ρ̂γ2 |kλ
′
2〉 =

1
2

(
1 + P c

γ2
P l

γ2
e−2iψ

P l
γ2

e2iψ 1 − P c
γ2

)
. (7)

The corresponding total cross section of two-color two-
photon K -shell ionization can be expressed by

σ =
8π3α2

ω1ω2

∑

λ1λ2λ
′
1λ

′
2

〈kλ1|ρ̂γ1 |kλ
′
1〉〈kλ2|ρ̂γ2 |kλ

′
2〉

×
∫

dp̂e

∑

me

Mλ1λ2
peme

Mλ
′
1λ

′
2∗

peme
.

(8)

This second-order total cross section has the units of
[L4T ].

Taking into account the two independent polarized
photons, we can obtain the expansion of total cross
section within relativistic framework for two-color two-
photon K -shell ionization. Herein, we employ the elec-
tric dipole approximation, in which the radial transi-
tion amplitude becomes Uκaκνκ = UE1E1

κaκνκ(ω1, ω2) +
UE1E1

κaκνκ(ω2, ω1), where p and L equal to 1. In the case of
TPI of K -shell electron, according to the selection rule,
the Dirac quantum number of intermediate virtual state
can take the values κν = (−2, 1), and of photoelectron
state take the values κ = (−3,−1, 2). With this in mind,
the expression (8) can be presented in terms of radial
transition amplitudes as well as Stokes parameters
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Fig. 1 The electric dipole transitions of two-color two-
photon K -shell ionization. The horizontal axis represents
the orbital angular momentum of the active electron, and
the vertical axis En represents the energy of the electron
shells. In the nonrelativistic limit, s → p → s and s → p → d
channels are opened to the TPI process for each incident
photon. Thereby four transition paths exist totally. The full
lines show the process that the first photon with γ1 excites
the initial state into an intermediate virtual state, and the
second photon with γ2 ionizes the electron from an interme-
diate virtual state into a continuum state. The dashed lines
indicate the interchange of the interaction sequence of the
two photons with the atom, the first and the second photon
are absorbed with γ2 and γ1, respectively

σ(r) =
2π3α2

25ω1ω2

[
50(1−P c

γ1
P c

γ2
)U2

−11−1+25[3P l
γ1

P l
γ2

cos 2ψ

+ 5(1 − P c
γ1

P c
γ2

)]U2
−1−2−1 + 25[6P l

γ1
P l

γ2
cos 2ψ

+ 2(1 − P c
γ1

P c
γ2

)]U−11−1U−1−2−1

+ 50(2 + P c
γ1

P c
γ2

)U2
−112

+ 2(8 − 5P c
γ1

P c
γ2

− 6P l
γ1

P l
γ2

cos 2ψ)U2
−1−22

+ 10(1 + 5P c
γ1

P c
γ2

+ 3P l
γ1

P l
γ2

cos 2ψ)U−112U−1−22

+ 27(7 + 5P c
γ1

P c
γ2

+ P l
γ1

P l
γ2

cos 2ψ)U2
−1−2−3

]
.

(9)

As we can see from Eq. (9), the relativistic total cross
section depends on five radial transition amplitudes
(U−11−1, U−1−2−1, U−112 U−1−22, U−1−2−3), which are
all real numbers in our calculation.

However, a nonrelativistic description is completely
sufficient for many atoms and ions, due to the negligi-
ble relativistic effects [38]. The TPI process has been
already studied within nonrelativistic framework, and
the relativistic corrections to the total cross section
have been evaluated in Ref. [19]. In the nonrelativis-
tic limit, the transition amplitudes as well as phase
factors remain unaffected by the fine structure split-
ting, we can neglect the splitting effect and approximate
U−11−1=U−1−2−1=Us, U−112=U−1−22=U−1−2−3=Ud.
Thus, the five relativistic paths for each photon reduce
to two nonrelativistic paths. By performing the sim-
plification, the nonrelativistic expression of total cross

section reads as

σ(nr) =
18π3α2

5ω1ω2
[5(1 + P l

γ1
P l

γ2
cos 2ψ − P c

γ1
P c

γ2
)U2

s

+ (7 + P l
γ1

P l
γ2

cos 2ψ + 5P c
γ1

P c
γ2

)U2
d ].

(10)

This total cross section is also consistent with the
theoretical description of two-photon two-color above-
threshold ionization in Ref. [14]. In contrast, our expres-
sion (10) makes it easier to explain the dependence of
the TPI on the radial transition amplitudes Uκaκνκ as
well as the polarization angle ψ. In the following subsec-
tion, we will discuss the cross section ratio of different
polarization combinations of the two incident photons,
in order to study the polarization dependence of the
two-photon ionization.

2.3 Cross section ratios

The first step of deriving the cross section ratio is to
set a reference total cross section as a denominator. As
we already mentioned in Sect. 2.2, two linearly polar-
ized photons are typically used in TPI experiments;
therefore, we take into account the ionization with two
parallel linearly polarized photons both along the x-
axis, in which the Stokes parameters take the values
P l

γ1
= P l

γ2
= 1, P c

γ1
= P c

γ2
= 0, the polarization angle

ψ = 0, and obtain the total cross section σ
(nr)
xx . We

construct the cross section ratios of four polarization
combinations

σ
(nr)
xy

σ
(nr)
xx

=
3R

5 + 4R
, (11)

σ
(nr)
++

σ
(nr)
xx

=
6R

5 + 4R
, (12)

σ
(nr)
+−

σ
(nr)
xx

= 1 − 3R

5 + 4R
, (13)

σ
(nr)
x+

σ
(nr)
xx

=
1
2

+
3R

10 + 8R
, (14)

where we use the notation R = U2
d/U2

s . The subscripts
x and y represent the linear polarization direction, while
± stands for circular polarization with the helicities ±1.
For instance, the notation σ

(nr)
++ represents the total TPI

cross section of two fully circularly polarized photons
with helicity +1. The corresponding Stokes parameters
are P l

γ1
= P l

γ2
= 0, P c

γ1
= P c

γ2
= 1.

3 Results and discussion

In Sect. 2.1, we obtained the general expression (trans)
of transition amplitude for two-color two-photon K -
shell ionization process. In Sect. 2.2, the total cross
section (8) has been derived within the relativistic

123



Eur. Phys. J. D (2022) 76 :18 Page 5 of 8 18

and nonrelativistic framework. Finally, in Sect. 2.3, the
cross section ratios of different polarization combina-
tions have been derived. In this section, we present
the numerical calculation of the total cross section and
cross section ratios within the relativistic framework.
We selected Ne and Ge as our target atoms, which have
been already studied in experiments [7,8]. Figure total
cross section shows the dependence of the relativistic
total cross section of two-color two-photon K -shell ion-
ization on the energy sharing between the two incident
photons, ξ = ω1

ω1+ω2
, calculated for Ne and Ge atoms.

We also investigated the dependence of the total cross
section on combined excess energy, which represents
the ratio of sum energies of the two incident photons
to the ionization threshold energy of K -shell electron,
ε = �(ω1 + ω2)/E1. Higher values of combined excess
energy have not been considered for the study to avoid
various resonances in TPI. The presented energy ranges
were chosen from the TPI threshold up to 1s → 2p res-
onance transition energy. In particular, as we can see
from these figures, the total cross section reaches the
minimum value for all three cases of excess energy, espe-
cially if the energy sharing ξ reaches 0.5, which indicates
the energies of two photons are identical.

Moreover, if one of the photon energies ω1 or ω2

reaches the energy difference between the 1s and 2p
states of the electron transition, ΔE1s→2p = E1 − E2,
the symmetric resonance peaks appear as shown in Fig.
2. In the region between these two resonance peaks,
we also observe that the width becomes narrower with
higher ε. We derived a formula for the width d between
two resonance peaks as a function of ΔE1s→2p as well
as ε

d =
2
ε

ΔE1s→2p

E1
− 1, (15)

from this equation, follows that the width d is pro-
portional to 1/ε as shown in Fig. 2. Moreover, if we
compare the results of Ne and Ge for equal ε, we note
that the width d depends also on the energy percent-
age ΔE1s→2p/E1, which is determined by atom nuclear
charge.

Next, we investigated the cross section ratios of Ne
and Ge for four different polarization combinations of
the two incident photons. Figure 3 shows the relativistic
calculation of the cross section ratios for different polar-
ization combinations, implying a similar energy sharing
dependence for different combined excess energy as well
as different atoms. The values of the ratio reach either
minimum or maximum if the energy sharing is equal to
0.5. Moreover, we found that in the cases of σ

(nr)
xy /σ

(nr)
xx ,

σ
(nr)
++ /σ

(nr)
xx and σ

(nr)
x+ /σ

(nr)
xx , the closer the energy shar-

ing ξ near the center, the smaller the cross section
ratio is, while the contrary energy sharing dependence
of σ

(nr)
+− /σ

(nr)
xx can be distinguished from above three

cases.
In the dipole approximation, the transition allows

two possible ionization channels in the TPI process:
s → p → s and s → p → d. We can see that Us van-

Fig. 2 The total cross section for ionization of Ne and Ge
by two linearly polarized photons as a function of energy
sharing ξ. The energy sharing ξ = ω1

ω1+ω2
implies the energy

distribution between the two incident photons. The com-

bined excess energy ε = �(ω1+ω2)
E1

represents the total energy
carried by the two photons normalized to the binding energy
of the 1s electron. The short dashed line corresponds to
ε = 1.05, the long dashed line corresponds to ε = 1.25 and
solid line corresponds to ε = 1.40

ishes in the numerator in Eqs.(11) and (2), indicating
that the s → p → s channel is closed for TPI with two
co-rotating circularly polarized or two orthogonal lin-
early polarized photons. The boundary values of cross
section ratio for each polarization combinations can be
approximately found from Fig. 3 (σ(nr)

xy /σ
(nr)
xx

∼= 0.75,
σ

(nr)
++ /σ

(nr)
xx

∼= 1.5, σ
(nr)
+− /σ

(nr)
xx

∼= 0.25, σ
(nr)
xy /σ

(nr)
xx

∼=
0.875) and are well predicted by Eqs. (11–14) under
the circumstance if R 	 1. In particular, the stable
convergence around 3/2 of known estimate σ

(nr)
++ /σ

(nr)
xx

for TPI process is also in agreement with the theoreti-
cal description mentioned in Ref. [39]. As the combined
excess energy increases from 1.05 to 1.40, the cross sec-
tion ratios approach more smoothly to their boundary
values. These boundary values showed the dominance
of s → p → d channel, which can verify the Fano’s
propensity rule discussed in Ref. [40].

From Fig. 3, by comparing the deviations of cross
section ratios for Ne and Ge atoms, we observed the
stronger screening effect occurring in the Ne atom. The
screening effect is a result of interelectronic interaction
in the electron shells and leads to the decrease of the
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Fig. 3 The cross section ratios of bichromatic two-photon K-shell ionization, where x represents the linearly polarization
direction along x-axis, the corresponding angle ψ = 0 and Stokes parameters P l

γ = 1, P c
γ = 1; y represents the linearly

polarization direction along y-axis, the corresponding angle ψ = π/2 and Stokes parameter P l
γ = 1, P c

γ = 1. The notation

± stands for the helicity ±1 of the circular polarization (the spin projection onto ǩ direction), the corresponding Stokes
parameters P l

γ = 0, P c
γ = ±1

electron binding energies. In contrast to the Ge atom,
the Ne atom has stronger interaction between the inner-
shell electrons and electrons from other shells, which
results in stronger deviations for all cross section ratios
with three excess energies. Furthermore, due to the
strong drop of the dominant s → p → d channel near
the ionization threshold, a magnification of the screen-
ing effects can be also observed for ε = 1.05 of Ne atom,
where the strongest deviations of all cross section ratios
for different polarization combinations occur, this effect

is also in agreement with the partial-wave analysis of
two-photon ionization in Ref. [18].

4 Summary and outlook

To conclude, We have studied the two-color two-photon
K -shell ionization within relativistic second order per-
turbation theory and the independent particle approx-
imation. The analytical expressions for the total cross
section of the ionization process were obtained in terms
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of radial transition amplitudes and Stokes parameters.
We also derived the cross section ratios of different com-
binations of the polarization state of the two incident
photons within the nonrelativistic framework. Detailed
calculations of the total cross section and cross sec-
tion ratios for Ne and Ge atoms have been carried
out. In the numerical results, we found that the total
cross section depends on the energy sharing. The local
minimum value occurs if the energies of the two pho-
tons are identical. Besides, the dependence of two-color
two-photon K -shell ionization on the polarization state
of two incident photons has also been clarified in this
paper. The boundary values of cross section ratios have
been predicted for each polarization combination with
the analytical expressions and were well confirmed by
the numerical computation results. Moreover, a strong
deviation of cross section ratios near the TPI thresh-
old of the Ne atom was observed, which relates to the
strong screening effect. These insights are helpful to
further our understanding of the two-photon ionization
process.
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34. J. Eichler, T. Stöhlker, Phys. Rep. 439, 1 (2007).
https://doi.org/10.1016/j.physrep.2006.11.003

35. W. Johnson, Atomic Structure Theory: Lectures on
Atomic Physics (Springer, Berlin, 2007), p. 1. https://
doi.org/10.1007/978-3-540-68013-0

36. J. Sapirstein, W.R. Johnson, J. Phys. B 29, 5213 (1996).
https://doi.org/10.1088/0953-4075/29/22/005

37. K. Blum, Density Matrix Theory and Applications, 3rd
edn. (Springer, Berlin, 2012). https://doi.org/10.1007/
978-3-642-20561-3

38. N. Manakov, S. Marmo, S. Sviridov, J. Exp.
Theor. Phys. 108, 557 (2009). https://doi.org/10.1134/
S1063776109040025

39. P. Lambropoulos, Phys. Rev. Lett. 28, 585 (1972).
https://doi.org/10.1103/PhysRevLett.28.585

40. U. Fano, Phys. Rev. A 32, 617 (1985). https://doi.org/
10.1103/PhysRevA.32.617

123

https://doi.org/10.1038/srep33292
https://doi.org/10.1103/PhysRevLett.121.083901
https://doi.org/10.1103/PhysRevLett.121.083901
https://doi.org/10.1088/0953-4075/33/12/310
https://doi.org/10.1103/PhysRevA.85.023414
https://doi.org/10.1103/PhysRevA.85.023414
https://doi.org/10.1103/PhysRevA.89.043424
https://doi.org/10.1103/PhysRevA.89.043424
https://doi.org/10.1103/PhysRevA.99.023416
https://doi.org/10.1103/PhysRevA.99.023416
https://doi.org/10.1088/0953-4075/36/5/307
https://doi.org/10.1103/PhysRevA.94.063412
https://doi.org/10.1103/PhysRevA.94.063412
https://doi.org/10.1103/PhysRevA.96.013409
https://doi.org/10.1103/PhysRevA.96.013409
https://doi.org/10.1103/PhysRevLett.110.134801
https://doi.org/10.1103/PhysRevLett.110.134801
https://doi.org/10.1038/ncomms3919
https://doi.org/10.1103/PhysRevLett.113.254801
https://doi.org/10.1103/PhysRevLett.113.254801
https://doi.org/10.1103/PhysRevAccelBeams.22.030702
https://doi.org/10.1103/PhysRevAccelBeams.22.030702
https://doi.org/10.1103/PhysRevAccelBeams.23.030703
https://doi.org/10.1103/PhysRevAccelBeams.23.030703
https://doi.org/10.1107/S1600577520011716
https://doi.org/10.1107/S1600577520011716
https://doi.org/10.1016/S0168-9002(00)00137-6
https://doi.org/10.1016/S0168-9002(00)00137-6
https://doi.org/10.1103/PhysRevSTAB.11.030702
https://doi.org/10.1103/PhysRevSTAB.11.030702
https://doi.org/10.1088/1674-1137/37/11/118101
https://doi.org/10.1088/1674-1137/37/11/118101
https://doi.org/10.1103/PhysRevSTAB.16.110702
https://doi.org/10.1103/PhysRevSTAB.16.110702
https://doi.org/10.1103/PhysRevAccelBeams.22.080701
https://doi.org/10.1103/PhysRevAccelBeams.22.080701
https://doi.org/10.1103/PhysRevAccelBeams.23.120701
https://doi.org/10.1103/PhysRevAccelBeams.23.120701
https://doi.org/10.1142/0270
https://doi.org/10.1016/j.physrep.2006.11.003
https://doi.org/10.1007/978-3-540-68013-0
https://doi.org/10.1007/978-3-540-68013-0
https://doi.org/10.1088/0953-4075/29/22/005
https://doi.org/10.1007/978-3-642-20561-3
https://doi.org/10.1007/978-3-642-20561-3
https://doi.org/10.1134/S1063776109040025
https://doi.org/10.1134/S1063776109040025
https://doi.org/10.1103/PhysRevLett.28.585
https://doi.org/10.1103/PhysRevA.32.617
https://doi.org/10.1103/PhysRevA.32.617

	Relativistic calculations of two-color two-photon K-shell ionization
	1 Introduction
	2 Theoretical background
	2.1 Evaluation of transition amplitudes
	2.2 Density matrix and total cross section
	2.3 Cross section ratios

	3 Results and discussion
	4 Summary and outlook
	Author contributions
	References
	References




