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Abstract. The relaxation of free electron–hole pairs generated after proton irradiation is modelled by means
of a simplified set of hydrodynamic equations. The model describes the coupled evolution of the electron–
hole pair and self-trapped exciton (STE) densities, along with the electronic and lattice temperatures.
The equilibration of the electronic and lattice excitations is based on the two-temperature model, while
two mechanisms for the relaxation of free electron–hole pairs are considered: STE formation and Auger
recombination. Coulomb screening and band gap renormalisation are also taken into account. Our numerical
results show an ultrafast (� 1 ps) free electron–hole pair relaxation time in amorphous SiO2 for initial
carrier densities either below or above the exciton Mott transition. Coulomb screening alone is not found to
yield the long relaxation time (�10 ps) experimentally observed in amorphous SiO2 and borosilicate crown
glass BK7 irradiated with high-intensity laser pulses or BK7 irradiated by short proton pulses. Another
mechanism, e.g. thermal detrapping of STEs, is required to correctly model the long free electron–hole
pair relaxation time observed experimentally.

1 Introduction

The passage of swift ions through semiconductors or
insulators generates a large density of electron–hole
pairs, which eventually recombine either radiatively or
non-radiatively. Most of the energy deposited by the
electron–hole pairs is exchanged with the atomic lat-
tice and can yield permanent radiation damage, such as
point or extended defects [1]. The pathway to radiation
damage involves multiple time and length scales. Three
microscopic mechanisms have been proposed for the
early stages of this pathway: Coulomb explosion [2,3],
thermal spikes [4–7], and excitonic [1,8–10]. The exci-
tonic mechanics requires the formation of self-trapped
excitons (STEs), which is known to occur in several
wide gap insulators, including alkali halides and oxides
such as silica (SiO2) [11].

The formation of STEs has been experimentally
observed in both quartz (α-SiO2) and amorphous silica
(a-SiO2) [12–14]. These groundbreaking femtosecond
pump–probe experiments found that free electron–hole
pairs relax into STEs in about 150 fs. Subsequent mea-
surements indicate a relaxation time between 50 and
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220 fs, suggesting a longer free electron–hole pair relax-
ation time as the laser intensity is increased [15,16].
Grojo et al. [17] also observed an abrupt increase of the
free electron–hole pair relaxation time in a-SiO2 as the
charge density exceeds 1020 cm−3. Critical examina-
tion of the experimental conditions and modelling sug-
gests that relaxation to STEs may not be the dominant
mechanism for electron–hole densities as large as 1022

cm−3 [18]. Since for large electron–hole pair densities
Coulomb screening is known to hinder the formation of
free excitons—which are the precursor of STEs—Auger
recombination will become dominant [19,20]. The tran-
sition from a gas of free excitons to an electron–hole
plasma driven by Coulomb screening is known as the
exciton Mott transition (EMT) [21–23].

Along with the well-established femtosecond pump–
probe laser approach, it is now possible to ‘pump’
electron–hole pairs in transparent insulators with ultra-
short (about 3.3 ps [24]) proton pulses generated by tar-
get normal sheath acceleration [25] and then probe the
electron–hole plasma optically [24,26–28]. Both laser
and proton irradiation can achieve large power densi-
ties (1018–1019 W/cm3) [5]. Protons deposit the energy
in a cylinder of only a few nanometres radius along
their trajectories, while a laser beam is typically a few
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micrometers across. It is then possible to locally excite
a large density of electron–hole pairs (1019 cm−3) with-
out permanently damaging the sample on a micrometric
scale [28].

Initial experiments with an ultrafast proton ‘pump’
measured the transient opacity of a borosilicate crown
glass BK7 using an optical streaking technique [24].
The transient opacity lasted for an unexpectedly long
time (hundreds of ps), much longer than the carrier–
lattice thermal equilibration time predicted from a typi-
cal electron–phonon timescale of about 0.1 ps [5,6]. This
long relaxation time has been confirmed by subsequent
experiments [27,28] and points towards the presence
of a ‘cold’—i.e. of temperature comparable with the
lattice temperature—persistent electron–hole plasma
which can still absorb in the near infrared (1053 nm)
over hundreds of ps.

In this article, we investigate the effectiveness of
Coulomb screening in determining long free electron–
hole pair relaxation times. Our conclusions are based
on the numerical solution of a simplified set of hydro-
dynamic equations for the coupled evolution of the
electron–hole and STE densities, alongside with the
electronic and lattice temperatures. In particular, we
found that Coulomb screening alone does not yield a
substantial increase of the relaxation time and in fact
it causes a slight reduction of it. On the other hand, long
free electron–hole pair relaxation times are possible as
a consequence of a combination of Coulomb screening
and an effective thermal detrapping of STEs.

2 Hydrodynamic model

Our phenomenological description is based on a simpli-
fied version of a set of hydrodynamic equations, com-
monly known as energy-transport model, originally
developed to model ‘hot’ electrons and holes in semi-
conductor devices [6,29]. The full set of equations reads
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where q is the unit charge, ε0εr gives the static dielectric
permittivity of the material, φ is the electrostatic poten-
tial, n, p and nste represent the electron, hole and STE
densities (unit: cm−3), Tn, Tp and TL are the electron,
hole and lattice temperatures, Jn, Jp and JL are the
charge current densities associated with the electrons,
holes and lattice, Sn, Sp and SL are the energy current
densities associated with the electrons, holes and lattice
, ρL gives the lattice density (unit: g/cm3), cL is the spe-
cific heat capacity of the lattice (unit: erg/g · K), τn and
τp are phenomenological relaxation times based on the
two-temperature model of the carrier–lattice thermal
equilibration [30], Eg is the energy gap, Ex is the STE
energy and Rrad, Rsrh, R

(n,p)
aug and Rste are rates (unit:

cm−3 · s−1) for radiative recombination, defect-assisted
(Shockley–Read–Hall) recombination, Auger recombi-
nation (for electrons or holes ) and STE formation.
Finally, τste,r and τste,nr give the radiative and non-
radiative STE decay times, respectively (see Sect. 3).

The constitutive equations for the currents are
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where kB is the Boltzmann constant, Mn and Mp

are the phenomenological electron and hole mobilities,
while κn, κp and κL are the electron, hole and lattice
heat conductivities. It is also assumed that
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where the coefficients rn and rp come from the power-
law dependence of the most effective relaxation time
as a function of the kinetic energy of the electrons and
holes. The power is + 3

2 for ionised impurity scattering,
− 1

2 for acoustic phonon scattering and +1
2 for opti-

cal phonon scattering [31]. If radiative recombination
is neglected, Eq. (1) conserves the integral of the total
energy density

utot =
1
2
ε0εr (∇φ)2 +

Eg

2
(n + p) +

3
2
nkBTn +

3
2
pkBTp

+nsteEste + uL , (4)

where the lattice energy density is defined so that
∂uL

∂t = ρLcL
∂TL

∂t .
The original hydrodynamic equations have been

obtained by taking the moments of the Boltzmann
transport equation for semiconductors [32]. The equa-
tions for the moments form an exact, yet infinite,
hierarchy which in practice needs to be truncated.
Here, we have followed the approach introduced in
Ref. [33], which approximates the moments of third
or higher order using equilibrium Boltzmann statistics,
i.e. non-degenerate electrons and holes which have fully
equilibrated at temperature Tn and Tp, respectively.
The validity of this approximation can be checked
a posteriori by looking, e.g. at the degeneracy fac-
tor defined as the argument of the exponential on
the right-hand side of Eq. (13) or (14). We found
that Boltzmann statistics is indeed accurate away from
the EMT, i.e. when the electron–hole pairs are either
completely dissociated or bounded. Extensions to the
degenerate case are known [34,35], but are not con-
sidered in this article for the sake of simplicity. It
is also worth noting that the hydrodynamic equa-
tions have been obtained within the relaxation time
approximation. However, a different relaxation time is
assumed for each of the moments [33]. To this extent,
the approach is fundamentally phenomenological and
its accuracy relies on the way the phenomenologi-
cal relaxation times are obtained. A complete discus-
sion of the known limitations of the hydrodynamic
model of transport in semiconductors can be found in
Ref. [29].

Since in this article we are concerned with the
picosecond response of excited transparent insulators,
we carry on by neglecting radiative and defect-assisted
(Shockley–Read–Hall) recombination. These two pro-
cesses typically characterise the nanosecond response of
semiconductors and insulators [36]. We will also assume
local charge neutrality so that we can take φ = 0,
p = n and Tp = Tn. This is usually a good approxi-
mation after a few femtoseconds [6]. To keep the pre-
sentation simple and uncluttered, we also neglect the
spatial dependency of the fields. This is usually not a
good approximation, but it will not affect our discus-
sion of the electron–hole pair density relaxation—see
Sect. 5.

The set of simplified hydrodynamic equations consid-
ered in this article reads
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∂nste
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)
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where τ = (τn + τp) /2, Raug = R
(n)
aug + R

(p)
aug and

Qbgr (n) is a correcting term due to band gap
renormalisation, see Sect. 3.2. In the second line of Eq.
5, we have also neglected the STE decay as it occurs
on a timescale typically longer than that considered in
this article.

3 Excitonic processes

In this section, we use an analogy with chemical reac-
tions, in which the ‘chemical’ species are electrons,
holes, free excitons and STEs. According to this anal-
ogy, we can write down the following set of reac-
tions

e + h ←→ x

x −→ ste
ste −→ γ (radiative) ,

ste −→ FP (non − radiative) ,

(6)

where γ stands for photon and ‘FP’ for Frenkel pair
of point defects. The last two reactions give the two
STE decay pathways [10]. We initially assume that the
STEs cannot ‘untrap’ and postpone the discussion of
the thermal detrapping of STEs to the end of Sect. 5.
For the sake of simplicity, we also neglect the impact
dissociation of STEs.

The corresponding system of kinetic equations is

dn

dt
= −k1n

2 + k−1nx ,

dnx

dt
= k1n

2 − k−1nx − k2nx ,

dnste

dt
= k2nx −

(
1

τste,r
+

1
τste,nr

)
nste ,

(7)

where k1 and k−1 are the reaction rate constants of the
forward and backward reactions in the first line of Eq.
(6), k2 is the reaction rate constant in the second line
of Eq. (6) and 1/τste,r and 1/τste,nr are the reaction
rate constants in the third and fourth lines of Eq. (6).
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These last two rates are also found in the fourth line
of Eq. (1). Neglecting the radiative and non-radiative
decay of STEs, we have that n+nx +nste is conserved.
Rate constants can depend on both electronic and lat-
tice temperatures, see Sec. 3.2

At very large electronic temperatures, the equi-
librium of the first reaction is shifted towards free
electron–hole pair and there will be very few free exci-
tons. This condition is generally fulfilled immediately
after irradiation since the electronic temperature is
large [6]. Exciton trapping can be a very fast (possibly
barrierless [37]) process, e.g. in a-SiO2 it occurs in about
150 fs [12–14]. In this case, we can use a quasi-steady-
state approximation (QSSA) for the free excitons and
assume that

dnx

dt
= k1n

2 − k−1nx − k2nx ≈ 0 . (8)

This assumption implies that free excitons are short-
lived species—or reactive intermediates—and that their
density is always negligible.

As a consequence of Eq. (8), we can substitute

nx ≈ k1n
2

(k−1 + k2)
(9)

into Eq. (7) to obtain

dn

dt
≈ − k1k2n

2

(k−1 + k2)
,
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dt
≈ k1k2n

2

(k−1 + k2)
−

(
1

τste,r
+

1
τste,nr

)
nste .

(10)

Within the domain of applicability of the QSSA, we
can now distinguish between two extreme regimes:

1. When k2 � k−1 the electron–hole pairs and the free
excitons reach their chemical equilibrium, given by
nx = (k1/k−1) n2, before the free excitons decay into
STEs. In this case, k2 at the denominator of the
right-hand side of the first line of Eq. (10) can be
neglected, leading to

dn

dt
≈ −k2

(
k1

k−1

)
n2 = −keff

1 n2 . (11)

Note that by using the above mentioned equilibrium
condition, we have that keff

1 n2 = k2nx. This condi-
tion is fulfilled close to the EMT because k−1 gets
large—see Eq. (22). Hence, close to the EMT the
free electron–hole pairs can become long-lived, even
if 1/k2 ≈ 150 fs [12–14], since nx ≈ 0 — see discus-
sion after Eq. (17). Note that this ‘excitonic bottle-
neck’ is effective only if the rate of Auger recombi-
nation is smaller than keff

1 n2. Above the EMT, the
electron–hole pairs are still unstable even if keff

1 ≈ 0
and will eventually decay through Auger recombina-
tion [20].

2. When k−1 � k2, the free excitons decay into self-
trapped excitons before reaching an equilibrium with
the electron–hole pair and

dn

dt
≈ −k1n

2 . (12)

This regime can be relevant far from the EMT and
will be briefly considered at the end of Sect. 5.

3.1 Exciton dissociation equilibrium

The ‘chemical’ equilibrium condition for the reaction
e + h ←→ x is reached when μn + μp = μx [38], where
μn, μp and μx are the chemical potentials of electrons,
holes and excitons, respectively. In the following, we will
consider the general case in which μn + μp �= 0, while
n = p. This condition corresponds to a locally neutral
mixture of electrons and holes which has not yet fully
equilibrated, being the ‘chemical’ equilibrium between
electrons and holes characterised by the equation μn +
μp = 0.

If the electrons and holes are not degenerate, Boltz-
mann statistics applies. For a simple spin-unpolarised
parabolic two-band model of the insulator, we can then
write that

n =
2

Λ3
n

exp
(

−Eg − μn

kBTn

)
, (13)

and

p =
2
Λ3

p

exp
(

μp

kBTn

)
, (14)

where Λn =
√

2π�2/mnkBTn and Λp =
√

2π�2/mpkBTn

are the thermal wavelengths of electrons and holes,
respectively. The effective masses of the electrons and
holes are indicated by mn and mp, respectively. The
top of the valence band has been taken as the reference
energy.

For fully equilibrated electrons and holes, the law of
mass action np = n2

i , where ni = 2e−Eg/2kBTn/
√

Λ3
nΛ3

p,
immediately follows from the ‘chemical’ equilibrium
condition. The intrinsic electron–hole pair density ni,
is negligible for wide band gap insulators at room tem-
perature. More in general we have that

np = n2 =
4

Λ3
nΛ3

p

exp
(

−Eg − μn − μp

kBTn

)

=
4

Λ3
nΛ3

p

exp
(

−Eg − μx

kBTn

)
, (15)

where we have used the local neutrality condition,
p = n. This is the condition we assume to apply imme-
diately (∼ 10 fs) after irradiation, when electrons and
holes have thermally equilibrated among themselves
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through carrier–carrier scattering, but they still have
to recombine.

By assuming non-degenerate free excitons at the
same temperature, Tn, of electrons and holes, we can
write that

nx =
4

Λ3
x

exp
(

−Ex − μx

kBTn

)
, (16)

where Λx =
√

2π�2/mxkBTn is the thermal wavelength
of the excitons and Ex is the energy of the free excitons
at rest. The bare mass of the free exciton is mx =
mn+mp, and we assume that the difference between the
bare and effective exciton mass—defined as the inverse
curvature of an excitonic band close to its minimum—
is negligible . The analogue of the Saha’s equation for
semiconductors reads [39,40]

nx

n2
=

(
ΛnΛp

Λx

)3

exp
(

Eg − Ex

kBTn

)

=
(

2π�
2

m�
xkBTn

) 3
2

exp
(

εb

kBTn

)
(17)

where m�
x = (1/mn + 1/mp)

−1 is the reduced mass of
the exciton. Equation (17) is obtained by dividing Eq.
(16) by Eq. (15) and setting Ex = Eg − εb, where εb is
the binding energy of the exciton.

If εb > 0, the equilibrium is shifted towards bound
electron–hole pairs at low electronic temperatures (Tn

� εb/kB) and towards free electron–hole pairs at high
electronic temperatures (Tn 	 εb/kB). In fact, the
exciton binding energy is not fixed and depends on the
density of electron–hole pairs and free excitons, see next
section. In particular, the exciton binding energy can
become negative for large electron–hole pair densities,
leading to an instability of the free excitons even at low
temperature.

3.2 Band gap renormalisation and exciton binding
energy

It is experimentally observed that both the band gap
and the exciton binding energy depend on the electron–
hole pair density [38]. This is due to the extra Coulomb
screening which is provided by the excited carriers
which reduces the effective attraction between elec-
trons and holes (free or bound). As a consequence,
both the band gap and the exciton binding energy tend
to decrease as the electron–hole pair density increases
[41,42] . The two effects compensate, and it is found
experimentally that the exciton absorption frequency
does not depend on the electron–hole pair density [38].
Both the band gap renormalisation (BGR) and exciton
binding energy reduction can be estimated by using the
electron–hole exchange and correlation functional pro-

posed by Vashishta and Kalia (VK) [43]

εxc (rs) = ε0b

(
a + brs

c + drs + r2
s

)
, (18)

where the parameters in Eq. (18) are a = −4.8316,
b = −5.0879, c = 0.0152 and d = 3.0426. The bare
(Wannier–Mott) excitonic binding energy is defined as
ε0b = E0m

�
x/2meε

2
r, where E0 = 27.2 eV is the Hartree

energy, me is the bare electron mass and εr = 3.96 is
the relative static dielectric permittivity of a-SiO2 [44].
The dimensionless excitonic Wigner–Seitz radius

rs =
(

4π

3
n

)− 1
3

/ax (19)

is the ratio between the electronic Wigner–Seitz radius
and the excitonic radius defined as ax = a0εr/m�

x,
where a0 is the Bohr radius [45].

The VK exchange and correlation functional has been
obtained by fitting calculations for Ge and Si per-
formed within the fully self-consistent approximation
of Vashishta and Singwi [43]. It is remarkable that the
fit is almost independent of the detailed band structure
and just depends on rs.

In the case of a locally neutral electron–hole fluid, the
contribution from classical electrostatics is zero and the
full electron–hole functional reads

εeh (rs) =
3ε0b
5

(
9π

4

) 2
3 1

r2
s

+ εxc (rs) , (20)

where the first term accounts for the kinetic energy
of electrons and holes [46]. The BGR is obtained
by computing the variation of chemical potential,
ΔEBGR (rs) = μeh (rs) − μeh (rs = 0), where [46]

μeh (rs) = εeh (rs) + n
dεeh

dn
= εeh (rs) − rs

3
dεeh

drs
.(21)

In fact, one can easily verify that only the exchange
and correlation part contributes to the BGR and
μxc (rs) = εxc (rs) − (rs/3) dεeh/drs [23,47]. The
renormalised excitonic binding energy also depends
on rs and is defined as εb (rs) = ε0b + ΔEBGR (rs).
The value of the dimensionless excitonic Wigner–Seitz
radius at which εb (rs) = 0 defines the electron–hole
pair density at the EMT. For larger values of the
electron–hole pair density, εb gets negative and the
free excitons become unstable [42]. Because of the
BGR, an extra term appears in Eq. (5): Qbgr (n) =
− (n∂ΔEBGR/∂n) ∂n/∂t.

From the first two lines of Eq. (7) in the limit of k2 =
0, we obtain that k−1/k1 = n2/nx. Following Sekiguchi
and Shimano [42], we assume that k1 only depends on
the electronic temperature, Tn, and the lattice temper-
ature, TL. The assumption is consistent with the so-
called columnar model of recombination [48] which uses
the Langevin’s estimate k1 ≈ q (Mn + Mp) /ε0εr, where
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Mn and Mp are the electron and hole mobilities, respec-
tively. The mobilities can depend on both Tn and TL

[29]. If the lattice temperature is close to room temper-
ature, in the case of a-SiO2 we also have that Mp � Mn

because the holes tend to localised and their transport
is activated [49]. As a consequence of the Saha dissoci-
ation equilibrium, Eq. (17), the reaction rate constant
for the free exciton dissociation can be written as

k−1 = k1

(
2π�

2

m�
xkBTn

)− 3
2

exp
(

− εb

kBTn

)
. (22)

For electron–hole pair densities above the EMT, i.e.
when εb < 0, the right-hand side of Eq. (22) becomes
very large in both the limits of Tn � |εb| /kB—because
of the large exponential factor— and of Tn 	 |εb| /kB .
—because of the large prefactor, while the exponen-
tial factor gets close to one. The applicability of the
QSSA approximation is then confirmed in these two
limits, which generally include the condition of very
large electronic temperature immediately after irradi-
ation and the thermal equilibrium between the lattice
and the electron–hole pairs, if |εb| 	 kBTL.

4 Results

We have solved numerically the simplified hydrody-
namic equations (5) to assess the consequences of
Coulomb screening and BGR in the evolution of the
electron–hole plasma generated upon proton irradiation
of a-SiO2. The band gap energy (bare, i.e. not renor-
malised) is set to Eg = 8.7 eV and the STE energy
to Este = Eg − 5.6 eV [16]. The values of the effective
mass of the electron (0.5 me), light (0.5 me) and heavy
(5 me) holes are taken from Ref. [50]. The static rela-
tive permittivity is set to εr = 3.96. The corresponding
Wannier–Mott exciton energy is Ex = Eg − 0.367 eV,
and the excitonic Bohr radius is ax = 4.95 Å. The two-
temperature relaxation time is set to a typical value of
τ = 0.1 ps [5,6], while STE formation time is set to
τ ste
2 = 1/k2 = 150 fs [12–14]. The lattice density and

specific heat capacity are set to ρL = 2.2 g/cm3 and
cL = 0.67 · 107 erg/g · K, respectively.

By assuming that the average energy needed to gen-
erate an electron–hole pair is approximately three times
the band gap—the so-called Klein’s rule [6,51]—the
initial electronic temperature is estimated as Tn (0) =
2Eg/3kB = 67, 300 K. Note that the initial electronic
temperature is independent of the initial electron–hole
pair density. The initial lattice temperature is TL (0) =
298.15 K or room temperature.

We consider several values of the initial electron–
hole pair density, n (0), below and across the EMT—the
Mott density is nMott = 1.94 · 1019 cm−3—but always
smaller than the critical density, nc=4.25 ·1020 cm−3. 1

1 The critical density, nc, is defined so that ωl = ωp (nc) =√
ncq2/m�

xε0, where ωl is the probe frequency and ωp is the

Fig. 1 Free electron–hole pair density, n (t), normalised to
the initial density, n (0), for a selection of initial densities,
n (0). The initial densities n (0) = 1016, 1017, 1018 cm−3 are
below, 1019 cm−3 slightly below and 1020 cm−3 above the
EMT, respectively

Fig. 2 Effective STE formation time, τ ste
1 (t), as a function

of the electronic temperature, Tn, for a selection of initial
densities, n (0). The initial densities n (0) = 1016, 1017, 1018

cm−3 are below, 1019 cm−3 slightly below and 1020 cm−3

above the EMT, respectively

The initial STE density is set to zero. Auger recom-
bination is phenomenologically modelled as Raug =
(Cn + Cp) n3, with the Auger coefficients notionally set
to Cp = Cn = 1029 cm6/s [20].

Figure 1 shows the density of free electron–hole pairs,
n (t), normalised to the initial density, n (0). In all
cases, the free electron–hole density decays abruptly
close to 1 ps. We can rationalise the somehow counter-
intuitive finding that an initially larger excitation yields
a slightly shorter relaxation by looking at the effective
STE relaxation times shown in Fig. 2.

bulk plasma frequency of the electron–hole plasma. To com-
pute nc, we set �ωl = 1.18 eV corresponding to a 1053 nm
probe. If a simple Drude model is used to approximate the
dielectric permittivity of the electron–hole plasma created
upon laser irradiation, the plasma is expected to become
strongly absorbing at ωl above the critical density.
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Fig. 3 Free electron–hole pair density, n (t), normalised by
the initial density, n (0), as a function of the electronic tem-
perature, Tn, for a selection of the initial density, n (0). The
initial densities n (0) = 1016, 1017, 1018 cm−3 are below, 1019

cm−3 slightly below and 1020 cm−3 above the EMT, respec-
tively

This time is defined as

τ ste
1 = 1/keff

1 n = (k−1/k1) /k2n , (23)

where we have used Eq. (11) in the last equality, and
shows a strong dependence on both the electronic tem-
perature , Tn, and the initial electron–hole pair den-
sity, n (0). Note the qualitative difference between the
case n (0) = 1020 cm−3 and the remaining cases: if
n (0) > nMott, τ ste

1 (Tn) is bounded from below, i.e.
there is a minimum value of the STE relaxation time.
This is expected from the definition of τ ste

1 and the
behaviour of k−1/k1 according to Eq. (22). In partic-
ular, the right-hand side of Eq. (22) becomes large in
both limits of Tn → 0 and Tn → ∞ if εb < 0, i.e.
above the EMT. On the other hand, if n (0) < nMott,
τ ste
1 (Tn) is a monotonically increasing function of Tn.

In all cases, for large electronic temperature we have
that the electron–hole pairs are still fully dissociates,
i.e. n ≈ n (0), while the exponential on the right-hand
side of Eq. (22) is close to one. As a consequence, we
also have that k−1/k1 ∝ T

3/2
n and, from Eq. (23), that

τ ste
1 ∝ T

3/2
n /n (0) , which explains why the relaxation

shown in Fig. 1 is slightly faster for larger initial densi-
ties.

Coulomb screening and BGR are irrelevant during
the initial part of the relaxation because kBTn largely
exceeds the exciton binding energy, εb. At such high
electronic temperature, all free excitons would be dis-
sociated also in the absence of the BGR. We also found
that Auger recombination gives only a minor contribu-
tion (about 6% of the electron–hole pair recombination)
for n (0) = 1020 cm−3 and a negligible contribution in
the other cases.

To further support the correlation between electron–
hole trapping and thermal relaxation in a-SiO2, in
Fig. 3 we plot the free electron–hole pair density, n,

Fig. 4 Electronic temperature, Tn (t), for a selection of
the initial density, n (0). The initial densities n (0) =
1016, 1017, 1018 cm−3 are below, 1019 cm−3 slightly below
and 1020 cm−3 above the EMT, respectively

as a function of the electronic temperature, Tn. For
n (0) < nMott a threshold effect is evident as the
electron–hole pairs make an abrupt transition from free
to self-trapped at a sharp value of Tn. This is due to
the dependence of τ ste

1 (Tn) as shown in Fig. 2 which in
turn depends on the Arrhenius form of the Saha equi-
librium constant defined in Eq. (17). For n (0) < nMott,
τ ste
1 goes very steeply to zero as the electronic tem-

perature decreases. The transition becomes less abrupt
as the Mott density is approached. Note that in the
case of n (0) = 1020 cm−3 the minimum of τ ste

1 (Tn) in
Fig. 2 occurs at Tn ≈ 103 and that the minimal value
is slightly larger than both the two-temperature equili-
bration time, τ , and the STE formation time, τ ste

2 .
Figure 4 shows the electronic temperature, Tn, as a

function of time. The initial part of the relaxation shows
a negligible dependence on the initial electron–hole
density, and it is determined by the two-temperature
equilibration time, τ , only. Eventually, the electronic
and lattice temperatures become equal, i.e. the lattice
and electronic degrees of freedom thermally equilibrate.
However, without a diffusive process in Eq. (5) which
can equilibrate the local lattice temperature to that of
the environment, the difference between the final and
initial lattice temperatures shows an artificial propor-
tionality to n (0).

5 Discussion

In this section, we discuss the validity and implica-
tions of the main assumptions of our simplified model.
Neglecting the spatial dependency of the fields and
the associated diffusive processes is obviously a severe
approximation which was explicitly made in order to
single out the effects on the time evolution due to
Coulomb screening, only. From a qualitative point of
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view, re-introducing the diffusive terms will lead to a
further decrease of the free electron–hole pair density
in the core region of the track. Excitons in principle
are more mobile than charge carriers, but their ultra-
fast trapping will strongly limit their diffusion. This is
an efficient mechanism to localise the energy initially
transferred to the electronic degrees of freedom and
generate lattice defects (Frenkel pairs) in a-SiO2 [1,8].
With the qualitative effect of carrier diffusion in mind,
the results of the simplified hydrodynamic model for the
free electron–hole pair density can be safely taken as an
upper limit, i.e. the free electron–hole pair relaxation
can be even faster than what shown in Fig. 1, but not
slower. As a consequence, re-introducing the diffusive
terms and solving the full hydrodynamic model, Eq.
(1), are not expected to demonstrate an increased free
electron–hole pair relaxation time driven by Coulomb
screening and BGR, alone.

Assuming a constant STE formation time, τ ste
2 , is

also an approximation that has been recently criticised
by Jürgens et al. [16]. These authors suggest that the
long free electron–hole pair relaxation time observed by
increasing the laser intensity can be explained by ther-
mal detrapping of STEs. However, the effect of detrap-
ping is minor in a-SiO2 because of the large activa-
tion energy of about 1.5 eV [52]. This behaviour must
be contrasted against the case of sapphire (Al2O3) for
which a much longer (about 100 ps) free electron–hole
pair relaxation time has been reported [53], along with a
much smaller activation energy for detrapping, between
0.04 an 0.51 eV [54]. The case of borosilicate crown glass
BK7 is also relevant because long (exceeding 10 ps) free
electron–hole pair relaxation times—longer than for a-
SiO2—have been reported both using optical [15] and
proton [24,26–28] probes. Borosilicate glasses present
more non-bridging oxygen atoms than a-SiO2 because
boron is a trivalent cation (B3+) which disrupts the
silica tetrahedral network and can create localised soft
modes [55]. Although STE formation has been observed
in BK7, it is possible that the presence of a large num-
ber of non-bridging oxygen atoms both hinder the STE
formation and facilitate their thermal detrapping [56].

The addition of a STE detrapping mechanism into
Eq. (7) yields the following set of kinetic equations:

dn

dt
= −k1n

2 + k−1nx ,

dnx

dt
= k1n

2 − k−1nx − k2nx + k−2nste ,

dnste

dt
= k2nx − k−2nste −

(
1

τste,r
+

1
τste,nr

)
nste ,

(24)

where k−2 (TL) = k0
−2e

−Ea/kBTL is the Arrhenius form
of the detrapping rate, where we indicate with k0

−2 the
frequency factor—of the order of the Debye frequency
of the material—and with Ea the activation energy.

By applying the QSSA in the k−1 � k2 case, we then
obtain that

dn

dt
≈ −keff

1 n2 + k−2nste . (25)

The steady-state solution of Eq. (25), nste/n2 ≈
keff
1 /k−2 =

(
keff
1 /k0

−2

)
eEa/kBTL , suggests a saturation

of STEs if TL 	 Ea/kB and a persistent population
of free electron–hole pairs if the initial density is larger
than the Mott density. For initial densities smaller than
the Mott density, there is no minimal value of τ ste

1 —
see Fig. 2—and the Saha dissociation equilibrium will
eventually favour the formation of free excitons as the
electronic and lattice degrees of freedom approach ther-
mal equilibrium. Hence, Coulomb screening and BGR,
along with an efficient thermal detrapping of STEs,
can provide an explanation for the observed long free
electron–hole pair relaxation times in BK7. Note that
the QSSA is not expected to hold far below the EMT
as the STE formation rate, k2, can become much larger
than the exciton dissociation rate, k−1—see Eq. (22).
As a consequence, thermal detrapping of STEs alone
cannot yield a longer free electron–hole pair relaxation
time below the EMT.

6 Conclusions

Free electron–hole pairs excited in wide gap insulators
relax into STEs, if their formation is possible. This is
the case for a-SiO2 and borosilicate crown glass BK7.
The STE formation occurs in about 150 fs in a-SiO2 if
the initial density of free electron–hole pairs is smaller
than 1020 cm−3. This ultrafast mechanism has been
previously observed with pump–probe experiments and
recently confirmed by optically probed samples irradi-
ated with ultrashort proton pulses generated by target
normal sheath acceleration. At variance with a-SiO2,
BK7 samples display a longer free electron–hole pair
relaxation time of about hundreds of ps after irradiation
by either protons or high-intensity laser pulses. Two
microscopic mechanisms have been suggested in the lit-
erature to explain this long relaxation time: (i) suppres-
sion of the formation of free excitons—precursor of the
STEs—for densities above the EMT due to Coulomb
screening and (ii) thermal detrapping of STEs if the
STEs are only shallowly trapped. In this article, we
have tested the first mechanism by solving a simplified
set of hydrodynamic equations for the coupled evolu-
tion of the electron–hole and STE densities, along with
the electronic and lattice temperatures. Our numeri-
cal results do not show a long (	 10 ps) free electron–
hole pair relaxation time in a-SiO2 even for initial den-
sities exceeding the Mott density. In fact, a slightly
shorter relaxation time was observed in this case. This
rather counter-intuitive result is rationalised by not-
ing that, immediately after irradiation, the electronic
temperature is large enough (kBTn ≈ 2Eg/3) to sup-
press the formation of free excitons for any initial den-
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sity. Coulomb screening is then irrelevant for the exci-
ton formation in such a ‘hot’ electron–hole plasma. We
then conclude that another mechanism, e.g. thermal
detrapping of STEs, is required to correctly model the
long free electron–hole pair relaxation time observed
in some irradiated material, including BK7. The effect
of detrapping is expected to be negligible in a-SiO2
because of the large activation energy, but in the case
of BK7 the presence of a large number of non-bridging
oxygen atoms can indeed facilitate the thermal detrap-
ping of STEs. Our results are based on a simpli-
fied set of hydrodynamic equations in which we have
neglected the spatial dependency of the fields and the
associated diffusive processes. This is a severe approx-
imation which was deliberately introduced to single
out the effects due to Coulomb screening, only, on the
time evolution. Despite this severe approximation, our
results can be safely taken as an upper limit for the free
electron–hole pair relaxation time and we do not expect
the main conclusion of this article to be affected by the
re-introduction of the diffusive terms. Modelling based
on the full set of hydrodynamic equations is currently
in progress.
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