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Abstract. We propose a methodology to unify electronic and nuclear quantum wavepacket dynamics in
molecular processes including nonadiabatic chemical reactions. The canonical and traditional approach in
the full quantum treatment both for electrons and nuclei rests on the Born–Oppenheimer fixed nuclei strat-
egy, the total wavefunction of which is described in terms of the Born–Huang expansion. This approach
is already realized numerically but only for small molecules with several number of coupled electronic
states for extremely hard technical reasons. Besides, the stationary-state view of the relevant electronic
states based on the Born–Oppenheimer approximation is not always realistic in tracking real-time electron
dynamics in attosecond scale. We therefore incorporate nuclear wavepacket dynamics into the scheme of
nonadiabatic electron wavepacket theory, which we have been studying for a long time. In this scheme thus
far, electron wavepackets are quantum mechanically propagated in time along nuclear paths that can nat-
urally bifurcate due to nonadiabatic interactions. The nuclear paths are in turn generated simultaneously
by the so-called matrix force given by the electronic states involved, the off-diagonal elements of which
represent the force arising from nonadiabatic interactions. Here we advance so that the nuclear wavepackets
are directly taken into account in place of path (trajectory) approximation. The nuclear wavefunctions are
represented in terms of the Cartesian Gaussians multiplied by plane waves, which allows for feasible cal-
culations of atomic and molecular integrals together with the electronic counterparts in a unified manner.
The Schrödinger dynamics of the simultaneous electronic and nuclear wavepackets are to be integrated
by means of the dual least action principle of quantum mechanics [K. Takatsuka, J. Phys. Commun. 4,
035007 (2020)], which is a time-dependent variational principle. Great contributions of Vincent McKoy in
the electron dynamics in the fixed nuclei approximation and development in time-resolved photoelectron
spectroscopy are briefly outlined as a guide to the present work.

1 Introduction

To address one of the ultimate goals of theoreti-
cal molecular science, we here propose to incorporate
nuclear quantum wavepackets represented in the Carte-
sian Gaussian functions multiplied plane waves into
nonadiabatic electron wavepacket dynamics we have
long been developing [1–7] with use of our proposed
quantum least action principle (time-dependent varia-
tional principle) [8]. In order to describe why the for-
mulation of simultaneous nuclear and electronic dynam-
ics is needed in current scientific status and to clearly
distinguish the present theory from canonical and the
traditional methods based on the Born–Huang expan-
sion [10], we track our pathways to the goal starting
from two early works with the Born–Huang dynamics;
one is electron scattering by molecules as an electron
dynamics in the fixed nuclei approximation and the
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other being direct observation of nuclear wavepacket
dynamics through time-resolved photoelectron spec-
troscopy. Both of them have been studied together with
Vincent McKoy.

Theoretical foundation of molecular science was
established far long ago in 1927 by Born and
Oppenheimer [9], shortly after the birth of quantum
mechanics, and is later followed by the so-called Born–
Huang expansion [10] to describe a total electronic-
nuclear molecular wavefunction. This view naturally
brought about the Born–Oppenheimer (BO) approxi-
mation, or fixed nuclei approximation, in which nuclei
are supposed to undergo their dynamics on stationary
electronic state energy hypersurfaces (potential energy
hypersurfaces abbreviated as PES) [11–16]. Quantum
chemistry responsible mainly to analyze electronic-
structures has been making tremendous contributions
to molecular science and chemistry, mostly in the aspect
of energetics such as the estimate of energy barrier for
chemical reactions and so on [17].
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Such fixed nuclei approximation, or the notion of
“instantaneous” electronic-state adjustment to moving
nuclei, has been known to be quite useful in the calcu-
lations of electronic bound states. Interestingly though,
the fixed nuclei approximation turns out to work well
for “slow” electron collision with molecules and low-
energy photoionization [18]. Quantum chemistry has
thus successfully extended its wing so as to cover elec-
tron dynamics. Vincent McKoy was a pioneer and had
been the central figure in these fields.

Another interesting feature of the BO approxima-
tion is that it is valid even for fast nuclear wavepacket
dynamics, in the time scale of as fast as femtoseconds.
It had been predicted by Domcke [19], Engel[20], and
their coworkers that such nuclear wavepacket dynam-
ics can be observed with time-resolved photoelectron
spectroscopy (TRPES). However, in order to carry out
ab initio calculations of TRPES for realistic molecules,
one needs accurate photoelectron scattering amplitude
and nuclear wavepackets running on accurate (some-
times nonadiabatically coupled) PES. There is no sur-
prise that McKoy, who was leading in the calculations
of photoionization, led and guided the field of TRPES
too. Indeed, a computational scheme to attain angle-
resolved femtosecond TRPES was proposed for the first
time in 1999 by the joint group of McKoy and Takat-
suka [21–23].

Now in the current age of attosecond laser chemistry,
the approximation of stationary electronic state is not
realistic enough and the BO approximation is not con-
venient either. The cutting-edge electronic state theory
should be capable of describing dynamical electrons as
quantum wavepackets that are kinematically (nonadi-
abatically) coupled with nuclear motions. Therefore,
we have been developing a theory of such nonadia-
batic electron dynamics, in which electron wavepack-
ets propagate in time along simultaneously generated
nuclear “paths” [1–7]. These paths can naturally and
smoothly branch into pieces at each significant nonadi-
abatic transition region as many as the number of adi-
abatic potential energy surfaces that commit the nona-
diabatic avoided crossings and conical intersections.
Therefore, those paths are not classical (Newtonian)
in general and driven by the so-called force matrix, in
which nonadiabatic interactions are taken into account
besides the adiabatic nuclear forces[2]. The advantages
starting from the nonadiabatic electron wavepacket rep-
resentation are (1) electron dynamics can be tracked
directly and vividly as chemical reactions proceed, and
(2) one can treat large molecules in size and in the
number of involved electronic states, since there is no
need to prepare global PES because of the on-the-fly
nuclear dynamics [7]. More essential virtue of the nona-
diabatic electron wavepacket dynamics is that it can
cope with (1) highly quasi-degenerate electronic states,
the fluctuation of which is huge and extremely fre-
quent due to their mutual mixing by nonadiabatic cou-
pling among them, and (2) the real-time dynamics of
electron wavepackets that are nonadiabatically coupled
with nuclei like protons as in charge separation in water
splitting in Photo System II of plants, and so on. These

materials and phenomena are practically inaccessible
by the Born–Huang representation.

On the other hand, an obvious shortage of our
nonadiabatic electron wavepacket approach is that the
nuclear quantum wavefunctions are not yet fully incor-
porated. With these experience, progress, and difficulty
in mind, we here propose a method to quantize nuclear
dynamics in terms of nuclear Gaussian wavepackets
(Cartesian Gaussians multiplied by plane waves as in
the squeezed states), replacing the nuclear path dynam-
ics. The nuclear wavepackets are determined simul-
taneously with electron wavepackets in full quantum
mechanical manner by means of the dual least action
principle, a time-dependent variational principle, devel-
oped by the present author [8]. Not only the shapes and
spatial distributions but also the positions of the Gaus-
sian centers are determined quantum mechanically.

This paper is organized as follows. In Sect. 2,
we briefly review the theoretical framework of the
Born–Huang expansion, highlighting its success in
terms of a theory of electron scattering by molecules
with fixed-nuclei approximation, and a photoelectron-
spectroscopic real-time observation of nonadiabatic
nuclear wavepacket dynamics. We move on from the
Born–Huang representation to what we call nonadia-
batic electron wavepacket representation with nuclear
path approximation in Sect. 3. Section 4 achieves the
aim of this paper to incorporate nuclear wavepackets
into the nonadiabatic wavepacket representation, by
treating electronic and nuclear wavepackets uniformly
on equal footing by means of the time-dependent vari-
ational principle. This paper concludes in Sect. 5 with
some remarks.

2 Dynamics in the Born–Huang
representation

Prior to presentation of nonadiabatic electron
wavepacket approach, we briefly summarize the success
and limitation of the Born–Huang representation based
on the stationary-state electronic state theory.

2.1 Born–Huang representation

Our nonrelativistic molecular Hamiltonian has a form

H(r,R) =
1
2

∑

k

P̂ 2
k

Mk
+ H(el)(r;R), (1)

where many-body electronic Hamiltonian is defined as

H(el)(r;R) =
1

2m

∑

j

p̂2
j + Vc(r,R) (2)

with the symbols r and R being the electronic and
nuclear coordinates, respectively, while p̂j and P̂k

denoting the operators for their conjugate momenta of
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the jth and kth component of r (specifically written
as rj) and R (Rk), respectively. r and R are indepen-
dent variables at this stage. m and Mk are the relevant
masses. Vc(r,R) is the collective representation of the
Coulombic interactions among electrons and nuclei

Vc(r,R) =
∑

a<b

e2

|ra − rb| −
∑

a

∑

A

ZAe2

|ra − RA|

+
∑

A<B

ZAZBe2

|RA − RB | , (3)

where ra and RA are the ath electron and the Ath
nuclei, respectively, and ZA indicate the nuclear charge
on the Ath nuclei.

Since the nuclei move far more slowly than electrons
to the order of the square root of the mass ratio or
are typically 102 times slower, the notion of instan-
taneous adjustment of electrons to nuclear reconfig-
uration seems rather natural. This obviously breaks
the relativity yet is acceptable mathematically. There-
fore, the total wavefunction Ψ(r,R, t) subject to the
time-dependent Schrödinger equation with H(r,R) is
to be expanded in stationary electronic basis functions
{ΦI(r;R)}, as [10]

Ψ(r,R, t) =
∑

I

χI(R, t)ΦI(r;R). (4)

R in ΦI(r;R) are regarded as a parameter, while
those are to be treated as independent variables for
χI(R, t). The electronic basis functions {|ΦI〉} are nat-
urally orthonormalized at each nuclear configuration as

〈ΦI(R)|ΦJ (R)〉 = δIJ . (5)

The bra-ket inner products in what follows repre-
sent integration over the electronic coordinates only.
χI(R, t) in Eq. (4) are supposed to describe the nuclear
wavepacket subject to the coupled equations of motion
as

i�
∂

∂t
χI =

1
2

∑

k

P̂ 2
k

Mk
χI +

∑

J

Hel
IJχJ

− i�
∑

k

∑

J

Xk
IJ P̂k

Mk
χJ − �

2

2

∑

k

∑

J

Y k
IJ

Mk
χJ , (6)

where

Xk
IJ =

〈
ΦI | ∂ΦJ

∂Rk

〉
, Y k

IJ =
〈

ΦI |∂
2ΦJ

∂Rk
2

〉
, (7)

and
Hel

IJ (R) =
〈
ΦI

∣∣Hel
∣∣ΦJ

〉
. (8)

These matrix elements are the main players in the the-
ory of nonadiabaticity. In addition to these, Hel may
contain spin-orbit couplings to take a partial account of

the relativistic effects. The expansion of Eq. (4), called
the Born–Huang expansion [10], is mathematically rig-
orous in itself.

2.2 Born–Oppenheimer approximation for energetics

ΦI(r;R) in Eq. (4) are quite often chosen to be eigen-
functions of H(el)(r;R) as

H(el)(r;R)Φ(ad)
K (r;R) = VK(R)Φ(ad)

K (r;R) (9)

at each R, and VK(R) are denoted as potential energy
(hyper)surface (PES). The notion of the fixed nuclei
based on Eq. (9) has given a theoretical ground of
molecular science and has made huge contributions to
various aspects in chemical science. In particular, a sin-
gle term truncation of the expansion of Eq. (4), which
is

ΨK(r,R, t) � χK(R, t)Φ(ad)
K (r;R) (10)

with Eq. (9) is widely called the Born–Oppenheimer
(BO) approximation and has been very successfully
applied to the study of the molecular ground states.
Then, the electronic energy VK(R), the nuclear repul-
sion energy included, serves as a potential function
(K = 1, 2, · · · ) for the nuclear wavefunction in such
a manner that

i�
∂

∂t
χK(R, t) =

[
∑

k

P̂ 2
k

2Mk
+ VK(R)

]
χK(R, t). (11)

The BO approximation is expected to be very good as
long as the ground state under study is well separated
from the excited state manifold. The error in the total
molecular energy up to the rotational and vibrational
energies on a given potential energy surface for the sta-
ble ground state is expected to be very small down to
the order [24] ( m

M

)3/2

, (12)

where m and M represent the electron and involved
nuclear masses. When this ratio is 10−4, the error will
be in the order of 10−6.

2.3 Electron dynamics in the fixed nuclei
approximation with stationary-state theory for
electron-molecule scattering

The notion of fixed nuclei approximation has been
widely applied to stationary-state scattering theory for
electron-molecule scattering and direct photo-ionization
dynamics as well. It was virtually impossible before
1980s to calculate the differential cross sections of elec-
tron scattering by anisotropic polyatomic molecules
even for elastic scattering, let alone the inelastic pro-
cesses involving electronic-state excitation [25,26]. The
stationary scattering theory for molecular photoioniza-
tion within the fixed nuclei framework has also been
extensively developed by Lucchese and McKoy [18].
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2.3.1 Combined Lippman–Schwinger–Schrödinger
equation

a. Scattering theory
We here briefly outline the scattering theory of

electron-molecule collision proposed by the present
author and McKoy [25,26]. As usual the total electronic
Hamiltonian H(el) we consider is written as

H(el) = (HN + TN+1) + V, (13)

where HN is the target electronic Hamiltonian at a
given molecular geometry and TN+1 is the kinetic
energy operator for the incident electron. The Coulom-
bic interaction potential V between an incident electron
and the target is given as usual

V =
N∑

a=1

1
r

a,N+1

−
Nuclei∑

A=1

ZA

r
A,N+1

. (14)

Under this situation we want to solve the stationary
Schrödinger equation, instead of the eigenvalue problem
like Eq. (9),

H(el)ψ(+) = Eψ(+) (15)

for the continuum state, where E is a parameter that
specifies the experimental collision energy and is not an
eigenvalue as in Eq. (9). ψ(+) has a nonzero component
in the asymptotic region (|r| → ∞) satisfying an appro-
priate boundary condition for a given collision status.
Therefore, the scattering wavefunction ψ(+) is gener-
ally not square-integrable and thereby is not a mem-
ber of the standard Hilbert space. However, what we
really need is not the entire wavefunction ψ(+) but the
scattering amplitudes, which give rise to the differen-
tial cross sections as physical observables. Therefore,
ab initio calculations of the scattering amplitude is the
goal in this study. Electron-impact vibrational excita-
tion can be approximately evaluated with use of the
resultant scattering amplitudes.

To this goal, we first define a projection operator P
which specifies the open target eigenstates. By open
channels we mean the states that are accessible within
the collision energy [25,26]. P is an N -body operator
unlike the (N + 1)-body projection operator of Fesh-
bach [27]. Practically, P is simply represented in terms
of target eigenstates ΦI such that

P =
open channels∑

I

∣∣∣Φ(ad)
I

〉〈
Φ(ad)

I

∣∣∣ . (16)

With this operator, we first project the formal Lippmann–
Schwinger equation for the scattering state

Pψ
(+)
I = SI + G

(+)
P V ψ

(+)
I , (17)

where ψ
(+)
I has the asymptotic form of an incoming

plane wave and a scattered component, and SI is hence

a product of the target wavefunction Φ(ad)
I and an inci-

dent plane wave, i.e.,

SI = Φ(ad)
I (1, 2, . . . , N) exp

(
ikI · r

N+1

)
(18)

The projected Green function in Eq. (17) is formally
written

G
(+)
P =

open channels∑

I

∣∣∣Φ(ad)
I

〉
g
(+)
I

(
r

N+1 , r
′
N+1

)〈
Φ(ad)

I

∣∣∣ ,

(19)
with the one-body Green function g

(+)
I

(
r

N+1 , r
′
N+1

)
for

TN+1 at energy E − EI , where E and EI are the total
energy and eigenvalue of Φ(ad)

I , respectively. We mul-
tiply the potential V on both sides of Eq. (17) such
that

(
V P − V G

(+)
P V

)
ψ

(+)
I = V SI . (20)

In contrast to the original Lippmann–Schwinger equa-
tion, Eq. (20) is N +1-body equation, and moreover, it
is not symmetric.

The asymmetry of Eq. (20) comes from the fact that
we have simply projected only the open channel com-
ponents of the entire dynamics. To remedy, we need to
find projected counterparts from the closed channels.
Such components are supposed to be well represented
by the Schrödinger equation without need of an asymp-
totic form. We thus project the total Schrödinger Eq.
(15) in such a way that

[
Ĥ − a

(
PĤ + ĤP

)]
ψ

(+)
I = a (V P − PV ) ψ

(+)
I

(21)
where Ĥ = E − H(el) and an arbitrary parameter a
remains to be chosen later. Combining Eq. (20) and
Eq. (21), we obtain an integro-differential equation in
a symmetric form

[
1

2
(PV + V P ) − V G

(+)
P V +

1

2a

{
Ĥ − a

(
PĤ + ĤP

)}]
ψ
(+)
I

= V SI . (22)

Closer examination of the operators demands that the
parameter a must be chosen to be (N+1)/2 to make the
operator Ĥ − a

(
PĤ + ĤP

)
in the left-hand side Her-

mitian and the correct permutation symmetry among
incident and molecular electrons be satisfied. (For an
extension to positron-molecule scattering, see ref. [28].)

Rewriting Eq. (22) with an operator Â as

Âψ
(+)
I = V SI , (23)
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where

Â =
1
2
(PV + V P ) − V G

(+)
P V

+
1

(N + 1)

{
Ĥ − (N + 1)

2

(
PĤ + ĤP

)}
,

(24)

a variational functional is given in a fractional form[29]
such that

[fIJ ] = − 1
2π

〈
SI |V |ψ(+)

J

〉〈
ψ

(−)
I |V |SJ

〉

〈
ψ

(−)
I

∣∣∣Â
∣∣∣ψ(+)

J

〉 . (25)

Then the variational expressions for the inelastic scat-
tering amplitudes naturally result as

fIJ = − 1
2π

∑

i,j

〈
SI |V | ΦN+1

i

〉 (
Â−1

)

ij

〈
ΦN+1

j |V |SJ

〉
,

(26)
where the

{
ΦN+1

i

}
are basis functions defined by (N +

1)-body Slater determinants. No asymptotic functions
are required in the basis set, because the scattering
wavefunctions ψ

(−)
I and ψ

(+)
J in Eq. (25) are always

multiplied effectively by the potential function V (in
the denominator too), which extends only in the finite
molecular region [25,26]. This stationary-state scatter-
ing theory turned out to be quite powerful, and McKoy
and his coworkers have indispensable contributions to
science and technology of molecular electron scattering
[30–34].

2.3.2 Atomic and molecular integrals with Cartesian
Gaussians and plane waves

A technical aspect in carrying out the integration of the
functional in Eq. (26) is highly relevant to the present
study. In the evaluation of the matrix elements of Eq.
(26), one needs the atomic integrals (kinetic, electron–
nucleus attraction, and electron–electron repulsion inte-
grals) at each nuclear position, in which the Carte-
sian Gaussian functions multiplied by plane waves are
involved as seen in Eq. (18). Fortunately, such tech-
niques have been practically developed in electron-
scattering works. Besides, Pulay and his group have
developed a very fast and accurate algorithms of those
Gaussian and plane-wave atomic integrals [35]. These
are particularly vital in the present work, since later
in Sect. 4, we will represent nuclear wavefunctions in
Cartesian Gaussians multiplied by plane waves and
thereby treat both the electronic and nuclear wavepack-
ets in a unified manner.

2.4 Nonadiabatic quantum dynamics

In rising from the polyatomic dynamics based on the
Born–Oppenheimer approximation, Eq. (11), to the

coupled equations, Eq. (6), one faces big technical dif-
ficulties. Review articles about chemical dynamics for
polyatomic molecules in this line are given in Refs.
[11–13]. To integrate Eq. (6), one needs to prepare the
potential energy surfaces VI(R) in a wide spatial range
prior to the computation of the {χI(R, t)}, since the
spatial extent of χI(R, t)′s are not known beforehand.
Moreover, the nuclear wavefunctions χI(R, t) are very
oscillatory in space due to the heavy masses of nuclei.
Besides, the physical dimension of R increases by 3 as
one atom is added. Hence, 5 to 6 atomic systems already
hit the practical limitation of the direct applications.

Historically the theory of nonadiabatic transition
was introduced by Landau, Zener, and Stuekelberg as
early as in 1932 as a one-dimensional two-state cou-
pled Schrödinger equations with simple model potential
curves. Such one-dimensional semiclassical theory has
been mathematically finalized by Nakamura and Zhu
[36]. For further progress, we refer to reviews about
the rich physical implications emerging from the realis-
tic molecular nonadiabatic chemistry, including effects
arising from the genuine multidimensional nonadiabatic
interactions [5–7,36–40].

Below are among the modern theories of nona-
diabatic dynamics relevant to the present work in
that quantum wavepackets dynamics are directly con-
sidered. Mart́ınez and his colleague have formulated
the so-called ab initio multiple spawning method and
applied very successfully to nonadiabatic and excited-
state dynamics of chemically and biologically interest-
ing molecules [41,42]. The very basic gradient is to
propagate Gaussian nuclear wavepackets along on-the-
fly paths[43] running on nonadiabatically coupled ab
initio potential surfaces, incorporating the surface hop-
ping algorithm [44]. (Yet, the theory itself has been
deepened so as to allow the mixing of the nuclear
wavepackets on the way of reactions [45]). Burghardt
and her coworkers proceeded to incorporate a diabatic
two-state linear vibronic coupling model into the on-
the-fly multi-configuration (nuclear) Gaussian wave-
packet dynamics [46]. The theory is sophisticated in
that it address the two- (or more-) layer Gaussian multi-
configuration time-dependent Hartree method [13] in
the context of on-the-fly scheme, which are expected to
have a vast application realm of large molecular sys-
tems of many vibronic modes. Worth and his group
have developed the improved direct dynamics varia-
tional multi-configurational Gaussian method for nona-
diabatic dynamics [47].

A quite unique approach, which determinedly aban-
dons the Born–Huang representation, is the so-called
exact-factorization approach by Gross and coworkers
[48–50]. Both electronic and nuclear states are to be
determined starting from their newly established cou-
pled equations of motion. This theory is very unique
and brings about a new way of studying nonadiabatic
dynamics. It is so revolutionary that even the very
basic concepts historically well established based on the
Born–Oppenheimer approximation are to be revisited
from scratch. Finally, we slightly touch upon the works
of nuclear-electronic orbital methods, mainly developed
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in quantum chemistry as a direct extension of the
molecular orbital model. We simply refer to the review
article by Pavošević, Culpitt, and Hammes-Schiffer [51],
and extensive citation in it, including Thomas. [52] and
Nakai et al. [53].

The present paper also aims at a full quantum
mechanical construction of electronic and nuclear
wavepackets beyond the Born–Huang representation,
yet with a deep appreciation of the great heritage and
methodologies that have been developed in the long his-
tory of quantum chemistry.

2.5 Theory of time-resolved photoelectron
spectroscopy in the Born–Huang representation:
Monitoring the nonadiabatic nuclear wavepacket
bifurcation

2.5.1 Theory of time-resolved photoelectron
spectroscopy (TRPES)

Before proceeding to the study of electron wavepacket
dynamics, it would be fair to show an example of
the remarkable success of the Born–Huang represen-
tation in full quantum nonadiabatic dynamics. In this
particular study, we have made a combination of the
nuclear wavepacket dynamics on nonadiabatically cou-
pled potential surfaces and photoelectron scattering
amplitudes to realize energy-, angle-, and time-resolved
photoelectron spectroscopy. This turns out to provide
an extremely powerful means both theoretically and
experimentally to monitor femtosecond real-time chem-
ical dynamics [21,22].
a. Theoretical outline of pump-probe photoelectron

spectroscopy Let us generally consider a nuclear
wavepacket running on the first electronic excited state,
say Φ2(r;R), that is nonadiabatically coupled with the
ground state, Φ1(r;R). These electronic states may be
represented adiabatically or diabatically, subject to the
two state equivalence. The initial state prepared on
Φ1(r;R) with a nuclear wavefunction χ1(R, t) is to be
pumped up by a short pulse laser to partially create
χ2(R, t)Φ2(r;R), and up there it begins to move spon-
taneously after the pump laser is switched off. Even-
tually χ2(R, t)Φ2(r;R) are supposed to be bifurcated
to χ2(R, t)Φ2(r;R) and χ1(R, t)Φ1(r;R) and/or mixed
up together in nonadiabatic regions. To track and probe
such wavepacket dynamics, we shine another pulse laser
with delay times, the energy of which is high enough to
ionize the dynamical molecular state. Since photoion-
ization does not have optically dark states, and since
photoelectrons are very well captured with good reso-
lutions of energy and angle by means of the imaging
technique, time-resolved photoelectron spectroscopy is
now one of indispensable techniques for ultra-fast chem-
ical dynamics [54–56].

Theoretical task to estimate photoelectron distribu-
tions in the space of the wave vector k, measured with
respect to the frames of molecule and polarization vec-
tor of probe laser, is as follows [21,22]. The molecular
system is expanded in the Born–Huang expansion, as

Ψ(r,R, t) = χ1(R, t)Φ1(r;R) + χ2(R, t)Φ2(r;R)

+
∫

dkχk(R, t)Φ(−)
k (r;R), (27)

where Φ(−)
k (ion state) is a photoionizing stationary-

state electronic wavefunction with an appropriate bound-
ary condition. The calculations of Φ(−)

k to represent
ionization from both Φ1(r;R) and Φ2(r;R) at each
nuclear configuration R and each wave vector k are
among difficult parts in this work and the solving
the nuclear dynamics for the continuum nuclear wave-
function χk(R, t) is another one. The coupled time-
dependent Schrödinger equations for χ1, χ2, and χk

are of the form (in atomic units)

i
∂

∂t
χ1(R, t) = [TN + V1(R)] χ1 + V12(R)χ2

+
∫

dkV1,k(R, θP ,k, t)χk (28)

and

i
∂

∂t
χk(R, t) =

[
TN + Vion(R) +

k2
j

2

]
χk

+
∑

d=1,2

Vk,d(R, θP ,k, t)χd, (29)

where TN is the kinetic energy operator; Vk,d is the
ionization interaction matrix element, including depen-
dence on molecular geometry, photoelectron energy and
angle, probe pulse shape, and polarization (θP ). Molec-
ular rotation has been neglected. The equation for χ2 is
analogous to that for χ1 and omitted here. The photo-
electron spectra are calculated with χk after the probe
interaction is well over as

P (εk) = k

∫
dRdk̂|χk (R) |2. (30)

2.5.2 Wavepacket bifurcation as observed with TRPES

In a series of papers on time-resolved photoelectron
spectroscopy (TRPES), Arasaki, Takatsuka, Wang,
and McKoy showed that the precise instance of the
wavepacket bifurcation of NaI at an incidence of
intramolecular electron transfer NaI ↔ Na+I− as
schematically drawn in Fig. 1(a) can be tracked in
terms of the femtosecond time- energy- and angle-
resolved photoelectron spectra [57,58]. In these poten-
tial curves in the diabatic representation, the charac-
ter of Φ(dia)

1 (r;R), Na+I− (R < 7), remains as is in
the region of R > 7 Ȧ. And they cross each other
at a point near R ∼ 7 Ȧ. As illustrated in the fig-
ure, nuclear wavepackets are supposed to bifurcate.
To make the bifurcation directly observable, a linearly
polarized laser pulse of frequency ω1 pumps a ground-
state wavepacket onto the lowest covalent state (A
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1Σ+,Ω = 0+), and then another linearly polarized pulse
of frequency ω2 is shot to ionize the pumped states with
a variable delay time. The mutual angle between the
pump and probe laser vectors is varied parametrically.

Figure 1(b) and (c) shows the photoelectron kinetic
energy spectra and the angular distributions, respec-
tively, for pump-probe at delay times 190, 220, and
245 fs with the probe laser of parallel polarization to
that of the pump laser. The absolute square of the
wavepackets on the diabatic potentials at selected delay
time is shown in the panel (a). The red and blue ones

represent
∣∣∣χ(dia)

1 (R, t)
∣∣∣
2

on V
(dia)
1 (R) and

∣∣∣χ(dia)
2 (R, t)

∣∣∣
2

on V
(dia)
2 (R), respectively. These wavepackets are seen

to pass across the crossing point from the left to the
right of the crossing point RX after pumping. It is
clearly seen that reshaping of the peaks of photo-
electron signals, from one to three peaks, well reflect
the wavepacket bifurcation. These peaks can be com-
prehended primarily with the Condon principle: The
wavepackets running with the lower potential energy
make the higher photoelectron signals. As for the inter-
pretation of the photoelectron angular distribution, we
refer to the original papers [57,58].

The above NaI study is just one of illuminating exam-
ples of the ab initio calculations of TRPES. Yet, exper-
imental observation is of course not as easy. Neverthe-
less, direct experimental methodologies to observe the
passage of wavefunctions through nonadiabatic regions
have been developed since then. For instance, Wörner
and his group for the first time observed the passage of
NO2 molecule across the conical intersection between
the lowest A and B states by means of high harmonic
spectroscopy [59] and more recently time-resolve photo-
electron spectroscopy [60]. More of cutting-edge exper-
imental methods have been introduced to identify the
passage of nonadiabatic transitions, such as attosec-
ond stimulated X-ray Raman spectroscopy [61], time-
resolved fluorescent spectroscopy [62], ultrafast electron
diffraction technique [63], attosecond XUV transient
absorption spectroscopy [64], and so on.

3 Nonadiabatic electron wavepacket
representation with nuclear path
approximation

In the preceding section, we have seen a typical exam-
ple of wavepacket bifurcation in NaI dynamics and
shown how it can be directly observed with TRPES.
In this example, only two adiabatic states are involved
in nonadiabatic transitions, which is very well approx-
imated as χ1(R, t)Φ1(r;R) + χ2(R, t)Φ2(r;R) in the
Born–Huang representation, Eq. (4), where the view of
nuclear wavepacket bifurcation seems natural.

Meanwhile, the Born–Huang (B-H) expansion can
be also regarded as a representation of electronic-
state fluctuation in terms of time-dependent coefficients
χI(R, t) over time-independent electronic-state basis

functions ΦI(r;R). This can be comprehended clearly
if we consider a fixed nuclei situation in Eq. (4) by set-
ting R = R0 (a constant), since the total wavefunction
looks

Ψ(r, t) =
∑

I

CI(t)ΦI(r) at R0, (31)

which is a linear combination of the electronic basis
functions with time dependent coefficients. However, as
stressed several times, obtaining χI(R, t) numerically is
extremely hard in general. Therefore, in order to survey
the effects of large electronic fluctuation and/or ultra-
fast events for electrons in attosecond-scale, the formal-
ism of nonadiabatic electron wavepacket representation
is far more realistic and appealing to our intuition than
the B-H one. To convince that this is certainly the case,
we begin with a couple of such examples below.

3.1 Some characteristics of electron wavepacket
dynamics

To represent a single bunch (before bifurcation) of
electronic-nuclear wavepacket state, the following rep-
resentation of such total wavefunction

Ψ(r,R, t) = Φelec(r, t; 〈R〉t)Gnuc (R, t) (32)

should be convenient in that the electronic wave-
function is also an explicit function of time as the
nuclear counterpart is. Thus, both Φelec and Gnuc are
wavepacket states. 〈R〉t is the quantum mechanical
average of the nuclear coordinate R over Gnuc (R, t)
and serves as a molecular frame for the description of
the electronic states.

The primary consequence of this representation is
that nonadiabatic electron wavepackets Φelec(r, t; 〈R〉t)
are in general complex-valued having the dynamical
phases, in a marked contrast to the real-valued feature
of the stationary state representation of ΦI(r;R) of Eq.
(4). Therefore, we can calculate electron flux (current
of probability density), which is defined as[65]

j(r, t) =
�

2ime
[∇rρ(r′, r, t) − ∇r′ρ(r′, r, t)]

∣∣∣∣
r′→r

, (33)

with ρ(r′, r, t) being the first-order spinless reduced
density matrix taken from the electron wavepacket
Φelec(r, t; 〈R〉t). (For molecular flux, see ref. [66–68].)
With the flux one can directly track the electron flow
in molecules as chemical dynamics proceeds.[7] More-
over, even real-time ionization dynamics such as pho-
toionization and autoionization can be tracked by mak-
ing appropriate use of the electron flux. For instance,
Matsuoka and Takatsuka have shown how electrons are
pumped up to an ionization manifold by the assistance
of nonadiabatic couplings in autoionization.[69,70]

The second illuminating example is a huge electronic-
state fluctuation in the manifold of densely quasi-
degenerate electronic states, such as those in the excited
states of boron clusters.[71–73] Another example is
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Fig. 1 (a) Potential energy curves in the diabatic representation of NaI nuclear wavepackets at selected times. Red (blue)
packets lie on red (blue) potential curve. They have been pumped from the potential bottom up to the excited state,
undergoing a bifurcation into two pieces. (b) Photoelectron kinetic energy spectrum around the time of avoided crossing
passage. Wavepacket bifurcation manifests clearly in the spectrum. The polarization vector of the probe laser is perpendicular
to that of the pump, while the latter is set parallel to the line between Na and I. (c) Angular distribution of photoelectrons
at the same timings. A one-sided part of the cross section of the distribution of cylindrical symmetry with respect around
the NaI axis. The distance from the origin indicates the momenta of photoelectrons. [Data and figures by Y. Arasaki and
K. Takatsuka, unpublished (2003)]

often seen in electron capture by the so-called Ryd-
berg state on atoms in molecules. Since the electronic
states are so close to their neighbors in energy, and
since the strong nonadiabatic couplings mix them up
frequently everywhere in the clusters, the notion of
“isolated electronic state” gets lost within several fem-
toseconds. Even in such extremely tough situations,
the clusters keep to exist without breaking apart and,
moreover, specific chemical reactions are expected to
occur in them. It is obvious in these cases that the
notion of isolated adiabatic electronic states having an
isolated potential energy surface (PES) based on the
Born–Huang representation loses the sense. We refer
to this situation as chemistry without potential energy
surfaces.[71–73]

The third one is taken from our study about the
mechanism of charge separation dynamics in water
splitting catalyzed by Mn4CaO5 cluster in Photo Sys-
tem II. The most critical aspect in this process is how
electrons and protons are separated and transmitted
from water molecules via Mn4CaO5 to the relevant
protein residues. As a matter of fact, the water oxi-
dation catalyst is not merely a bare Mn4CaO5 and
charge separation reactions proceed (surprisingly) in
the electronic ground states.[74] The actual cluster we
treated is as large as Mn3Ca(H2O)2(OH)4(HCOO)5-
OH-Mn(H2O)2, which is further tied with protein
residues through water clusters.[75] Such electron
wavepacket and proton coupled real-time dynamics
could have been tracked in time only with the nonadi-
abatic electron wavepacket dynamics studies. (See ref.
[75] and many relevant papers cited therein.)

These examples and much more suggest that the
nonadiabatic electron wavepacket dynamics play
inevitable roles in the studies of molecular systems of
large electronic fluctuation.

3.2 Entanglement representation of electronic and
nuclear Hamiltonian

To overcome the difficulties inherent to the Born–
Huang expansion, and moreover, to cope with exper-
imental studies on electron dynamics in modern chemi-
cal physics, we resume our basic discussion with writing
down the following total Hamiltonian operator[1,2]

H(R, elec)

≡ 1
2

∑

k

(
P̂k − i�

∑

IJ

|ΦI〉Xk
IJ 〈ΦJ |

)2

+
∑

IJ

|ΦI〉H(el)
IJ 〈ΦJ |, (34)

which is represented in a basis set {|ΦI(R)〉|R〉} and P̂k

is the nuclear canonical momentum operator. Note that
P̂k are to be operated only on the nuclear wavefunctions
but not on the parameter R in the electronic wavefunc-
tions ΦI (r;R), since such kinematic interactions have
been already taken into account in Eq. (34) through
Xk

IJ , which was defined in Eq. (7). (See Appendix,

too.) The second-order derivatives Y k
IJ =

〈
ΦI |∂

2ΦJ

∂Rk
2

〉

appear after the square operation of the kinetic energy
operator. In this representation, the nuclear motion is
described in coordinate space (R-space), while the elec-
tron dynamics is represented in the electronic Hilbert
space. The electronic state summation over H

(el)
IJ may

include the continuum state when needed. The elec-
tronic basis functions {ΦI} may be either adiabatic or
(vaguely) diabatic, if Xk

IJ and H
(el)
IJ are both included
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simultaneously. H(R, elec) is invariant if the basis set
chosen is complete, and one can choose convenient basis
functions in practical applications.

3.3 Nuclear path approximation

It is still not easy to directly solve the Schrödinger
dynamics with Eq. (34) numerically in the current
stage. We therefore first take an approximate approach
to “electron wavepacket dynamics along nuclear (non-
classical) trajectories”, by approximating the nuclear
momentum operator P̂k with its classical counterpart
Pk in such a way as

H̃(R,P, elec) ≡ 1
2

∑

k

(
Pk − i�

∑

IJ

|ΦI〉Xk
IJ 〈ΦJ |

)2

+
∑

IJ

|ΦI〉H(el)
IJ 〈ΦJ |. (35)

This is an ultimate form of the so-called mixed quantum-
classical representation. We often adopt the mass-
weighted coordinates in which the nuclear masses are
all set to unity. The advantage of this quantum-classical
representation manifests when the quantum Hamilto-
nian of Eq. (1) is classicalized as above by replacing P̂k

with Pk, where we only have

H(r,R) =
1
2

∑

k

P 2
k + H(el)(r;R), (36)

in which no kinematic couplings Xk
IJ , the key quantities

in the study of the beyond-Born–Oppenheimer chem-
istry, are left behind.

One of the systematic methods to treat electron
dynamics on the basis of H̃(R,P, elec) of Eq. (35) is
to resort to the path-branching representation theory:
Electron wavepackets are full quantum mechanically
propagated in time along branching nuclear paths.[2,5–
7,76] As usual, the electron wavepacket Φelec(r, t;R(t))
(with 〈R〉t = R(t) and Gnuc (R, t) = δ (R − R)1/2 in
Eq. (32), R(t) being a nuclear path to be determined
later) is expanded in a set of time-independent wave-
functions {ΦI(r;R)} at each nuclear configuration R
such that

Φelec(r, t;R(t)) =
∑

I

CI(t)ΦI(r;R)
∣∣∣∣
R=R(t)

, (37)

with the time-dependent coefficients CI(t) to be evalu-
ated along R(t). Then the coupled equations of motion
for electron wavepackets are reduced to

i�
dCI

dt
=

∑
J

[
H

(el)
IJ −i�

∑
k

ṘkXk
IJ − �

2

4

∑
k

(Y k
IJ+Y k∗

JI )

]
CJ .

(38)

Here again the bra-ket notation used demands inte-
gration over the electronic coordinates r. The second-
order derivative terms Y k

IJ in Eq. (7) are quite often
neglected because they are always accompanied by the
small quantity �

2, although it is not always negligible
in general [5,6].

The nuclear paths R(t) are driven in turn by the force
matrix F k

IJ (see ref. [2]) expressed as

F k
IJ = −∂H

(el)
IJ

∂Rk
−

∑

K

(
Xk

IKH
(el)
KJ − H

(el)
IK Xk

KJ

)

+ i�
∑

l

Ṙl

[
∂X l

IJ

∂Rk
− ∂Xk

IJ

∂Rl

]
, (39)

which arises from the formal Hamilton canonical equa-
tions of motion [2]. If the force matrix is diagonal, that
is, F k

IJ = 0 for I �= J , each of F k
II gives a Newto-

nian force on each potential function I, as in the so-
called ab initio dynamics, molecular dynamics, and so
on. This has given the theoretical foundation of ab ini-
tio molecular dynamics. On the other hand, nonzero off-
diagonal elements of F k

IJ can induce branching of the
nuclear paths, realizing a nonadiabatic dynamics. From
such path branching at each nonadiabatic region, infi-
nite number of branching-paths are proliferated in the
exact solutions of Eq. (39). To avoid such infinite gener-
ation of paths, we have proposed a systematic approx-
imation of phase-space average of naturally branching
paths (PSANB) [76]. We do not track this route in this
paper, since the goal of this paper is to replace the
branching paths with quantum nuclear wavepackets.

Incidentally, the mean-field path approximation, or
the so-called semiclassical Ehrenfest theory (SET) is
the simplest approximation to avoid the difficulty of
path branching, in which the force matrix of Eq. (39)
is to be averaged over the electron wavepacket in such
a way that

〈Fk〉 =
∑

IJ

C∗
I F k

IJCJ

= −
∑

IJ

C∗
I

∂H
(el)
IJ

∂Rk
CJ

−
∑

IJ

∑

K

C∗
I

(
Xk

IKH
(el)
KJ − H

(el)
IK Xk

KJ

)
CJ .

(40)

This gives a single scalar force to drive a single path. If
the basis set {ΦI(r;R)} happens to be complete, Eq.
(40) is reduced to the form of Hellmann–Feynman force

〈Fk〉 = −
〈

Ψelec

∣∣∣∣∣
∂Ĥ(el)

∂Rk

∣∣∣∣∣Ψelec

〉
. (41)

Precisely speaking, the conventional SET does not
include the second-order derivative terms Y k

IJ in Eq.
(38), which is widely applied in the literature [77–81].
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3.4 Putting semiclassical nuclear wavepackets along
the branching paths

We here show that those branching paths driven by
the matrix force can be quantized my means of our
developed semiclassical nuclear quantum wavepacket
method.[82,83] The packets are referred to as the nor-
malized variable Gaussian (NVG) wavepacket.[84] The
NVGs vary in time their amplitudes, complex expo-
nents, and phases subject to the dynamical equations
for action decomposed function (ADF), to be defined
below, along “predetermined paths”. This procedure
is just one-step before the simultaneous electronic and
nuclear full quantum wavepacket dynamics.

3.4.1 Dynamics of Action Decomposed Function

We first present a semiclassical theory to attach quan-
tum wavepackets on given classical paths [82,83]. Let
us begin with a time-dependent wavefunction of the
Maslov form[85,86]

Ψ (R, t) = F (R, t) exp
(

i

�
Scl (R, t)

)
, (42)

on a coordinate R in configuration space where Scl is
assumed to satisfy the classical Hamilton-Jacobi (HJ)
equation

∂Scl

∂t
+

1
2m

(∇Scl)
2 + V = 0. (43)

We refer to F (R, t) of Eq. (42) as Action Decomposed
Function (ADF). By this factorization, the purely quan-
tum factors are all involved in the function F (R, t),[86]
and the Schrödinger equation for Ψ (R, t) is transformed
to a linear equation of motion for the complex valued
amplitude function F (R, t) as

∂F (R, t)
∂t

=
(

−p · ∇ − 1
2
(∇ · p)

)
F (R, t)+

i�

2
∇2F (R, t),

(44)
where p is a (nuclear) momentum at (R, t), which is
R(t), as

p = ∇Scl (R, t) . (45)

The Trotter decomposition for a very short time allows
for

F (R − R (t + Δt) , t + Δt)

� exp
[
i�

2
Δt∇2

]
exp

[
−1

2
(∇ · p)Δt

]
F (R − R (t) , t).

(46)

F (R −R (t) , t) here represents a solution, which is car-
ried by the classical flow in the Lagrange view.[82,83]
The term represented by exp

[− 1
2 (∇ · P )Δt

]
is referred

to as momentum gradient, while that by exp
[

i�
2 Δt∇2

]

to quantum diffusion. We can track F (R − R (t) , t)
according to ref. [82–84].

3.4.2 Gaussian approximation

So far the formal theory is rigorous in the limit of Δt →
0. However, to step further for numerical realization, we
approximate F (R − R (t) , t) with a Gaussian function
of the form,

G(R−R (t) , t) = N (t) exp
[
− 1

c (t) + id (t)
(R − R (t))2

]
,

(47)
N (t) being a normalization factor. Within the single
Gaussian approximation both the dynamics of momen-
tum gradient and quantum diffusion can be performed
almost rigorously. It has been found[82,83] that the
inverse exponents c (t) and d (t), both being real num-
ber (matrix), satisfy

ċ (t) = 2
σ̇ (t)
σ (t)

c (t) (48)

and

ḋ (t) = 2
σ̇ (t)
σ (t)

d (t) +
2�

m
, (49)

where the dot above the symbols indicates the first-
order time derivative. The so-called deviation determi-
nant σ (t) is expressed as

σ (t) =
N∏

i=1

∧ (
Ri(t) − R(t)

)
, (50)

which is an N -dimensional orientable tiny volume sur-
rounding the point R (t) in configuration space, rep-
resenting how the classical flow nearby R (t) behaves,
where Ri(t) is the ith classical trajectory running
nearby R (t). Equations (48) and (49) take account both
of momentum gradient and quantum diffusion collec-
tively. We refer to refs. [82,83] for multi-dimensional
calculation of σ (t), its meaning of the absolute invari-
ance, the associated Maslov index, and classical chaos.[87]
We call the function of Eq. (47) as ADF-NVG, with
NVG being for normalized variable Gaussian.

3.4.3 Example of branching nuclear packets along
branching paths

We next show an example in which the NVG are
propagated in time along the non-Born–Oppenheimer
branching paths (PSANB) created by electron wavepack-
ets. The total wavefunction is of the general form

Ψ(r, R, t) =
PES∑

K

path∑

k

CKk (t)ΦK(r;RKk (t))

× GKk (R − RKk (t) , t)
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exp
[

i

�
SKk (R − RKk (t))

]
, (51)

where k and K, respectively, indicate that the kth
path is running on the Kth potential energy surface.
In what follows, we use the ADF-NVG described above
as GKk (R − RKk (t) , t) in Eq. (1) with integrating the
classical action SKk along the path. In the following
calculations, the momentum gradient in Eq. (46) has
been treated by another form of approximation other
than one using the deviation determinant of Eq. (50),
which is (using the mass-weighted coordinates, in which
p = mv = v)

1
2

∫ t+Δt

t

∂p

∂q
ds =

1
2

∫ t+Δt

t

dv

∂q
ds =

1
2

∫ t+Δt

t

dv

v

=
1
2

log
v(t + Δt)

v(t)
, (52)

since this expression can be applied even to non-
Newtonian paths, provided that the information
(q(t), v(t)) is available.[84]

The adiabatic potential functions along with the
nonadiabatic coupling element are drawn in each col-
umn of Fig. 2 in red solid curves (see ref. [84] for
details). These curves model the essential character
of the ab initio potential curves of LiH molecule and
alkali halides. The bell-shape function also in a red solid
curve superposed on these potential curves represents
the nonadiabatic coupling element. A path-branching
calculation based on PSANB is carried out first. In this
example system the semiclassical Ehrenfest theory fails,
since any Ehrenfest path starting from the basin area
can never proceed to the asymptotic region of the dis-
sociation channel.[76] Next, G(R − R (t) , t) of Eq. (47)
and the relevant (formal) action integral are associated
so as to run along the branching paths. As for the initial
ADF-NVG in the PSANB approximation, we prepare
the following function

χNVG
0 =

(
1
π

)1/4

f0 exp
(−γ0(R − R0)2

)
exp

(
i

�
S0

)
,

(53)

with f0 = 1, c0 = 4δ2
0 , γ0 =

1
c0

, d0 = 0 and γ0 =

1
c0 + id0

, all in atomic (or absolute) units. S0 is chosen

to be the same as that of Eq. (55). The corresponding
full quantum nuclear wavepackets have been also gen-
erated for comparison. The initial Gaussian packet is
prepared at a position R0, with the initial wave num-
ber k0. The width is set to δ0 = 10/k0 so as to be in the
same order of its corresponding de Broglie wave length.
The explicit form is

χQM
0 =

(
1
π

)1/4

exp

[
−

(
R − R0

2δ0

)2
]

exp
(

i

�
S0

)
,

(54)

where S0 is the function mimicking the classical action

S0 = mv0(R − R0) +
1
2

(
−V

′
0

v0
(R − R0)2

)
(55)

with V
′
0 being a potential gradient at R = R0 on the

initial electronic state energy surface. S0 is chosen so as
to make a consistent comparison.

We here exemplify two cases: One is a vibrational
decay through the nonadiabatic coupling, the initial
wavepacket of which is prepared at the left cliff of the
lower curve (R0 = 2, with the initial momentum �k
= 25) in panel (A) of Fig. 2. The other one, panel
(B), is a collision event, with an initial packet com-
ing in from the dissociation channel (from R0 = 7 ,
with �k = −45). These total wavefunctions of the full
quantum and ADF-NVG are projected onto the nuclear
configuration space and compared at selected times. In
both cases the real parts of Full Quantum (in red solid
curve) and PSANB-ADF-NVG (blue broken curves)
are compared. The agreement up to the fine oscilla-
tory structures is seen to be quite good even for this
lowest level approximation in the construction of the
PSANB-ADF-NVG wavefunctions.[84]

Meanwhile, we also see the limitation or the valid-
ity range of the present theory. Among others, there is
no mathematical mechanism involved to feed the effect
of such quantization of nuclear dynamics back to the
electron wavepacket dynamics.

4 Time-dependent variational
determination of simultaneous electronic
and nuclear quantum wavepackets

As shown above, the semiclassical incorporation of the
Gaussian wavepackets (ADF-NVG) into nonadiabatic
electron wavepacket dynamics has marked an excel-
lent achievement as a nuclear and electronic quantum
wavepacket method. Thus far, however, the molecular
nuclei have been treated within the scheme of path
dynamics, that is, the nuclear Gaussian functions thus
running have no freedom for themselves to determine
their own (quantum) pathways. We therefore extend
the scheme so that not only the electronic wavepack-
ets but the nuclear wavepackets can determine their
dynamics subject to full quantum dynamics. In doing
so, we apply our developed time-dependent variational
principle (TDVP), with which we track in time the
set of parameters that characterize trials electronic and
nuclear wavefunctions. The bottom line of the accuracy
of the designed method is warranted by the above path-
branching method using ADF-NVG.
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Fig. 2 Comparison of the real parts of PSANB-AD-NVG
[blue and broken curves] and Full quantum mechanical [red
and solid curves] nuclear wavepackets (K = 1, 2). (A) a
vibrational decay case with the initial condition (x0, k0) =
(2, 35). The wavepackets on the lower (upper) straight line
is running on the lower (upper) potential surface. The full
quantum packets are slightly shifted below PSANB-ADF-
NVG one for clearer presentation. (B) A collision case with
the initial condition (x0, k0) = (7, −45). The wavepackets
on the lower (upper) straight line are running on the lower
(upper) potential surface. The full quantum packets are
again slightly shifted below PSANB-ADF-NVG for clearer
presentation

4.1 Dual least action principle to determine the
total wavefunctions

We begin with the equations of motion in a gen-
eral parameter space first with which to track the
Schrödinger dynamics. TDVP is a practical method-
ology in that it transforms the Schrödinger partial dif-
ferential equation to a set of coupled ordinary differ-
ential equations over the space of variational parame-
ters. There have been proposed various elaborated for-
malisms in the literature, such as those of the so-called
Dirac–Frenkel, McLachlan [88], Kan [89], Kramer and
Saraceno [90]. A unified account of these seemingly dif-

ferent theories was given by Broeckhove, Lathouwers,
Kesteloot and van Leuven [91]. These methods and
their variants are widely used in many fields of physics
and chemistry. (For more recent progress in other gen-
eral theories of TDVP, we refer to refs. [92–95].) Yet,
it is widely known that the existing TDVPs generally
bear a divergence problem, commonly arising from an
inversion procedure of singular matrices. To overcome
the technical matters fundamentally, and moreover, in
order to explore the theoretical structure of quantum
mechanics from the scope of axiomatic variational prin-
ciples, we have proposed a TDVP that is based on the
dual quantum mechanical Maupertuis least actions.[8]
Below we apply this quantum mechanical Maupertuis–
Hamilton least action principle having a set of dual vari-
ational functionals.

4.1.1 Dual variational functionals

To represent the variational principle generally, we
adopt general trial wavefunctions in a form φ (u,v) in
this particular subsection, where real-valued variational
parameter vectors u and v are supposed to have pair-
wise components (ui, vi).

Any TDVP generally starts from the stationarity of
the following single variational functional

δ

∫

C

〈
φ(u,v)

∣∣∣∣

(
i�

∂

∂t
− Ĥ

)∣∣∣∣φ(u,v)
〉

dt = 0. (56)

On the other hand, the Hamilton action principle plays
an axiomatic role in classical mechanics, which is

δ

∫
(pq̇ − H) dt = 0 (57)

with q and p being a coordinate point and its associated
momentum, respectively. (The mass-weighted coordi-
nates are used here also.) The canonical equations of
motion resulting from Eq. (57) are

d

dt
q =

∂H

∂p
and

d

dt
p = −∂H

∂q
, (58)

which is essentially all about classical mechanics. There-
fore, it is attractive to take an analogy to Eq. (57) by
defining the following variational functional

SH =
∫

C

(
v · u̇ −

〈
φ
∣∣∣Ĥ

∣∣∣φ
〉)

dt, (59)

where C indicates arbitrary time interval under study.
In what follows, φ is always assumed to be normalized,
and therefore the associated normalization factor may
be subject to the variational operation. An application
of the variational principle to SH alone gives
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δSH

=

∫
C

⎛
⎝v · δu̇ + u̇·δv−

∂
〈

φ
∣∣∣Ĥ

∣∣∣ φ
〉

∂u
· δu−

∂
〈

φ
∣∣∣Ĥ

∣∣∣ φ
〉

∂v
· δv

⎞
⎠ dt

= [v · δu]end2
end1

+

∫
C

⎡
⎣

⎛
⎝− dv

dt
−

∂
〈

φ
∣∣∣Ĥ

∣∣∣ φ
〉

∂u

⎞
⎠ · δu

+

⎛
⎝du

dt
−

∂
〈

φ
∣∣∣Ĥ

∣∣∣ φ
〉

∂v

⎞
⎠ · δv

⎤
⎦ dt

= 0 (60)

under the fixed boundary condition

[vδu]end2
end1 = 0. (61)

Since both δu and δv are individually arbitrary, Eq.
(60) results in the canonical equations of motion in the
parameter space

du
dt

=
∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

∂v
(62)

and

dv
dt

= −
∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

∂u
. (63)

It is obvious that along the flow lines (u(t),v(t)) in
parameter space thus determined, the energy conserva-
tion is ensured. This seems fine, yet is only partially
satisfactory from the view point of Eq. (56), in which
the Maupertuis (reduced) action v · u̇ of Eq. (59) does
not appear there.

The Maupertuis action can be actually retrieved in
such a way that

δ

∫

C

〈
φ

∣∣∣∣

(
i�

∂

∂t
− Ĥ

)∣∣∣∣φ
〉

dt

= δ

∫

C

(
v · u̇ −

〈
φ
∣∣∣Ĥ

∣∣∣φ
〉)

dt

− δ

∫

C

(
v · u̇ −

〈
φ

∣∣∣∣i�
∂

∂t

∣∣∣∣φ
〉)

dt. (64)

This subtraction is mathematically valid since the vari-
ation is a linear operation. Therefore, the Maupertuis
action has been cancelled in Eq. (56) and is formally
hidden. Thus, the variational functional appearing as a
counterpart in Eq. (64) is defined as

SW (u,v) =
∫

C

(
v · u̇ −

〈
φ

∣∣∣∣i�
∂

∂t

∣∣∣∣φ
〉)

dt

=
∫

C

(
v · u̇ − i�

〈
φ| φ̇

〉)
dt. (65)

Obviously, SW and SH are not independent from each
other, and indeed they are required to satisfy the simul-
taneous set of variational principles

{
δSH (u (t) ,v (t)) − δSW (u (t) ,v (t)) = 0

δSH (u (t) ,v (t)) = 0
δSW (u (t) ,v (t)) = 0

(66)

or more simply

δSH (u (t) ,v (t)) = δSW (u (t) ,v (t)) = 0, (67)

where (u (t) ,v (t)) in SH and SW should be common.
Equation (66) or (67) is referred to as a dual least action
principle.

The variational counterpart δSW = 0 has a different
physical meaning from that of δSH = 0. The formal
application of δSW = 0 gives rise to

du
dt

= i�
∂

∂v

〈
φ| φ̇

〉
(68)

and
dv
dt

= −i�
∂

∂u

〈
φ| φ̇

〉
, (69)

as Eqs. (62) and (63). Equations of motion (68) and
(69) represent a “flow conservation” (see below) along
the path

d

dt

〈
φ| φ̇

〉
=

dv
dt

·
∂
〈

φ| φ̇
〉

∂v
+

du
dt

·
∂
〈

φ| φ̇
〉

∂u
= 0. (70)

The duality in the present least action principle is
a reflection of the particle-wave duality of quantum
mechanics, that is, δSH(u,v) = 0 gives a dynamical
(or geometrical) restriction over the particle nature,
while δSW (u,v) = 0 provides a constraint over the
flow of matter wave. In particular, we may emphasize
δSW (u,v) = 0 is responsible for the correct descrip-
tion of the quantum phase associated with φ. This is
understandable if we recall that

i

∫ t 〈
φ(s)| φ̇(s)

〉
ds (71)

is widely denoted as the Berry phase.
Incidentally, we here confirm that v · u̇ is regarded

not merely as a factor to induce the Legendre trans-
formation but as a machinery to make resultant paths
stationary and invariant in the parameter spaces, real-
izing

∫
v · u̇dt =

∫
dv ∧ du = −

∫
du ∧ dv = −

∫
u · v̇dt.

(72)
v · u̇ in this context is identified as a quantity related
to an absolute invariance in the parameter space [96].
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4.1.2 Quantum flux in the parameter space for the wave
dynamics

We further survey the physical meaning of δSW = 0.
Rewrite the main part in SW as

i�
〈

φ| φ̇
〉

=
i�

2

(〈
φ| φ̇

〉
−

〈
φ̇
∣∣∣φ

〉)
,

=
i�

2

(
du
dt

·
∫ (

φ∗ ∂φ

∂u
− φ

∂φ∗

∂u

)
dq

+
dv
dt

·
∫ (

φ∗ ∂φ

∂v
− φ

∂φ∗

∂v

)
dq

)
,

which is real-valued. Note in this expression

∫ (
φ∗ ∂φ

∂u
− φ

∂φ∗

∂u

)
dq, (73)

for instance, corresponds to the gradient in u-direction
of the field of fluid. This is regarded as a quantum
mechanical flux[65] in parameter space. (Recall Eq. (33)
for the quantum flux in configuration space.) Thus, by
analogy, we may define fluxes as

ju ≡ �

2i

∫ (
φ∗ ∂φ

∂u
− φ

∂φ∗

∂u

)
dq = �Im

〈
φ| ∂φ

∂u

〉
,

(74)
which is the probability current in the u direction, and
likewise the flux in the v-direction is

jv ≡ �

2i

∫ (
φ∗ ∂φ

∂v
− φ

∂φ∗

∂v

)
dq = �Im

〈
φ| ∂φ

∂v

〉
.

(75)
We have after all

i�
〈

φ| φ̇
〉

= −
(

du
dt

· ju +
dv
dt

· jv
)

, (76)

which gives a natural interpretation of
〈

φ| φ̇
〉

in terms
of the flow in the parameter space.

Equations (68)-(69) are hence rewritten, respectively,
as

du
dt

= i�
∂
〈

φ| φ̇
〉

∂v
= − ∂

∂v

(
du
dt

· ju +
dv
dt

· jv
)

(77)

and

dv
dt

= −i�
∂
〈

φ| φ̇
〉

∂u
=

∂

∂u

(
du
dt

· ju +
dv
dt

· jv
)

. (78)

Note, however, that since du/dt and dv/dt appear in
the right-hand sides, a nonlinear nature of the dynamics
seem to make the situation complicated.

4.1.3 Equations of motion for the wave dynamics

To eliminate the nonlinear nature of Eqs. (77)-(78), we
may implant Eqs. (62)-(63) as du/dt and dv/dt in the
right hand sides of Eqs. (77)-(78), respectively, which
gives

du
dt

= − ∂

∂v

⎛

⎝
∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

∂v
· ju −

∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

∂u
· jv

⎞

⎠

(79)
and

dv
dt

= +
∂

∂u

⎛

⎝
∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

∂v
· ju −

∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

∂u
· jv

⎞

⎠ .

(80)
These can serve as our working equations, which should
be integrated together with Eqs. (62)-(63).

Note that we see the following factor in Eqs. (79) and
(80),

∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

∂v
· ju −

∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

∂u
· jv

=
(

∂〈φ|Ĥ|φ〉
∂u

∂〈φ|Ĥ|φ〉
∂v

)(
0 −I
I 0

)(
ju
jv

)
, (81)

which is a symplectic inner product between the Hamil-
tonian derivative vector and the flux vector. This quan-
tity demonstrates a unique coupling between the Hamil-
ton dynamics (particle dynamics) and the motion of
the spatial redistribution of probability density (wave
dynamics).

4.1.4 Simultaneous dynamics of particles and waves

The two sets of dynamical equations, Eqs. (62)–(63)
and Eqs. (77)–(78) (or Eqs. (79)–(80)) from the wave
flow dynamic, should be solved simultaneously. To do
so, we ought to treat both Eqs. (62)–(63) and Eqs.
(77)–(78) as pairwise simultaneous conditions to guide
(u(t),v(t)) along the correct trajectories. More pre-
cisely, we regard them as a short time approximate solu-
tion in such a way that

(
u(t + Δt)
v(t + Δt)

)

H

= F (t;Δt)
(
u(t)
v(t)

)

H

(82)

and likewise from Eqs. (77)-(78)

(
u(t + Δt)
v(t + Δt)

)

W

= G (t;Δt)
(
u(t)
v(t)

)

W

. (83)

The suffices H and W indicate, respectively, the Hamil-
ton dynamics and the wave-flow dynamics. In practi-
cal approximations, these two solutions at a finite time
t will deviate from each other after some finite time.
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Therefore, we apply the two short-time dynamics in an
alternant manner that, for instance,

(
u(t)
v(t)

)
= lim

Δt→0
G (t − Δt/2;Δt/2)F (t − Δt;Δt/2) · · ·

G (Δt/2;Δt/2)F (0;Δt/2)
(
u(0)
v(0)

)
. (84)

There can be many variants to replace this simplest
alternate products as have been figured out in the appli-
cations of the Trotter decomposition. The procedure in
Eq. (84) is formally equivalent to the alternant integra-
tion of
⎧
⎪⎪⎨

⎪⎪⎩

du(1)

dt = ∂
∂v(1)

〈
φ(u(1),v(1))

∣
∣
∣Ĥ

∣
∣
∣ φ(u(1),v(1))

〉∣
∣
∣
u(1)←u(2),v(1)←v(2)

dv(1)

dt = − ∂
∂u(1)

〈
φ(u(1),v(1))

∣
∣
∣Ĥ

∣
∣
∣ φ(u(1),v(1))

〉∣
∣
∣
u(1)←u(2),v(1)←v(2)

(85)
for an interval from t to t + Δt/2 and next one
⎧
⎪⎪⎨

⎪⎪⎩

du(2)

dt = i� ∂
∂v(2)

〈
φ(u(2),v(2))

∣
∣
∣ φ̇(u(2),v(2))

〉∣
∣
∣
u(2)←u(1),v(2)←v(1)

dv(2)

dt = − i� ∂
∂u(2)

〈
φ(u(2),v(2))

∣
∣
∣ φ̇(u(2),v(2))

〉∣
∣
∣
u(2)←u(1),v(2)←v(1)

,

(86)
from t + Δt/2 to t + Δt, where u(1) ← u(2) and
v(1) ← v(2), for instance, in the suffices of these equa-
tions demand that the values of u(2) and v(2) are to be,
respectively, inserted into u(1) and v(1) before the next
integration.

4.1.5 On the initial conditions consistent between
Hamilton dynamics and wave dynamics

du/dt and dv/dt of Eqs. (62)-(63) and Eqs. (68)-(69)
(in place of Eqs. (79)-(80) for shorter notation) must be
mathematically consistent, and hence the following con-
ditions need to be satisfied (either rigorously or approx-
imately for short time intervals)

⎛

⎝∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

/∂u ∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

/∂v

∂
〈

φ| φ̇
〉

/∂u ∂
〈

φ| φ̇
〉

/∂v

⎞

⎠
(

du/dt
dv/dt

)
= 0.

(87)
Consequently,

∣∣∣∣∣∣

∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

/∂u ∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

/∂v

∂
〈

φ| φ̇
〉

/∂u ∂
〈

φ| φ̇
〉

/∂v

∣∣∣∣∣∣
= 0 (88)

is required for Eq. (87) to give nontrivial solutions with
respect to the vector (du/dt, dv/dt).

If, on the other hand, either the functional form of
a trial function or the parameter setting in it, or both,
is not selected appropriate enough, the above condition
will be violated and consequently the dynamical equa-
tions of parameters cannot be integrated.

Likewise, we need to be careful about the choice of
initial conditions (u(0),v(0)). Practically, we need to

impose the conditions

det

∣∣∣∣∣∣

∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

/∂ui ∂
〈
φ
∣∣∣Ĥ

∣∣∣φ
〉

/∂vi

∂
〈

φ| φ̇
〉

/∂ui ∂
〈

φ| φ̇
〉

/∂vi

∣∣∣∣∣∣
= 0 (89)

on each pair of the initial components (ui(0), vi(0)),
in a manner consistent with the conditions for other
parameters.

Thus, the equations of motion to determine vari-
ational trial functions for simultaneous full quantum
electronic and nuclear wavepacket dynamics have been
set up. Our next task is to prepare the trial functions.

4.2 Total wavefunctions in Gaussian representation

We next expand the entire electronic-nuclear wavefunc-
tions in terms of the atomic-orbital-like Cartesian Gaus-
sian functions, and only the nuclear basis functions are
multiplied by plane waves. The variational parameters
appearing below in those functions are to be determined
variationally with the above dual least action principle.

4.2.1 The simplest case: nuclear packets running on an
adiabatic potential

The starting total wavefunction is chosen to be in the
simplest form as

Ψ(r,R, t) = Φ(ad)
K (r; 〈R〉t) G (R, t) , (90)

which fits in a physical situation before the electron
wavepacket undergoes bifurcation. Φ(ad)

K (r; 〈R〉t) is the
Kth adiabatic electronic wavefunction at molecular
geometry 〈R〉t, which indicates the position averaged
over the nuclear wavefunction G (R, t) such that

〈R〉t = 〈G (t) |R|G (t)〉 , (91)

where G (t) is normalized.
G (R, t) in Eq. (90) is can be primarily written as

G (R, t) = gA(RA, t)gB(RB , t) · · · , (92)

in which the so-called contracted Cartesian Gaussians
are adopted with plane wave components in such a way
that

gA(RA, t) =

(A)∑
ΛA

dA
ΛA

(t)GA
ΛA

(RA − QA(t))

=

(A)∑
ΛA

dA
ΛA

(t) (xA − QAx(t))lA

× (yA − QAy(t))
mA (zA − QAz(t))

nA

× exp
[
−(RA − QA(t)) · αA

ΛA
(t) · (RA − QA(t))

+
i

�
PA (t) · (RA − QA(t))

]
, (93)
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where R = (RA,RB , ...) with RA = (xA, yA, zA), and
the vector ΛA indicates a set of (lA,mA, nA) as in the
atomic orbital representation.

∑(A)
ΛA

requires a sum-
mation with respect to possible combinations of ΛA

within the coordinate RA. The function gA(RA, t) for
the nuclear coordinate RA is supposed to be localized
around a nuclear Gaussian center QA(t), and QA(t)
are supposed to be moving with its effective associ-
ated momentum PA (t), as in the sense of the squeezed
state representation. The (complex-valued) exponents
matrix αA

ΛA
(t) give the width of the Gaussian, each

of which is a little skewed by pre-exponential factor
with (lA,mA, nA) and coefficients

{
dA
ΛA

(t)
}
. Accord-

ingly, the elementary setup of the Gaussian functions
as basis functions is almost exactly the same as those in
the electronic state calculations, except that the nuclear
part is characterized by the time dependence of PA (t)
and αA

ΛA
(t). Thus, the molecular frame to define elec-

tron dynamics is specified by the quantum mechanical
average of the nuclear positions

〈R〉t = {〈RA〉t , 〈RB〉t , · · · } (94)

with the average three-dimensional position for the
nucleus A being

〈RA〉t =
∫

RA |gA(RA, t)|2 dRA, (95)

under conditions 〈gA| gA〉 = 1. Practically, a convenient
approximation for the averages must be to choose

〈RA〉t � QA(t), (96)

which is practically identified as the central position of
the Ath nuclei at time t.

The squeezed-state-type Gaussian functions, without
the polynomial functions in the pre-exponential factors,
have been extensively used mainly in semiclassical con-
text in the Born–Huang representation (see a series of
pioneering works by Heller[97,98]). As discussed in the
preceding section, we have taken the normalized vari-
able Gaussians as ADF in the nonadiabatic electron
wavepacket dynamics.[82,83,86] However, we hereafter
proceed in a full quantum manner without resorting to
any classical and/or semiclassical dynamics. The great-
est advantage of the functions of Eq. (93) in use of the
molecular problems is that all the atomic integrals with
respect to the nuclear kinetic energy, electron-nuclear
Coulomb interaction, nuclear-nuclear Coulomb interac-
tion are basically available. These integrals are direct
extensions of the ab initio electronic state counterparts;
the energies of electronic kinetic, electron–nuclear inter-
action, and electron–electron interactions. Besides, as
stressed above (in Sect. 2.3.2), much experience about
the atomic and molecular Gaussian integrals including
plane waves has been extensively accumulated in the
studies of electron scattering by molecules.[18,30,35]

Incidentally, the electronic part of Ψ(r,R, t) in Eq.
(90) can be expanded in general basis functions other

than the adiabatic wavefunctions such that

Ψ(r,R, t) =

(
∑

I

CI(t)ΦI (r; 〈R〉t)

)
G (R, t) , (97)

where ΦI (r;R) are those functions like configura-
tion state functions, Slater determinants composed of
any orbitals, and so on. By variationally propagating
CI(t) in time simultaneously with G (R, t), one can
track Ψ(r,R, t) without diagonalization for obtaining
Φ(ad)

K (r; 〈R〉t) at each time.[70]
As for the electronic counterparts, we also adopt the

standard Cartesian Gaussian functions χA
i (r; 〈RA〉),

which is positioned at 〈RA〉. Relevant molecular orbitals
φm(r) are expanded as

φm(r) =
∑

A

A∑

i

cmiχ
A
i (r; 〈RA〉) (98)

with
〈φm|φn〉 = δmn. (99)

The total electronic and nuclear wavefunctions are
expanded in terms of the configuration functions

[Aφ1(r1)φ2(r2) · · · ] [gA(RA, t)gB(RB , t) · · · ]
≡ ΦI (r; 〈R〉t) G (R, t) (100)

where A is the antisymmetrizer for the electronic coor-
dinates only. Note again that ΦI (r; 〈R〉t) is just one of
the configuration state functions or the Slater determi-
nants adopted.

4.2.2 Nuclear molecular orbitals and beyond

It is not hard to extend the localized nuclear Gaussian
functions so as to extend in space to be referred to as
“nuclear molecular orbital” such that

gM (R, t)

=
∑

A

DM
A (t)

(A)∑

ΛA

dA
ΛA

(t)GA
ΛA

(R − QA(t))).

(101)

By assigning g1(R, t) to RA and g2(R, t) to RB , and
so on we obtain a Hartree product

ΦI (r; 〈R〉t)
[
g1(RA, t)g2(RB , t) · · · ] (102)

in terms of time-dependent nuclear molecular orbitals.
Compared with Eq. (100), with this straightforward
extension the electronic and nuclear parts are treated
on equal footing, except for the antisymmetrization
over electronic coordinates.

Generalization to the multi-reference form further
consisting of the direct products of those nuclear molec-
ular orbitals is rather straightforward.

123



Eur. Phys. J. D (2021) 75 :252 Page 17 of 22 252

4.2.3 Configurations after wavepacket bifurcation

A general form of a electronic and nuclear electronic
wavepacket can be represented such that

Ψ(r,R, t) =
∑

K

CK(t)Φ(ad)
K

(
r; 〈R〉K

t

)
GK (R, t) .

(103)
We here choose the adiabatic functions Φ(ad)

K just for
simpler interpretation. One may use more general basis
functions like the Slater determinants as done in Eq.
(97). GK (R, t) indicates the nuclear wavefunction in
the Kth nuclear frame defined as

GK (R, t) = gK
A (RA, t)gK

B (RB , t) · · · (104)

with 〈R〉K
t being the average over the Kth frame. Each

component such as gK
A (RA, t) is further expanded as

gKA (RA, t) ≡
⎡
⎣

(A)∑
ΛK,A

dK,A
ΛK,A

(t)GK,A
ΛK,A

(RA − QK
A (t))

⎤
⎦

=

(A)∑
ΛK,A

dK,A
ΛK,A

(t)
(
xA − QK

Ax(t)
)lKA

(
yA − QK

Ay(t)
)mK

A
(
zA − QK

Az(t)
)nK

a

× exp
[
−(RA − QK

A (t)) · αKA
ΛK,A

(t) · (RA − QK
A (t))

+
i

�
PK

A (t) · (RA − QK
A (t))

]
, (105)

where ΛK,A = (lKA ,mK
A , nK

A ). These are rather a
straightforward extension of the definition of Eq. (93).
One may want to use the nuclear molecular orbital of
Eq. (101) for the individual Kth state. Ψ(r,R, t) in
Eq. (103) is the most general form of the electronic and
nuclear wavepacket dynamics in this stage.

4.2.4 Dynamical parameters to be determined

Almost all the matrix elements needed for the atomic
integrals for electronic and nuclear components are
essentially available in the standard quantum chemical
programs, even though some necessary modifications
are demanded. The parameters to be tracked in TDVP
are summarized as

{
QK

A (t),PK
A (t)

}
(106)

and {
αKA

ΛK,A
(t)

}
,

{
dK,A
ΛK,A

(t)
}

(107)

for nuclei (and
{
DM

A (t)
}

for nuclear molecular orbitals),
and

{CK(t)} (108)

for electrons. Note that the variational parameters for
electronic configurations are just linear and thereby can
be determined with the Dirac–Frenkel variational prin-
ciple in the manner similar to Eq. (38).

4.2.5 Mean field approximation

The wavefunction in Eq. (103) can be determined vari-
ationally for all the time throughout reactions, which
represents a coherent set of electronic and nuclear
wavepackets, each running on each (the Kth) adiabatic
potential surface at the center of the nuclear positions(
QK

A (t),QK
B (t), · · · ). Suppose the total wavepacket

Ψ(r,R, t) lies in an area of strong nonadiabatic cou-
pling among the component states (say the Kth adia-
batic states). In such a case, it should be impractical to
calculate the Hamilton matrix elements between elec-
tronic wavefunctions sitting at

(
QK

A (t),QK
B (t), · · · ) and

that at
(
QL

A(t),QL
B(t), · · · ) for K �= L even with the

current technology of quantum chemistry.
To cope with this situation, we consider a mean-

field approximation with respect to the centers of the
nuclear wavepackets, which shares the same spirit with
the semiclassical Ehrenfest theory, in which the nuclear
force is averaged over the relevant electron wavepack-
ets (recall Eq. (41)). We below describe how to propa-
gate in time the mean-field wavefunction ΨMF (r,R, t)
in a recursive manner. Suppose we have already had
ΨMF (r,R, t) such that

ΨMF (r,R, t) =
∑
K

CK(t)Φ
(ad)
K

(
r; 〈R〉AV

t

)

× gK,AV
A (RA, t)gK,AV

B (RB , t) · · · ,
(109)

where

gK,AV
A (RA, t)

≡
⎡
⎣ (A)∑

ΛK,A

dK,A
ΛK,A

(t)GK,A
ΛK,A

(RA − QAV
A (t))

⎤
⎦

=

(A)∑
ΛK,A

dK,A
ΛK,A

(t)
(
xA − QAV

Ax (t)
)lKA

(
yA − QAV

Ay (t)
)mK

A
(
zA − QAV

Az (t)
)nK

a

× exp
[
−(RA − QAV

A (t)) · αKA
ΛK,A

(t) · (RA − QAV
A (t))

+
i

�
PAV

A (t) · (RA − QAV
A (t))

]
. (110)

All the electronic states have a common molecular
frame 〈R〉AV

t , which is

〈R〉AV
t =

{
QAV

A (t),QAV
B (t), · · ·} . (111)

With the initial condition
{
QAV

A (t),PAV
A (t)

}
,{

αKA
ΛK,A

(t)
}

,
{

dK,A
ΛK,A

(t)
}

, and {CK(t)}, the time-

dependent variational principle gives
{
QK

A (t + Δt),

PK
A (t + Δt)

}
(Eq. 106),

{
αKA

ΛK,A
(t + Δt)

}
(Eq. 107)),

{
dK,A
ΛK,A

(t + Δt)
}

and {CK(t + Δt)} (Eq. 108)) for all
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the Kth states. Then we take average only for Q and
P parameters in such a way that

QAV
A (t + Δt) =

∑
K QK

A (t + Δt) |CK(t + Δt)|2
∑

L |CL(t + Δt)|2 (112)

and

PAV
A (t+Δt) =

∑
K PK

A (t + Δt) |CK(t + Δt)|2
∑

L |CL(t + Δt)|2 . (113)

We thus can proceed to determine the parameters at
time step next to t + Δt. Note here again that the
mean-field approximation is generally not valid for an
exceedingly long-time.

Incidentally, one can track back to the semiclassical
Ehrenfest theory (SET)[77–81] from the form of Eq.
(109), which is shown in Appendix, justifying the math-
ematical procedure of the present framework as well.

4.2.6 Wavepacket bifurcation

We next consider the quantum mechanical extension
of the idea of naturally branching paths [76], which
was devised for the nonadiabatic electron wavepacket
dynamics of Eq. (37) in the path approximation with
the force matrix. Let us consider a wavepacket bifurca-
tion

ΨK(r,R, s) = Φ(ad)
K (r; 〈R〉s) G (R, s)

→ Ψ(r,R, t) =
∑

K

CK(t)Φ(ad)
K

(
r; 〈R〉K

t

)
GK (R, t) ,

(114)

in which a wavepacket ΨK(r,R, s) passes across a nona-
diabatic region on the way from time s to t.

Suppose ΨK enters into the nonadiabatic region.
Then we switch to the mean-field approximation within
the adiabatic states involved in this nonadiabatic region
with an appropriate set of the conditions to resume the
mean-field wavepacket dynamics.

At a time, say tB , when conditions
∫

drdR
[
Φ(ad)

K

(
r; 〈R〉K

t

)
GK (R, t)

]∗

× Ĥ
[
Φ(ad)

L

(
r; 〈R〉L

t

)
GL (R, t)

]
� 0 (115)

are approximately satisfied, we terminate the mean-
field approximation, where Ĥ is the total electronic and
nuclear Hamiltonian.

After time tB , each wavepacket component resumes
to run on each adiabatic state such that

CK(tB)Φ(ad)
K

(
r; 〈R〉K

t

)
gK

A (RA, t)gK
B (RB , t) · · · ,

(116)
with (

QK
A (t),QK

B (t), · · · ) (117)

of Eq. (105). CK(tB) is the final coefficient at t = tB ,
and thereafter CK(t) is fixed as

CK(t) = CK(tB), (118)

giving the transition amplitude.
By the collection of those bifurcated wavepackets,

each being represented as in Eq. (116), into a single
grand wavefunction, the form of Eq. (103) is retrieved.

Another physically important aspect of wavepacket
dynamics is the coherent merging between the elec-
tronic and nuclear packets running on different adia-
batic potential energy surfaces in nonadiabatic interac-
tion regions. In this case the total Hamiltonian matrix
elements in Eq. (115) grows to a significant level. Here
at this point the simple path approximation discussed
in Sect. 3.3 faces a fundamental difficulty due to the
lack of the information about nuclear wavefunction.
The present approach of full quantum wavepacket treat-
ment has lifted this fundamental adversity. We will dis-
cuss the relevant technical issues somewhere else.

We have just formulated a nonadiabatically cou-
pled dynamics in terms of simultaneous electronic and
nuclear quantum wavepackets.

5 Concluding remarks

We have partially accomplished the aim to formulate
simultaneous electronic and nuclear quantum wavepacket
dynamics in molecules by incorporating nuclear wavepack-
ets into the previously formulated nonadiabatic electron
wavepacket dynamics. A logical trail to reach there has
been sketched together.

In the proposed scheme, the nuclear wavepackets
are to be expanded in terms of the (Cartesian) Gaus-
sian functions, exactly as the electronic wavefunctions
are. A formal difference is that the nuclear wavefunc-
tions need plane-wave components as in the so-called
squeezed-state (or vaguely coherent-state) representa-
tion. The accumulated experience in the theory of
electron-molecule scattering and others, the atomic and
molecular integrals including those plane waves, has
already been customarily performed. Therefore, it is
anticipated that the extension of the molecular inte-
grals is of no technical difficulty.

The positions of the center of the nuclear Gaussians
are determined through the phase-space-like parame-
ters involved in the squeezed-states, and the spatial
distributions and anisotropy of the shapes are to be
represented by the Gaussian exponents and the pre-
exponential polynomial terms as well. Those parame-
ters, along with the relevant coefficients of electronic
molecular orbitals and electronic configurations, are
to be uniformly and systematically determined by the
quantum mechanical time-dependent variational princi-
ple. Among many variants of the time-dependent varia-
tional principle (TDVP), we propose to apply our devel-
oped one, the dual least action principle based on the
quantum mechanical Maupertuis–Hamilton least action
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principle, which has resolved the mathematical difficul-
ties inherent to the existing TDVP.

If the nuclear wavepacket dynamics is mimicked with
the path-branching dynamics, the theory comes back
to the mixed quantum-classical representation as pre-
sented in Sect. 3.4. We have shown there that the vari-
able Gaussian functions (ADF-NVG) that are designed
to run on the branching paths could approximate the
corresponding full quantum nuclear wavefunctions very
accurately. Thus, the proposed full electronic-nuclear
simultaneous wavepacket dynamics is well guaranteed
in accuracy. We anticipate much development in new
realm of molecular science, in which quantum nature of
nuclei and entanglement between electrons and nuclei
are significant.

Finally, the present work does never ever under-
estimate the roles of the Born–Huang representation
based on the molecular view of Born and Oppenheimer.
Indeed, we have emphasized this aspect through our
own contributions in Sect. 2. Nonetheless, it is worth
refraining that the simultaneous nonadiabatic electron
and nuclear wavepacket representation should be indis-
pensable to analyze the molecular systems of very
large electronic fluctuation and/or to track real-time
electronic and nuclear coupled dynamics of significant
quantum effects.
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Appendix A: Semiclassical Ehrenfest theory
brought back from the full quantum coun-
terpart

We here explicitly show the semiclassical Ehrenfest the-
ory (SET) can be indeed brought back from the full
quantum electronic and nuclear wavepacket theory. Let
us rewrite the total Hamiltonian in a little more conve-
nient form as

Ĥ(R, elec)

≡ 1
2

∑

k

(
P̂k − i�

∑

IJ

|ΦI〉Xk
IJ 〈ΦJ |

)2

+
∑

IJ

|ΦI〉H(el)
IJ 〈ΦJ |

=
1
2

∑

k

(
P̂ 2

k − 2i�P̂k

∑

IJ

|ΦI〉Xk
IJ 〈ΦJ |

−�
2
∑

IJ

∑

K

|ΦI〉Xk
IKXk

KJ〈ΦJ |
)

+
∑

IJ

|ΦI〉H(el)
IJ 〈ΦJ |

=
1
2

∑

k

P̂ 2
k − i�

∑

k

P̂k

(
∑

IJ

|ΦI〉Xk
IJ 〈ΦJ |

)

+
∑

IJ

|ΦI〉
(

H
(el)
IJ − �

2

2

∑

k

Y k
IJ

)
〈ΦJ |

=
1
2

∑

k

P̂ 2
k +

∑

IJ

|ΦI〉

×
(

H
(el)
IJ − i�

∑

k

P̂kXk
IJ − �

2

2

∑

k

Y k
IJ

)
〈ΦJ |

(A1)

with

Y k
IJ =

∑

K

Xk
IKXk

KJ . (A2)

The so-called mass-weighted coordinate is applied,
keeping

Mk = 1 (A3)

and the electron mass is also unity. Note again that P̂k

is supposed to be operated only on the nuclear wave-
functions such as G (R, t), but not on the R parameters
in ΦI(r;R).

We consider the simplest form of the electronic and
nuclear wavepacket, Eq. (97), which is reproduced here
just for convenience

Ψ(r,R, t) =

(
∑

I

CI(t)ΦI (r; 〈R〉t)

)
G (R, t) , (A4)
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where both the nuclear and electronic parts are normal-
ized such that

〈
∑

I

CI(t)ΦI (; 〈R〉t)

∣∣∣∣∣
∑

I

CI(t)ΦI (; 〈R〉t)

〉

r

= 1

(A5)
and

〈G (t)|G (t)〉R = 1. (A6)

The expectation value of Ĥ(R, elec) with respect to
Ψ(r,R, t) is simply
〈
Ψ(t)

∣∣∣Ĥ(R, elec)
∣∣∣ Ψ(t)

〉

=
∑

CI(t)
∗CJ(t)〈

ΦI

(
r; 〈R〉t

)
G (R, t)

∣∣∣Ĥ(R, elec)
∣∣∣ ΦJ

(
r; 〈R〉t

)
G (R, t)

〉
.

(A7)

Then it appears as

〈
Ψ(t)

∣∣∣Ĥ(R, elec)
∣∣∣Ψ(t)

〉

=
1
2

∑

k

〈
G

∣∣∣P̂ 2
k

∣∣∣G
〉

+
∑

IJ

CI(t)∗CJ (t)

〈
G

∣∣∣∣∣

(
H

(el)
IJ − i�

∑

k

P̂k − �
2

2

∑

k

Y k
IJ

)∣∣∣∣∣G
〉

=
1
2

∑

k

〈
G

∣∣∣P̂ 2
k

∣∣∣G
〉

+
∑

IJ

CI(t)∗CJ (t)

(
H

(el)
IJ − i�

∑

k

〈
G

∣∣∣P̂k

∣∣∣G
〉

Xk
IJ − �

2

2

∑

k

Y k
IJ

)
.

(A8)

Next, let us classicalize them such that

〈
G

∣∣∣P̂ 2
k

∣∣∣G
〉

→ P 2
k (A9)

and 〈
G

∣∣∣P̂k

∣∣∣G
〉

→ Pk = MkṘk (A10)

Then we have
〈
Ψ(t)

∣∣∣Ĥ(R, elec)
∣∣∣Ψ(t)

〉

→ 1
2

∑

k

P 2
k +

∑

IJ

CI(t)∗CJ(t)

×
(

H
(el)
IJ − i�

∑

k

ṘkXk
IJ − �

2

2

∑

k

Y k
IJ

)
.

(A11)

Applying to the Dirac–Frenkel variational principle
with respect to the set of coefficients {CI(t)}, we
directly attain the coupled equations of motion for
the electronic states. Note that the second-order terms

�
2

2

∑
k Y k

IJ exist in the dynamics [1–7], in contrast to the
previous theories commonly referred to as SET [77–81].
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