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Abstract.
Abstract We provide a brief review of how phase space techniques are explored within strong-field and
attosecond science. This includes a broad overview of the existing landscape, with focus on strong-field
ionisation and rescattering, high-order harmonic generation, stabilisation and free-electron lasers. Fur-
thermore, using our work on the subject, which deals with ionisation dynamics in atoms and diatomic
molecules as well as high-order harmonic generation in inhomogeneous fields, we exemplify how such tools
can be employed. One may for instance determine qualitatively different phase space dynamics, explore
how bifurcations influence ionisation and high-harmonic generation, establish for which regimes classical
and quantum correspondence works or fails, and what role different timescales play. Finally, we conclude
the review highlighting the importance of the tools available in quantum optics, quantum information and
physical chemistry to strong-field laser–matter interaction.

1 Introduction

The idea of phase space, in which one may depict all
possible states of a dynamical system evolving from any
initial conditions by trajectories, is extremely powerful.
Each phase space trajectory represents the evolution of
a system starting from specific initial conditions, with
each point corresponding to the state of the system
at a specific time. The set of all phase space trajec-
tories thus provide a mapping of all possible ways in
which a system may evolve. In particular, the phase
space is used for dealing with multidimensional sys-
tems, whose description would be much less intuitive
otherwise. Examples of such systems are encountered
in a wide range of areas, including physics, biology,
chemistry and financial models (see [1] for a recent
review). In physics alone, phase space tools are typi-
cally used in, for instance, statistical physics, quantum
optics, collision theory, particle physics and nonlinear
dynamics, and widely employed phase space variables
are, for instance, positions and momenta, or angles and
angular momenta. Its mathematical origin, dating from
1838, can be attributed to Liouville [2], and its first
application to mechanics was made by Jacobi in 1842
[3]. However, the concept of describing the dynamics
of a system as a single trajectory moving through mul-
tidimensional space was developed many decades later
by Poincaré [4] (for a historic review on the subject see
[5]).
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The quantum phase space was introduced much later,
by Wigner, together with the quasiprobability distribu-
tion named after him [6]. Since then, quantum phase
space distribution functions, constructed using non-
commuting operators, have become widespread. A key
advantage is that they allow one to employ complex-
number functions instead of dealing with operators.
Furthermore, they provide valuable insight in quantum-
classical correspondence [7], within the constraints
posed by the uncertainty principle and its generalisa-
tions. However, there are different phase space distri-
bution functions, whose applicability may suit specific
problems better than others. This ambiguity stems from
the fact that there are different rules for associating
noncommuting operators to scalar variables [8,9]; for
pioneering work exploring operator ordering in connec-
tion with quasiprobability distributions see also [10,11].
For instance, due to their smooth behaviour, Husimi
distribution functions are popular in the context of non-
linear systems and classical chaos [12], while Wigner
quasiprobability distributions, due to the information
they provide on nonclassical effects and quantum cor-
rections, are widely used in quantum optics [13,14].
Other applications of the Wigner function include opti-
cal propagation in waveguides [15], and the computa-
tion of angular momentum states [16], which can also
be used to model two-level atoms [17–19]. The Glauber-
Shudarshan P functions [20,21] are also hugely popu-
lar in quantum optics, as they are very convenient for
normal-ordered products of creation and annihilation
operators.

Quantum phase space distribution functions play a
major role in quantum optics [13,14] and quantum
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information [22,23]. This popularity has been triggered
by the description of the electromagnetic field modes
as quantum harmonic oscillators, for which distribu-
tion functions have been especially tailored (see, e.g.
the discussion in [8,9,20,21]), and the central inter-
est in the definition of nonclassical states of light [24].
Furthermore, due to being formulated in terms of den-
sity matrices, quasiprobability densities are well suited
for investigating decoherence and the influence of the
environment [19,25,26]. Quasiprobability distributions
have also been explored in connection with logical gates
[27,28] and their classical simulation [29], and coherent-
state superposition [30,31].

Other traditional areas in which the quantum phase
space is widely used are those dealing with large sys-
tems [32], such as chemical physics [33,34] and cold
gases [35]. In this case, the huge amount of degrees
of freedom makes a full quantum-mechanical treat-
ment prohibitive. Therefore, crucial questions are what
degrees of freedom need full treatment and which ones
can be approximated, what kind of fluctuations and
deviations from the classical picture are expected, and
whether there are semiclassical limits one can take
into consideration without losing essential information
about the system’s dynamics.

In the study of complex molecular systems, for
instance, it is common to apply mixed classical-quantum
methods, which describe less relevant degrees of free-
dom classically, more relevant degrees of freedom quan-
tum mechanically, and couple them via effective poten-
tials [36,37]. One may also consider systems coupled
to baths, whose dynamics are simplified [38]. Alterna-
tively, one may develop semiclassical methods, in which
swarms of classical trajectories are employed to con-
struct quantum propagators (see, e.g. [39–43] and the
reviews [33,44]). Further approximations may then be
applied, such as the smoothening of highly oscillatory
terms [7], and linearised semiclassical approximations,
in which the main contributions stem from trajectories
whose phase space coordinates are close enough [40].
Truncated Wigner approximations are also widely used
to describe chemical reactions (for an early example see
[40]).

Furthermore, there are many perturbative approxi-
mations which incorporate quantum fluctuations around
classical limits, such as the semiclassical or truncated
Wigner approximation (TWA). For an early discussion
of phase space methods in which stochastic evolution
equations, including the TWA, are applied to Bose-
Einstein Condensates see [45]. The key idea is to embed
quantum fluctuations in the initial quasiprobability
distributions, which are then evolved classically. This
means that quantum corrections appear only through
initial conditions. Classical evolution is desirable for
large systems as, typically, classical equations of motion
scale linearly with its degrees of freedom, while quan-
tum methods scale exponentially. The TWA has been
explored in the context of Bose condensed gases per-
turbed from thermal equilibrium [46] in a wide range
of scenarios such as the evolution of macroscopic entan-
gled states [47], quantum fluctuations in condensate

oscillations [48], nonclassical effects arising from the
splitting of condensates [49,50] and vortices in reflect-
ing Bose-Einstein condensates [51]. It works for weakly
perturbed systems.

In contrast, in strong-field laser–matter interaction
and attosecond science, the phase space picture and
its tools have not become mainstream. This is actually
surprising for the following reasons:

– Classical and semi-classical trajectory-based meth-
ods have been used as interpretational tools for quan-
tum effects since over two decades, and helped estab-
lish the key paradigms in the field. Therein, laser-
induced rescattering and recombination of an elec-
tron with its parent ion play a vital role by pro-
viding an intuitive interpretation of many strong-
field phenomena (see, e.g. [52–54] and the special
issue [55]). If recombination with a bound state
occurs, the kinetic energy acquired by the elec-
tron in the continuum is released in form of high-
order harmonic radiation, while rescattering will
lead to high-energy photoelectrons. If the return-
ing electron rescatters elastically, high-order above-
threshold ionisation (ATI) will occur [56,57]. Alter-
natively, if, upon recollision, it passes on part of its
kinetic energy to the core, it may release other elec-
trons, leading to nonsequential double and multi-
ple ionisation [58,59]. This orbit-based picture has
been hugely successful in describing the physics of
the problem, with far-reaching consequences. For
instance, the shapes of the high-harmonic and high-
order ATI spectra, with a long plateau followed
by sharp cut-offs whose energy positions are a
multiple of the ponderomotive energy Up [53,57],
proportional to the driving-field intensity, can be
explained using the laser-induced rescattering pic-
ture. Furthermore, because ionisation and recombi-
nation occur at very specific times within a field
cycle, they can be used for steering subfemtosecond
electron dynamics, for generating attosecond pulses
or bursts of electrons (see, e.g. [60,61], and the spe-
cial issue [62]), and for subfemtosecond imaging of
matter [63–65]. For a given energy, there is usually
more than one quantum mechanical pathway along
which the electron may interact with the core, so
the corresponding transition amplitudes interfere.
Quantum interference has many attosecond imaging
applications, using high-order harmonic generation
or photoelectrons (for reviews see, e.g. [66] or [67]).

– The interaction between the continuum and bound
states is of vital importance, as strong-field ionisa-
tion and laser-induced rescattering or recombina-
tion play a key role in explaining strong-field phe-
nomena [53,54,56–58,67,68]. Yet, tools that could
provide rigorous and/or accurate information about
nonclassicality or boundaries of bound-continuum
dynamics are underused.

Still, some groups have explored phase space dynamics
in a strong-field context. This includes stabilisation [69–

123



Eur. Phys. J. D (2021) 75 :201 Page 3 of 25 201

72], strong-field ionisation [73–78], high-order harmonic
generation [79–83], laser-induced core dynamics [84,85],
rescattering [79,80,86–89], nonsequential double ion-
isation [90–106], or in connection with initial-value
representations in strong fields [76,107–110]. Further-
more, the growing interest in free-electron lasers (FELs)
means that the tools employed in quantum optics are
being explored in the X-ray and extreme ultraviolet
(XUV) regime [111,112]. Examples range from semi-
nal work unifying quantum and classical descriptions of
electron dynamics in FELs [113,114] to providing a road
map for quantum signatures therein [115]. They include
the development of quantum models whose radiation
holds the promise of having better quality than that of
classical FELS [115–119].

Overall, the use of phase space has been twofold:
either the classical phase space was employed to
delimit bound-continuum boundaries, highlight regu-
lar or chaotic behaviour, and analyse different rescat-
tering regimes, or quantum phase space distributions
have been employed to assess classical or nonclassi-
cal behaviour and provide initial conditions for other
methods. Often the intuitive picture obtained by clas-
sical methods is compared with the outcome of ab-initio
computations or other approaches.

In the present article, we provide a review of atto-
science in phase space. We will start with a brief
overview of its use in strong-field and attosecond
physics (Sect. 2), with emphasis on the different phe-
nomena and how specific methods, quantum, classical
and semiclassical, have been used over the years. While
it is not possible to draw a linear timeline, we have
grouped such studies according to common physical or
methodological aspects, in order to set an overall land-
scape. Subsequently, in Sect. 3, we delve deeper into
our own work and use it to exemplify how classical and
quantum aspects of the phase space may be used in
attoscience. We start by providing a brief statement
on the methods (Sect. 3.1) employed and, in the ensu-
ing sections, focus on common strategies rather than
phenomenon or publication. This includes using phase
space methods to identify different phase space con-
figurations and bifurcations (Sect. 3.2), distinguishing
between classical, semiclassical and quantum regimes
(Sect. 3.3), and performing an in-depth analysis of
the different timescales that arise in our investigations
(Sect. 3.4). Finally, in Sect. 4, we conclude the article
by placing phase space studies into a broader context.
In particular, we highlight the importance of bringing
the toolkit available in quantum optics to attosecond
physics in view of recent trends and developments.

2 Overview

Historically, the phase space has been applied to a vari-
ety of phenomena in attoscience, along the following
research lines: free-electron lasers and stabilisation, tun-
nelling, rescattering in one-electron systems and cor-
related multielectron dynamics. These research lines
often overlap, and a key common aspect is to try to

understand and control attosecond electron dynamics
in greater depth. They are briefly discussed below.

2.1 Free-electron lasers and stabilisation

Phase space tools have been first used in attosecond
science and related fields in the 1980s, in the con-
text of free-electron lasers (FELs) [113,114]. These
seminal papers aimed at bridging a gap that existed
between fully quantum electrodynamic descriptions of
electrons in a FEL and widespread classical descrip-
tions of these dynamics. This was an important mile-
stone as the classical description of electrons in a FEL
is expected to become inaccurate in the XUV/X ray
regime, for which quantum fluctuations are important
[113,114]. For that purpose, Wigner quasiprobability
distributions were used and it was shown that, in the
classical limit, the former descriptions were recovered.
Following that, there have been phase space studies to
determine the boundary between classical and quan-
tum behaviour [115–119]. These studies have been moti-
vated by the prospects of developing a Quantum FEL,
which should exhibit a narrower linewidth and better
temporal coherence than its classical counterpart [120].
In particular, one- [117] and three-dimensional [118]
quantum models based on Wigner functions are pre-
sented. In [119], the phase space was used to establish
a quantum regime, in which the system may be approx-
imated by a two-level atom by averaging over fast oscil-
lations. Recently, quantum effects in the FEL electrons
and its gain were studied using Wigner quasiprobabil-
ity distributions and the quantum Liouville equation
[115].

Further work in the high-frequency regime, in the
1990s, addressed the question of nonclassical behaviour
in atomic stabilisation. Atomic stabilisation stems from
the breakdown of Fermi’s golden rule for computing
ionisation probabilities in strong laser fields. Roughly
speaking, stabilisation is the suppression of ionisation
with increasing field strength. In the 1990s, it has gen-
erated a great deal of controversy, from its definition,
to the physical mechanisms behind it and its exis-
tence altogether (for reviews see [121–124]). In this con-
text, the Kramers-Henneberger frame, in which the field
time dependence is embedded in the binding potential,
is widely used. For high driving-laser frequencies, one
may define a double-well effective potential, known as
the Kramers-Henneberger potential. Wigner quasiprob-
ability distributions were employed to assess under
what conditions stabilisation was classical or quantum
[69]. They were compared to classical-trajectory com-
putations and exhibited regions that were attributed
to coherent superpositions of a few bound states of
the effective Kramers-Henneberger potential, thus high-
lighting the role of quantum interference [70]. Fur-
ther work explored how quantum effects in stabilisa-
tion depend on the pulse shape and on the effective
Kramers-Henneberger potential by using Wigner and
Husimi distributions [71]. Much later work relates sta-
bilisation to trapped trajectories and elliptic islands in
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a chaotic region via a classical phase space analysis and
highlights a hidden short-time nature of stabilisation
[72].

2.2 Tunnelling

In the low-frequency regime, phase space quantum dis-
tribution functions have been employed to assess tun-
nelling ionisation dynamics since the early 2000s. Tun-
nelling is crucial for strong-field and attosecond physics,
and the question of with what velocity, and at what
point in space an electron reaches the continuum, as
well as whether one may define finite tunnelling times,
has attracted a great deal of attention (see, e.g. [125–
134] for a wide range of approaches and points of view).
Since the phase space allows for an intuitive view of the
classical-quantum correspondence, it is ideally suited to
such questions.

Early studies of tunnelling ionisation in phase space
observed a tail for the Wigner quasiprobability distribu-
tion of a system in a static or quasistatic, low-frequency
field. This tail has been associated with tunnel ionisa-
tion as it crosses from a bound phase space region to the
continuum through classically forbidden regions [135].
Its slope has been employed to define a tunnel trajec-
tory, which was first computed by [73] using an ana-
lytical model of a zero-range potential in a static field.
Further work, a decade later, [79] investigated how the
slope of the Wigner function behaved with regard to
the potential being short or long range. Both publica-
tions focused on the agreement between the tail of phase
space quantum distributions and a classical-trajectory
picture, which were shown to match far away from the
core. Nonetheless, quantum interference fringes asso-
ciated with tunnelling events at different times were
observed in both publications. Close to the core, the
tail of the Wigner function follows the separatrix and
crosses into the continuum either via over the barrier
or tunnel ionisation [76]. Recently, Wigner quasiproba-
bility distributions have been employed to reconstruct
the tunnel exit, which is an important parameter in
determining the tunnelling time [136]. Further work
by the same group addresses the influence of quantum
interference and over-the-barrier ionisation on classical-
quantum correspondence when an electron is freed into
the continuum [137].

For systems with more than one centre, such as in
diatomic molecules, Wigner quasiprobability distribu-
tions have been employed in the context of enhanced
ionisation [74,75,78]. Roughly speaking, enhanced ion-
isation means that, for specific internuclear separations,
ionisation rates in a stretched molecule are considerably
higher than those in an atom with a similar ionisation
potential [138]. In [74,75] it has been shown that there
are intra-molecular momentum gates in phase space,
which facilitate population transfer within the molecule
and to the continuum. They have been attributed to
the nonadiabatic response of the molecule to a low-
frequency field. Further work, however, showed that
the momentum gates are intrinsic to the molecular sys-

tem and exist even for static fields, or no fields at all.
Thereby, quantum interference plays an important role
by providing a bridge for quasiprobability to flow from
one molecular well to the other [78], and the frequencies
can be estimated for double-well potential models [139].
Further studies of nonadiabatic effects and bifurcation
in strong-field ionisation were conducted in [77].

Tunnelling dynamics in strong fields has also been
looked at in the context of initial-value representations
(IVRs) [76,140]. In initial-value representations, the
boundary problems that arise in semiclassical theory
are replaced by averages over initial phase space coordi-
nates, which are used to construct wave packets. These
wave packets are then evolved in time, guided by ensem-
bles of classical trajectories. IVRs are employed in many
areas of science, for instance quantum chemistry, chaos
and nonlinear dynamical systems, and are very power-
ful approaches due to their scalability and absence of
cusps and singularities. For key references see, e.g. [39–
43] and the reviews [33,44]. However, there has been
considerable debate whether these approaches can be
used to model tunnel ionisation, as they employ ensem-
bles of real classical trajectories to construct wave pack-
ets [141–144].Tunnelling may manifest itself in posi-
tion space, as transmission, or in momentum space, as
above-the-barrier reflection, and it not being accounted
correctly will cause semiclassical IVRs to degrade for
longer times [144]. Nonetheless, because the top of a
potential barrier can be approximated by an inverted
harmonic oscillator, tunnelling has been found to work
well near this threshold [135]. To deal with this, one
may either focus on rescattering only and place the ini-
tial electronic wave packet away from the core [107,108],
or employ short times and IVRs with effective poten-
tials that account for quantum corrections, such as the
coupled coherent state (CCS) method [76]. The phase
space has also been employed to develop path integral
approaches [145] that incorporate the residual poten-
tials and the driving field on equal footing, such as
the Coulomb Quantum Orbit Strong-Field Approxima-
tion (CQSFA) [146–149] and the semiclassical two-step
(SCTS) model [150,151], with emphasis on quantum
interference and photoelectron holography. For a review
see [67].

2.3 Rescattering in one-electron systems

Because most strong-field phenomena can be explained
as laser-induced rescattering, one must understand how
it manifests itself in phase space. Although struc-
tures associated with rescattering have already been
identified in [73], closer scrutiny happened only in
the 2010s. In [152], distinct interference patterns in
Wigner quasiprobability distributions have been asso-
ciated with different types of intra-cycle electron scat-
tering and above-threshold ionisation. This has been
extended in [87] in order to assess lower impact veloci-
ties and to compute the bound-state population using
phase space criteria. Therein, phase space signatures
of channel closings have also been identified. Further
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work has investigated the connection between rescat-
tering and entanglement [88].

Rescattering in phase space has also been stud-
ied in relation to other phenomena. For instance, in
[79], a phase space analysis of rescattering in con-
junction with high-order harmonic generation (HHG)
was performed employing Wigner and Husimi distribu-
tion functions. It was shown that the rescattering wave
packet exhibits a chirp, which can be extracted from
the Wigner quasiprobability distribution at the posi-
tion of rescattering. The HHG temporal profile given by
the Wigner function strongly resembles that obtained
by other means such as windowed Fourier transforms.
Recent work has focused on a systematic analysis of the
orbit-based rescattering picture for tunnelling, rescat-
tering and HHG using Wigner functions with spatial
windows in reduced-dimensionality models, and effec-
tive Wigner functions for multidimensional systems in
order to facilitate the interpretation of more intricate
dynamics [89].

Different types of orbits and their role in HHG [107]
and ATI [108] have also been investigated using initial-
value representations. It was found that irregular orbits
play an important role in forming the HHG plateau.
Furthermore, phase space tools have been employed to
identify regions of dominant, integrable Hamiltonians,
which led to HHG spectra with excellent agreement
with ab-initio methods [109,110]. A key challenge in
modelling HHG is that it is a coherent process that
relies on the periodicity of the field. This implies that
any dephasing associated with the degradation of the
time evolution determined by the IVR will affect the
harmonic spectra. This will play a key role if the wave
packet is initially bound as tunnel ionisation will be
important in this case (for discussions see [76,153]).

Subsequently, a purely classical perspective into how
the presence of the Coulomb potential affects recolli-
sions in strong fields, as related to the high-harmonic
spectra, is provided in a series of publications [80,81,
83]. Therein, classical phase space arguments have been
used to show that Coulomb focusing enhances delayed
recollisions and increases their energy. These recolli-
sions occur along periodic orbits whose energy is higher
than the well-known value of 3.17Up [81]. Nonethe-
less, in [80], a fully classical method that considers
the Coulomb potential in the continuum is employed
to explain why the standard cut-off law works. A set
of periodic orbits stemming from a resonance with the
field are linked to laser-induced recollision, whose maxi-
mal energy approaches the standard HHG cut-off in the
high-intensity limit. Good agreement with the ab-initio
solution of the time-dependent Schrödinger equation is
observed. Further work explores the extension of the
cut-off upon macroscopic propagation [83]. The phase
space has also been employed by us in [82] to extract dif-
ferent instantaneous configurations and timescales for
HHG in inhomogeneous fields.

2.4 Correlated multielectron processes

In addition to one-electron problems, since the early
2000s, the phase space has been used to explore nontriv-
ial features in correlated multielectron processes. This
extends from laser-induced nonsequential double ionisa-
tion [58], which is the archetypical example of electron–
electron correlation in intense laser fields [90], to the
temporal profile of autoionisation dynamics in Helium
[85]. For instance, in [90] Wigner quasiprobability dis-
tributions associated with the centre-of mass coordi-
nates of a two-particle system have been compared to
the outcome of a mean-field theory in order to identify
signatures of rescattering and electron–electron inter-
action. NSDI has also been modelled for the Helium
atom using IVRs beyond reduced-dimensionality mod-
els [154,155]. In particular an alternative version of the
coupled coherent states (CCS) method that incorpo-
rates the exchange symmetry of fermionic particles, the
fermionic CCS, has been successfully applied in this
context [155].

A whole line of research has been devoted to investi-
gating NSDI in a fully classical framework. In NSDI, an
outer electron reaches the continuum, is brought back
by the field and transfers part of its kinetic energy to an
inner electron. These recollision dynamics are quite rich
and can be interpreted using tools from phase space, the
theory of nonlinear dynamical systems, and effective
Hamiltonians for each of the electrons involved. These
reduced, integrable Hamiltonians were first defined in
[97,98] for NDSI. Subsequently, the role of multiple rec-
ollisions on the efficient energy transfer in NSDI has
been investigated using symplectic maps and similar
approaches to those used in kicked Rydberg atoms, and
a road map has been provided for identifying differ-
ent NSDI mechanisms in [99,100]. Further work by the
same group has focused on an in-depth analysis of rec-
ollision excitation with subsequent ionisation (RESI)
in terms of resonances and their proximity to periodic
orbits [103,104]. In particular, a sticky region in phase
space arises due to the interplay of the external field
and the binding potential. This region traps trajecto-
ries before ionisation, leading to time delays for the sec-
ond electron. A detailed analysis of the types of peri-
odic orbits, resonance conditions and distinct sources
of chaos is provided in [104]. Interestingly, if reduced-
dimensionality models are used, oscillations in the RESI
yield as functions of the laser intensity are reported and
attributed to resonances. However, these oscillations
are washed out if more degrees of freedom are incor-
porated, due to chaotic transverse dynamics and addi-
tional resonances. These oscillations are distinct from
those attributed to quantum interference in RESI or
molecular NSDI [156–161]. Further work is related to
NSDI in bichromatic, linearly polarised fields [102], and
the dynamics of recollisions in fields with circular polar-
isation [101,105,106]. In [101] it is shown that, in con-
trast to previous assumptions, recollisions may occur
in circularly polarised fields, by analysing the system’s
dynamics in a rotating frame. The physical mechanism
is similar to that leading to ionisation in Rydberg atoms
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in microwave fields. A decade later, this topic is revis-
ited and several associated timescales are analysed in
detail [105,106]. In particular, a recollision mechanism
taking place over many field cycles is reported.

One may also employ classical models and dynamical
systems tools to determine modified threshold laws for
correlated multielectron ionisation that account for the
presence of an external field [91]. This approach starts
by identifying similarities with its field-free counterpart
[162], considering the two electrons in an excited com-
pound and identifying the relevant subspaces for which
correlated double and multiple ionisation may occur.
This information can then be used to construct effec-
tive reduced Hamiltonians for the subspace of inter-
est, identify existing symmetries and possible electron
escape configurations, and determine which of the lat-
ter will prevail. This has been done for nonsequential
double [92,95], triple [93] and multiple [94] ionisation.
One can also use this method as guidance for defin-
ing effective reduced-dimensionality quantum models,
so that the actual dynamics are preserved as faithfully
as possible, without introducing artificial constraints or
correlations [96].

Another manifestation of electron–electron correla-
tion is autoionisation. Thereby, the quantum interfer-
ence between a direct and a quasiresonant pathway is of
extreme importance. Wigner quasiprobability distribu-
tions in the time-energy domain are used to study this
interference and disentangle these pathways in a tran-
sient process [85]. They provide an advantage over other
methods used in time-frequency analysis, for expos-
ing nonclassical behaviour in a much more explicit
way. A further issue is that, in classical-trajectory
models, autoionisation manifests itself as an artefact
that renders the system unstable. These problems have
been overcome in [86,163], which employ quasiproba-
bility densities and phase space arguments to develop
classical-trajectory models that do not exhibit these
shortcomings and are consistent with their quantum-
mechanical counterparts.

3 Selected examples

In the following, we provide a few selected examples
from our own work of how phase space tools can be
used to model strong-field dynamics and extract infor-
mation that may not be available by other means. These
are used to classify regions with qualitatively differ-
ent behaviours and understand how processes such tun-
nelling and rescattering unfold. For details, we refer to
the original publications [76,78,82,139]. We also intend
to go beyond these articles, by bringing together aspects
that have not been emphasised so far.

3.1 Methods

We employ both classical and quantum-mechanical
tools. We focus on simplified, reduced-dimensionality
models in which a single spatial dimension is taken into

consideration. They provide a transparent, yet accurate
picture of the system’s dynamics for linearly polarised
fields. We also use atomic units. One should note, how-
ever, that the choice of lower-dimensional models is not
trivial in attosecond physics, as one must ensure that no
artefacts such as spurious symmetries and correlations
are introduced, with regard to realistic, multidimen-
sional models. For correlated electron dynamics, this
is briefly mentioned in Sect. 2.4. For one-electron prob-
lems, a discussion of how to keep the one-dimensional
dynamics and observables as close as possible to a three-
dimensional system is given in [164,165].

3.1.1 Classical phase space dynamics

Classically, the phase space dynamics are described by
Hamilton’s equations

ẋ = p =
∂Hcl(p, x)

∂p
(1)

ṗ = −∂Veff

∂x
= −∂Hcl(p, x)

∂x
, (2)

where x and p are the position and canonically conju-
gate momentum, respectively, and the classical Hamil-
tonian H is defined by

Hcl(p, x) =
p2

2
+ Veff(x). (3)

In Eq. (3), Veff = V (x) + Vl is the effective potential
determined by the external electric field acting on the
electronic wave packet. The physical picture of a time-
dependent effective potential corresponds to the length
gauge and the dipole approximation, which are used
in this work. Thereby, Vl is the potential energy deter-
mined by the laser field, which for a field without spatial
dependence, reads Vl = xE(t).

Here we take the binding potential V (x) to be either
soft-core

Vsc(x) = − 1√
x2 + λ

, (4)

with λ = 1 constant, or as the short-range Gaussian
potential

VG(x) = − exp(−λx2), (5)

where λ = 1/2. For diatomic molecules we consider

V (x) = Vsc(x − R/2) + Vsc(x + R/2). (6)

The field is assumed to be either static, i.e. E(t) = E0,
or as a linearly polarised monochromatic wave of fre-
quency ω and offset phase φ

E(t) = E0 cos(ωt + φ). (7)
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Specifically in the work associated with inhomogeneous
fields we introduce the spatial dependence of the laser
field by considering

E(x, t) = (1 + βx)E(t), (8)

and the associated inhomogeneous effective potential

Ṽeff = V (x) + (x + 0.5βx2)E(t), (9)

where β is an inhomogeneity parameter1. This approxi-
mation has been widely employed in the literature [166–
172] contingent on a small inhomogeneity parameter.

This classical approach is used to determine bound
and continuum phase space regions, identify fixed
points and analyse ensembles of trajectories under dif-
ferent conditions. This is done by employing key con-
cepts of the theory of dynamical systems, some of which
are briefly stated here for the sake of self-consistency.
For a more detailed and rigorous discussion please see
e.g. [173]. Solutions of Eqs. (1) and (2) which stay the
same for all times, that is, for which ẋ = ṗ = 0, are fixed
points. For conservative Hamiltonian systems of form
(3), such as a model atom in a static field (E(t) = E0),
one may show that fixed points are centres or sad-
dles. In phase space, these fixed points are located at
(xf , pf ) = (xs, 0), where xs is the value of the coordi-
nate x for which the effective potential Veff or Ṽeff is
stationary. Centres and saddles are given by the min-
ima and maxima of the effective potential, respectively.
Centres are attractive and surrounded by closed orbits,
while saddles are semi-stable and help delimit qualita-
tively different dynamical regions in phase space. For
that reason, phase space trajectories crossing saddles
are called separatrices. For a time-dependent field, this
line of argument is approximate, but it can be used if
its frequency is low enough for the quasistatic picture
to hold. This is the case in the present work.

3.1.2 Time-dependent Schrödinger equation and initial
wave packet

As a benchmark, we use the full solution of the time-
dependent Schrödinger equation (TDSE),

i∂t|Ψ(t)〉 = Ĥ|Ψ(t)〉, (10)

where the length-gauge Hamiltonian reads

Ĥ =
p̂2

2
+ V̂eff(x̂), (11)

with Veff(x, t) being defined as above and the hats
denoting operators. We solve the TSDE in the position

1 The present expression has been corrected by a factor two
with regard to that in [82]. However, we have verified that
this does not change the main conclusions in the original
publication.

space,

i∂tΨ(x, t) =
(

−1
2

∂2

∂x2
+ Veff(x, t)

)
Ψ(x, t), (12)

where Ψ(x, t) is the time-dependent wave function.
Depending on the problem at hand, we choose different
initial wavefunctions Ψ(x, 0) and potentials Veff(x).

We will approximate the initial wave function by
Gaussian wave packets

Ψ(x, 0) = 〈x|Ψ(0)〉
=

(γ

π

) 1
4

exp
{

−γ

2
(x − q0)2 + ip0(x − q0)

}
(13)

of width γ centred at vanishing initial momentum p0 =
0 and initial coordinate q0, or coherent superpositions
thereof. Specifically for diatomic molecules, we will con-
sider γ = 0.5 a.u. and q0 = −R/2 or q0 = R/2, in which
cases the initial wave functions are given by Ψdown(x, 0)
or Ψup(x, 0), respectively.

The delocalised wave function is taken to be the sym-
metric coherent superposition

Ψcat(x, 0) =
Ψdown(x, 0) + Ψup(x, 0)√∫
[Ψdown(x, 0) + Ψup(x, 0)]2 dx

. (14)

The time-dependent wave function is employed to
compute quantum distribution functions and observ-
ables discussed in the next section. It will also be used
to calculate the time-dependent autocorrelation func-
tion

a(t) =
∫

Ψ∗(x, t)Ψ(x, 0)dx, (15)

as well as the ionisation rate

Γ = − ln
( |P(Tf )|2

|P(0)|2
)

1
Tf

, (16)

from an initial time t = 0 to a final time t = Tf , where

P(t) =
∫ +∞

−∞
Ψ∗(x, t)Ψ(x, t)dx. (17)

This definition of ionisation rate was used in the semi-
nal paper [138] in the context of enhanced ionisation of
molecules, and in our previous publications [78,139].
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3.1.3 Quantum distribution functions

The time-dependent wave function is used as input in
the Wigner quasiprobability distribution

W (x, p, t) =
1
π

∫ −∞

∞
dξΨ∗(x + ξ, t)Ψ(x − ξ, t)e2ipξ.

(18)

This function is always real. However, it exhibits
both positive and negative values, hence the name
“quasiprobability”. This, among other features, makes
its interpretation as a simple probability distribution
difficult. This is why it is often paired with a study of
classical trajectories in phase space. On the other hand,
its deviations from probability densities can be used to
define nonclassicality. For instance, a widespread def-
inition used in quantum optics is to seek regions for
which W (x, p, t) is negative and classify them as non-
classical [174]. A more restrictive definition is based on
the quantum Liouville equation [13].

(
∂

∂t
+

p

M

∂

∂x
− dVeff(x)

dx

∂

∂p

)
W (x, p, t) = Q(x, p, t),

(19)

where

Q(x, p, t) =
∞∑

l=1

(−1)l(�/2)2l

(2l + 1)!
d2l+1Veff(x)

dx2l+1

∂2l+1

∂p2l+1
W (x, p, t) (20)

are the quantum corrections to the classical Liouville
equation. The quantum Liouville equation (also known
as Moyal equation) may also be written more compactly
as

∂W (x, p, t)
∂t

= −{{W (x, p, t),H(x, p, t)}}, (21)

where H(x, p, t) is the system’s Hamiltonian and {{·}}
give a Moyal bracket [175,176]2. In the classical limit
(setting � = 0), Eqs. (19) and (21) become the classi-
cal Liouville equation, so that Q(x, p, t) = 0 and the
right-hand side of Eq. (21) will be given by a Poisson
bracket. In this case, the Wigner quasiprobability dis-
tribution will evolve like a classical entity. This is a
useful tool for distinguishing between regimes in which
quantum interference is present, but evolves classically
by, for instance, following classical separatrices, and
those truly quantum regimes with no classical coun-
terpart. A widespread approach in quantum optics and

2 Moyal brackets map noncommuting operators to func-
tions in phase space and have been used in a wide range
of problems; for instance, one of us applied them to non-
Hermitian Hamiltonian systems [177].

cold gases, known as the truncated Wigner approxi-
mation (TWA), is to consider the classical Liouville
equation with stochastic quantum corrections. This is
many times required in order to deal with large sys-
tems. The TWA was first used in the context of Bose-
Einstein condensates in [45]; for reviews see [32,35],
and is closely related to the linearised semiclassical IVR
[33,40]. Nonetheless, in some instances it may be non-
trivial to compute a classical limit for the quantum
Liouville (Moyal) equation (see [7] for an early discus-
sion).

One should note that quantum distribution func-
tions may be defined using any two variables corre-
sponding to incompatible observables, such as time and
frequency. For instance, Wigner-type time-frequency
distributions were employed to study HHG [178], dif-
ferent regimes in ATI [179] and autoionisation [85].
This approach bears some similarity with the use of
windowed Fourier transforms, which is much more
widespread and has been used since the 1990s to infer
time profiles of harmonics and extract electron return
times from ab-initio computations (see, e.g. Refs. [180–
185] for early studies or Refs. [166,167,186–188] for
more recent publications).

3.1.4 Gabor and Fourier transforms

In our work we use the Gabor transform to com-
pute time-resolved HHG. The time-resolved spectra are
given by χG(Ω, t) = |dG(Ω, t)|2, where Ω is the har-
monic frequency,

dG(Ω, t) =
∫

dt′ d(t′)e−iΩt′−(t′−t)2/2σ2
, (22)

with σ = 1/3ω, is a windowed Fourier transform with
a Gaussian window function, and

d(t) = − 〈Ψ(t)|∂Veff(x, t)
∂x

|Ψ(t)〉

= −
∫

Ψ∗(x, t)
∂Veff(x, t)

∂x
Ψ(x, t)dx, (23)

is the dipole acceleration [189–191]. The standard HHG
spectrum, for which all temporal information is lost, is
computed as χ(Ω) = |d(Ω)|2, with

d(Ω) =
∫

dt d(t)e−iΩt, (24)

and is recovered by setting σ → ∞ in Eq. (22).

3.1.5 Initial value representations (IVRs)

We have also employed initial-value representations
(IVRs), where the time-dependent wave function is con-
structed using a basis of Gaussian wave packets in
phase space guided by a trajectory-based grid. IVRs
exhibit many advantages, such as providing an intu-
itive picture in terms of electron orbits, accounting for
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external fields, binding potentials and quantum inter-
ference. Furthermore, they are applicable to large sys-
tems due to the numerical effort involved not scal-
ing exponentially with the number of degrees of free-
dom. Specifically, we employ the Herman–Kluk (HK)
propagator [42] and the coupled coherent state (CCS)
representation [43]. Coherent states are widely used
in chemical physics and quantum optics for behav-
ing in a quasiclassical way. This allows descriptions in
terms of functions of complex numbers, and using the
phase space approaches mentioned in this work. The
most common coherent states are those of the quan-
tum harmonic oscillator. They have been first intro-
duced by Schrödinger in [192] and systematically stud-
ied by Glauber [20] and Sudarshan [21] in the context of
quantum optics. Coherent states have also been widely
used to construct IVRs guided by Gaussians in phase
space, such as the HK propagator [42], the CCS repre-
sentation [43], the linearised semiclassical IVRs [40] and
the Frozen Gaussian Approximation [41]. For a detailed
discussion and more coherent-state based IVRS see the
recent review [44].3

For the Herman–Kluk propagator, we consider a state
vector

|ΨHK(t)〉 =

∫∫
|q, p〉R(t, q0, p0)〈q0, p0|Ψ(0)〉eiScl dq0dp0

2π
,

(25)

where |q, p〉 represents a coherent state in phase space
and q0, p0 the initial phase space coordinates. This state
corresponds to a Gaussian wave packet, see Eq. (13).

The prefactor

R(t, q0, p0) =
1

21/2

(
mpp + mqq − iγmqp +

i
γ

mpq

)1/2

(26)

is given in terms of the elements muv = ∂u/∂v0 of the
monodromy matrix, which is composed of the deriva-
tives of the final phase space variables with regard to
their initial values, and

Scl(q, p) =
∫

(pq̇ − Hcl(p, q)) dt, (27)

is the semiclassical action, where Hcl(p, q) is the clas-
sical Hamiltonian (see Eq. (3) in this work). However,
for clarity, when using IVRs we employ a slightly differ-
ent notation than in the rest of the paper. This is done
in order to distinguish between phase space Gaussian
coherent states and their position-space representations
(see Eq. (34) below).

3 One should note that there are other types of coherent
states, such as the Barut–Girardello coherent states [193],
or Gazeau-Klauder [194–197] coherent states. For reviews
on different types of coherent states see, e.g. [24,198] and
[199].

For a Gaussian initial wave packet,

〈q0, p0|Ψ(0)〉 = exp
{

− γ

4
(q − q0)2 − 1

4γ
(p − p0)2

+
i
2
(p + p0)(q0 − q)

}
. (28)

For the CCS method, we write the time-dependent
wave function as a superposition of time-dependent,
nonorthogonal Gaussian coherent states (CS) |z〉 =
|z(t)〉, defined as

â|z〉 = z|z〉 and 〈z|â† = 〈z|z∗, (29)

where â†, â are the creation and annihilation operators,
respectively, and whose eigenvalues are parametrised as
functions of the phase space coordinate as

z =
√

γ

2
q +

i√
2γ

p,

z∗ =
√

γ

2
q − i√

2γ
p. (30)

The time-dependent state reads

|Ψ(t)〉 =
∫

|z〉Dz(t)eiSz
d2z

π
, (31)

where

Sz =
∫ [

i
2

(
z∗ dz

dt
− z

dz∗

dt

)
− Hord(z∗, z)

]
dt (32)

denotes the classical action along the trajectory defined
with regard to the matrix element Hord(z∗, z) =
〈z|Ĥord(â†, â)|z〉. This represents the diagonal elements
of the ordered Hamiltonian matrix Ĥord(â†, â). In gen-
eral,

〈z|Ĥ|z′〉 = 〈z|z′〉Hord(z∗, z′), (33)

where |z〉, |z′〉 denotes two arbitrary coherent states.
In coordinate space,

〈x|z〉 =
(γ

π

)1/4

exp
[
−γ

2
(x − p)2 + ip(x − q) +

ipq

2

]

(34)

is a Gaussian wave packet centred at the phase space
coordinates q and p.

One should note that, for a static field and a Gaussian
potential given by Eq. (5), the effective CCS Hamilto-
nian is given by

Hord(p, q) =
γ

4
+

p2

2
−

(
γ

γ + λ

)1/2

exp[−ηq2] + qE0,

(35)
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with η = (λγ/(γ+λ)). Physically, averaging the Hamil-
tonian over a Gaussian coherent-state basis effectively
lowers the potential barrier by introducing an effective,
shallower potential. In comparison with the classical
Hamiltonian, Eq. (35) shows an effective energy shift
γ/4 [200,201].

3.2 Phase space configurations and bifurcations

3.2.1 Identifying bound and continuum regions

A powerful reason to study phase space dynamics in
attoscience is that trajectories can easily be understood
as bound or unbound depending on the phase space
configuration. This is crucial when looking at signa-
tures of strong-field tunnelling and over-the-barrier ion-
isation. Bound and continuum regions can be defined
by inspecting the phase portrait of the system. This is
exemplified with Fig. 1, in which we consider a model
atom in a static field. Similar pictures have been pro-
vided in [73,202]. The figure shows two fixed points
according to the definition provided in Sect. 3.1.1: a cen-
tre at the origin, and the Stark saddle to the left, whose
positions are determined by the minimum and the max-
imum of the effective potential Veff(x), respectively. The
figure also shows a separatrix, which corresponds to the
stable and unstable manifolds of the Stark saddle. It is
associated with the minimum energy to undergo over-
the-barrier ionisation. The closed region to the right of
the saddle is bound: trajectories within it will propa-
gate along closed orbits. If the particle starts on the left
of the Stark saddle, or if it has an energy higher than
that of the separatrix, it will be free. This clearly shows
that the particle’s energy is paramount to defining the
continuum regions; the particle being close to the core
is not sufficient for describing its dynamics.

Quantum mechanically, there will always be an
uncertainty for the initial wave packet, which will man-
ifest itself as a phase space spread (see Fig. 1, upper
right panel). In trajectory-based grid methods, such as
IVRs, one may employ an ensemble of classical trajec-
tories to mimic the initial spread (see Fig. 1, lower left
panel). One should note that, due to the initial uncer-
tainty, some trajectories belonging to the ensemble will
be in the continuum from the start. Although they can-
not cross separatrices, they do from a tail whose energy
is above that of the saddle. Energies above that of the
saddle indicate above-the-barrier ionisation (see Fig. 1,
lower right panel) [76].

For a time-dependent field of form (7), in the param-
eter range considered in this work, namely low fre-
quencies and high driving-field intensities, one may
assume that the system behaves quasistatically. This
means that one may use the approximation that the
phase space configurations discussed for static fields
and shown in Fig. 1 hold for each instant of time.
They will change instantaneously, such that an electron
reaching the continuum at different times and propa-
gating in the field will be exposed to a wide range of
transient bound and continuum regions. This implies

that the time should be included as an additional vari-
able in an extended phase space.

The Stark saddles will be symmetric with regard to
the origin for consecutive half cycles. An illustration of
a time-dependent separatrix for a field given by Eq. (7)
is displayed in Fig. 2. The bound region enclosed by
the separatrix increases with time in the first quarter
cycle of the field, as it evolves from a maximum to a
crossing. This evolution is indicated up to t = 30 a.u.
(see upper colour bar), which is less than a quarter of a
cycle. Thereafter, the sign of the field will reverse and
the bound region will decrease until the minimum of
the field, in the subsequent half cycle, is reached.

The picture also shows a sample phase space tra-
jectory, in which an electron performs two revolutions
around the core until it eventually escapes. This orbit is
indicated by the dashed line and should be followed in
the clockwise direction, starting from the black dot. The
electron is initially in the continuum, that is, outside the
region enclosed by the separatrix at t = 0 (blue curve).
It follows this separatrix closely, but is captured as the
bound region increases. At t = 20 a.u. (solid square),
it is in a bound region far away from the saddle indi-
cated by the dark yellow curve. This region increases
up to a quarter of a cycle. Thereafter, the oscillating
field reverses its sign, and the electron performs a sec-
ond revolution around the core, which, in phase space,
is roughly the mirror image of the first with regard to
the momentum axis. Eventually, the electron escapes as
it is once more in the continuum (blue triangle).

3.2.2 Inhomogeneous fields and phase space
configurations

Time-dependent separatrices and transient phase space
configurations play a key role for inhomogeneous fields,
which are employed to model HHG in alternative media
such as nanostructures [82]. The laser field becomes
enhanced by plasmonic resonances and the external
field has to be regarded as inhomogeneous. While it
is well known in the literature that even small inhomo-
geneities may lead to huge changes in the high-order
harmonic spectra [166–172], such as an increased cut-off
energy (see Fig. 3), the analysis of phase space regions
provides further insight.

An inhomogeneous field approximated by Eq. (8)
introduces an additional fixed point with regard to its
homogeneous counterpart, whose nature changes with
the sign of the laser field. For E(t) > 0 or E(t) < 0,
where E(t) is given by Eq. (7), it will be a centre or a
saddle, respectively. The two configurations introduce
either a concavity, see Fig. 4a, c or a convexity, see
Fig. 4b, d, to the dynamical system and are a crucial
tool in understanding the increase in the HHG cut-
off energy, previously attributed to the higher electron
momentum for the convex system at the instant of ion-
isation [168].

However, by separating our configurations into two
toy potentials (one always convex, one always concave),
we show that, instead, the increased cut-off energies
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Fig. 1 Upper left panel: phase portrait of the system defined as an atom with a soft-core potential in a static field of
amplitude E0 = 0.075 a.u. (I = 1.97×1014W/cm2). Solid lines depict the separatrix in phase space, while dashed and dotted
lines illustrate solutions for energies E = −0.67 a.u. (E = −18.23 eV) and E = −0.3 a.u. (E = −8.16 eV), respectively.
The dashed-dotted lines show the evolution of sample trajectories from t = 0 to t = 20 a.u. Upper right panel: phase space
spread for an initial Gaussian wave packet centred at the origin and width γ = 0.5 (bound-state energy E � −0.67 a.u.
(E � −18.23 eV). Lower left panel: phase space positions of the classical trajectory ensemble mimicking the initial wave
packet in the upper right panel. Lower right panel: phase space positions of a classical-trajectory distribution whose initial
conditions are shown in the lower left panel, after a time t = 20 a.u. of static-field propagation. The colour bar on the top
right panel gives the phase space probability density. From [76]

are due to the concavity providing additional confine-
ment and forcing high-energy orbits back to the core.
This is a similar mechanism to that in [203], in which
an additional confining potential led to a substantial
increase in the cut-off energy without loss of inten-
sity. Indeed, Fig. 4c, d, shows that only the spectrum
obtained from a concave potential leads to an increase
in cut-off energy.

3.2.3 Enhanced ionisation and nested separatrices

The change in the nature of the fixed points due to
the inhomogeneous field leads to different configura-
tions, depending on the external laser field. This is a
clear case of a bifurcation. Studying the H+

2 molecular
system in [78] using phase space diagrams also leads
to several fixed points, shown in Fig. 5. Thereby, one
may identify a Stark saddle to the left, a central sad-
dle between the two molecular wells and two molecular

centres separated by R. We again have two different
configurations, not due to a time-dependent field, but
to a bifurcation for increasing internuclear separation
R.

For R below the critical (bifurcation) value, see
Fig. 5a, the separatrices are nested and classical trajec-
tories close to the core stay bounded. If the energy of the
central saddle becomes greater than that of the Stark
saddle, the separatrices open up, see Fig. 5b. Then,
a trajectory in the upfield molecular well only needs
to pass the upfield potential barrier in order to reach
the continuum. This explains the behaviour of the ion-
isation rate with respect to the internuclear distance,
shown in Fig. 5c. Indeed, after the bifurcation and as
the separatrices open up there is a sharp increase in
the ionisation rate. Additionally, the ionisation rate for
a wave packet localised around the upfield molecular
well, Eq. (13), is about double that of a delocalised
wave packet, Eq. (14), and the ionisation rate for a
wave packet localised downfield, Eq. (13), is suppressed.
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Fig. 2 Time-dependent separatrix for half a cycle of the
laser field given by Eq. (7) with φ = 0 (solid lines), ampli-
tude E0 = 0.075 a.u. (I = 1.97 × 1014W/cm2) and fre-
quency ω = 0.05 a.u. (λ = 911 nm), together with an ini-
tially unbound electron trajectory (dashed line), whose ini-
tial conditions are indicated by a dot. The gradient colour
indicates the time variation from t = 0 (blue) to t = 30 a.u.
(red), which spans slightly less than the first quarter cycle
of the field. The remaining symbols give the phase space
coordinates of the particle at specific times t. For t > T/4,
the bound phase space region starts to decrease, until the
trapped trajectory is eventually able to escape. The colour
bar on the top of the figure indicates how the separatrix
varies with time, from t = 0 up to t = 30 a.u. From [76]

Fig. 3 HHG spectra computed from dipole acceleration
(23) obtained with inhomogeneity parameters β = 0.004
(solid line) and for the homogeneous case (gray dots). The
external field is given by Eq. (8), and its temporal part by
Eq. (7), with frequency ω = 0.05 a.u. (λ = 911 nm), ampli-
tude E0 = 0.075 a.u. (I = 1.97 × 1014W/cm2) and phase
φ = π/2. The pulse duration is 6 cycles. The cut-off har-
monics are indicated by the arrows in the figure. From [82]

From this it is deduced that maximum enhancement is
achieved if the energy of the saddle is high enough for
the tunnelling electron coming from the upfield popula-
tion not to be trapped by the downfield centre, but low
enough for the effective potential barrier to be narrower
than that of a single atom.

3.3 Semi-classical versus quantum regimes

In the following, we will illustrate different physical
regimes, which may or may not have a classical counter-
part. Thereby, we will also exemplify roles that trajec-
tory ensembles may play. Classical-trajectory ensem-
bles allow for an intuitive understanding of an elec-

tronic wave packet’s evolution when paired with quan-
tum mechanical methods. They may, for instance, be
employed to link the outcome of quantum-mechanical
computations, such as the TDSE, to the picture of a
returning electron, or be used to construct grids for
initial-value representations.

3.3.1 Pairing trajectories with quantum mechanical
methods

A widespread example is to use trajectories to infer
electron return times from HHG spectra. This is known
since the 1990s [204], and the fact that these times are
well specified within a field cycle has paved the ground
for attosecond-pulse generation. It is also well known
that windowed Fourier transforms of time-dependent
dipole acceleration [Eq.(23)] lead to periodic arch-
like structures which can be explained using classical-
trajectory ensembles and give pairs of return times
merging at the cut-off [181,183].

Some of these structures are illustrated in Fig. 6,
in which the return times of an ensemble of classical
trajectories are used to understand the cause of plas-
monically enhanced HHG. While this is a quantum-
mechanical process, when the trajectories are paired
with time-frequency (Gabor) maps computed from the
TDSE, they can offer very useful insight. There is very
good agreement between the two, and we discern pecu-
liar features, which increase with the inhomogeneity of
the field. First, there is a suppression in the arch-like
structures that occurs with the same periodicity as the
field and happens for times after each field crossing.
This can be explained by the phase space dynamics in
Fig. 4: for times prior to the crossing, the prevalent
configuration, with two centres, forces the electron to
return, while the phase space configurations subsequent
to it, with two saddles, may contribute to irreversible
ionisation. This confirms that confinement plays a more
important role than the electron reaching the contin-
uum with a higher velocity. A second feature is struc-
tures occurring over several field cycles that extend up
to very high frequencies. These structures are associ-
ated with a second timescale introduced by the addi-
tional centre, which will be briefly discussed in Sect. 3.4.
The frequency with which they occur increases with the
inhomogeneity parameter β. Further details are pro-
vided in our original publication [82].

In addition to that, classical-trajectory ensembles
are employed to construct time-dependent grids which
guide initial-value representations (IVRs). In [76], we
assess the suitability of IVRs for modelling tunnel ion-
isation in an unusual setting, namely starting from a
bound state. We perform these studies in phase space
using the Wigner quasiprobability distribution con-
structed from IVRs and from the TDSE. Therein, we
consider the Herman–Kluk propagator, which is a semi-
classical IVR, and the coupled coherent states (CCS)
method, which is a quantum IVR solving the TDSE in
a coupled coherent state basis. The two Hamiltonians
are stated in Sect. 3.1.5 and differ, because the quantum
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Fig. 4 [Upper row] Phase portraits calculated for Hamiltonian (11), with soft core potential (4) and inhomogeneous field
(8) with β = 0.04. We consider the field to be (a) E0 = 0.07 a.u. (I = 1.72 × 1014W/cm2) or (b) E0 = −0.07 a.u.
(I = 1.72 × 1014W/cm2). The separatrices are given by the red lines in the figure, and the numbers near each contour
denote the corresponding total energy of the system. The Stark saddle xS and the fixed point xβ due to the inhomogeneity
are indicated in the figure. The contours in blue are related to the energies lower than that of the Stark saddle. The red
dashed lines give the separatrices for the homogeneous case β = 0, which occur at energy Esep = −0.52 a.u. (Esep = −14.15
eV). The black dashed lines give the phase space trajectory for energy E = −0.5 a.u. (E = −13.61 eV) and β = 0. [Lower
row] High-order harmonic spectra computed using dipole acceleration (23) for the same parameters as Fig. 3 using two
symmetric toy models which we artificially constructed from [82]. Panel (c) corresponds to the two-saddle potential and
panel (d) to the two-centre potential. The gray dots give the spectra computed for the homogeneous case. From [82]

corrections due to the coherent-state averaging intro-
duce energy shifts and effectively lower the potential
barrier. This implies that CCS orbits may cross classi-
cal separatrices, while the orbits employed in the HK
propagator may not. A detailed discussion of the dif-
ferences between the two propagators is provided in
[200,201] and in our previous work [76]. Figure 7 illus-
trates how specific trajectories in position and momen-
tum space differ when using the two IVRs. An impor-
tant issue is that the quantum corrections will allow the
CCS orbits to cross classical separatrices. This leads
to the CCS being more accurate at reproducing tun-
nelling, and there will be a degradation of the outcome
of the HK propagator for longer times. This degrada-
tion has been observed in our previous work [76] for
high-harmonic spectra.

The agreement between the different methods is illus-
trated in Fig. 8, in which Wigner quasiprobability
distributions were calculated for a Gaussian potential
using the CCS and the HK propagators. In all cases,
the Wigner function presents the signature semiclassi-
cal tail discussed in [73] (see also [202] for a seminal dis-
cussion of such features in the context of quantum local-
isation). The tail follows the separatrix and crosses from

the bound to continuum region around the Stark sad-
dle. There are also interference fringes on the left-hand
side of the saddle, which may be associated with ionisa-
tion events in previous times. The agreement between
the CCS and the TDSE is much better, with practi-
cally identical quasiprobability distributions. Further-
more, significant fewer trajectories are required than in
the HK case. This is due to the quantum corrections in
the CCS Hamiltonian Hord(p, q).

Nonetheless, it is remarkable that these quantum fea-
tures are present despite using HK wave packets and a
real-trajectory grid. This is in strong contrast to how
the trajectories guiding the grid behave, exemplified in
Fig. 1: the HK trajectories with over-the-barrier energy
never cross phase space barriers, while the Wigner func-
tion does. This discrepancy is justified by the nonlo-
cality of the Wigner function near separatrices, and
by the fact that, near the Stark saddle, the barrier
is approximately parabolic [135]. This means that, at
least for short times, the HK propagator is applicable.
One should note, however, that the HK trajectories con-
tribute to forming the tail. Indeed, if the classical tra-
jectories with initial positions outside the bound region
are removed, the tail as well the interference fringes are
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Fig. 5 [Upper row] Phase portraits for the one-
dimensional homonuclear molecular models described
by binding potential Eq.(6), using inter-nuclear separations
in panel (a) of R = 4 a.u. and in panel (b) R = 8 a.u.
with a static field E0 = 0.0534. a.u (I = 1014W/cm2).
The field-free separatrices and potentials are given by the
dashed red lines. The shaded areas indicate the phase
space regions for which the wave packet is bound. The
colours of these regions match those of the respective
separatrices. [Lower row] Ionisation rate (16) as a function
of the inter-nuclear distance R, using different starting
wave packets: delocalised (red), localised upfield (orange)
and localised downfield (purple). The vertical line indicates
the inter-nuclear separation for which the phase space
configuration changes. From [78]

Fig. 6 Time-frequency maps computed from the dipole
acceleration, and classical returning times (superimposed
dots) as functions of the harmonic order and the field cycles
with frequency ω = 0.05 a.u. (λ = 911 nm), amplitude
E0 = 0.075 a.u. (I = 1.97×1014W/cm2) and phase φ = π/2.
The pulse duration is 6 cycles. The inhomogeneity parame-
ter is (a) β = 0.01 and (b) β = 0.02. The colour bars indicate
the intensity of the time-frequency signal. From [82]

Fig. 7 Time-dependent coordinate and momenta com-
puted using 1D Gaussian potential (5) and the Hamiltonians
Hcl(p, q) (Eq. (3)) and Hord(p, q) (Eq. (33)) (red and black
lines, respectively), in an external time-dependent field of
amplitude E0 = 0.1 a.u. (I = 3.51 × 1014W/cm2) and
frequency ω = 0.0378 a.u. (λ = 1205 nm). In panel (a),
the initial position has been chosen as x0 = 76.72464472
a.u., while in panel (b) the initial momentum was taken as
p0 = −0.232201645 a.u.. From [205]

absent [76]. This is consistent with the findings of [206],
who show that the total weight of the classical phase
space trajectories corresponding to energies below or
above the top of a parabolic barrier gives the reflection
or transmission coefficients.

3.3.2 Nonclassical behaviour in phase space

In the examples provided above, one clearly sees a
classical-quantum correlation, either in structures from
time-frequency maps being related to classical return
times, or in Wigner function tails following classical
separatrices. However, what about situations in which
the quantum phase space evolution has no classical
counterpart? Below we illustrate the difference between
semiclassical and quantum pathways, in the context of
molecular enhanced ionisation [78].

The Wigner function nicely illustrates the physical
mechanisms behind molecular enhanced ionisation and
these different types of behaviour. From this quasiprob-
ability distribution analysis in Fig. 9a′′, b′′, the signa-
ture semiclassical escape tail associated with over-the
barrier ionisation is identified, as well as the oscillatory
behaviour around the classical separatrix. However,
intriguing structures that cycle through the momen-
tum space, whose behaviour does not follow separa-
trices, are also present. In Fig. 9a, b, the quasiprob-
ability distribution starts a cycle from the upfield cen-
tre to the downfield well. Using the interference fringes
around the central saddle as a quantum bridge, this
flow does not follow any of the classical separatrices.
As shown in Fig. 9a′, b′, the cyclical movement then
transfers part of the downfield population back to the
upfield molecular well, while the semiclassical tail starts
to form. In [74,75], those structures were called momen-
tum gates and were related to the nonadiabatic follow-
ing of the time-dependent field. However, as is seen
in Fig. 9, these are present even when using a static
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field, and for various internuclear distances (before and
after the bifurcation in Fig. 5). This provides evidence
that the actual mechanism is intrinsic to the molecule,
instead of a response to an external field. In [78], we
show that quantum interference builds a bridge between
the two centres in the molecule, which supports this
direct intra-molecular population flow. For that reason,
we refer to the mechanism behind the momentum gates
as “quantum bridges”.

From studying the effect of different internuclear dis-
tances as well as different initial wave packet configura-
tions, the optimal configuration for a static field stems
from using a localised upfield initial wave packet, see
Fig. 10a. Indeed, the cyclical motion is absent, meaning
the subsequent quantum bridge bringing the population
back to the upfield well does not form. Therefore, the
initial quantum bridge forms, leading the upfield popu-
lation through the downfield centre, to the semiclassical
escape pathway and to the continuum.

Understanding the formation of the quantum bridges
seems paramount to optimising enhanced ionisation.
Unfortunately, classical arguments are not sufficient in
explaining the time evolution of the Wigner function
during molecular enhanced ionisation. They fail to pre-
dict the cyclical motion of the quantum bridge after
the bifurcation as well as its frequency. This all seems
to point to that the evolution of the quantum bridge
is inherently nonclassical. In order to quantify this we
use the quantum Liouville equation, Eq. (19) to define
the amount of quantum corrections to the evolution
of the Wigner function. The result is quite staggering
and quantum corrections along with the correspond-
ing Wigner quasiprobability distribution are shown in
Fig. 10. If the Wigner function has a fully classical time
evolution, Q(x, p, t) vanishes everywhere. As shown in
Fig. 10b, the quantum corrections become very strong
around the quantum bridge as it starts to build up. In
contrast, they are completely absent along the semiclas-
sical tail. For this we conclude that enhanced ionisation
is due to the interplay of two pathways: the semiclassi-
cal escape pathways associated with tunnelling mecha-
nisms that follow the separatrix with a classical Wigner
function evolution (despite its description of an inher-
ently quantum mechanical process) and the quantum
bridge. The latter stems from the interference between
the two molecular wells, breaks all phase space con-
straints, presents very strong quantum corrections and
cannot have a classical analogue.

3.4 Understanding timescales

Phase space methods are also helpful for identify-
ing timescales and the physics behind them. This is
extremely important when working with time-dependent
fields. For instance, in molecular enhanced ionisation, it
is paramount to understand to timescale of formation of
the quantum bridge as well as its cyclical motion, and
how it relates to the frequency of the time-dependent
field. Indeed, the quantum bridge can both aid or hin-
der ionisation and by changing parameters such as the

type of field, the initial wave packet or the internu-
clear distance, enhanced ionisation can be optimised.
As seen in [78], the quantum bridge and its frequency
are inherent to the molecular system, and are present
even in the absence of an external field. In [139] an
analytical method based upon those employed in qua-
sisolvable models [207–209] is used to determine the
origin and the value of the frequency of the quantum
bridge in a field-free system. Using the autocorrela-
tion function of different initial wave packets, it is clear
that this frequency is due to the coupling of different
eigenstates. This leads to a very interesting situation
in [78], since the frequency of the quantum bridge is
higher than the frequency of the time-dependent laser
field. The quantum bridges could be controlled with the
appropriate coherent superposition of states or different
driving fields, which opens a wide range of possibilities
for studying quantum effects in enhanced ionisation.
We have verified that, for the model potential in [139],
the frequencies computed analytically are quite robust
upon inclusion of an external static field. This is illus-
trated in Fig. 114.

Another example is the several timescales that occur
for HHG in inhomogeneous media [82]. The very good
agreement between the quantum time-frequency maps
and the classical-trajectory computations means that
we can explore the dynamical aspects of the latter. If
the atomic potential Vsc(x) is neglected, the equation
of motion

d2x

dt2
= −E(t)β

(
x +

1
β

)
− ∂Vsc(x)

∂x
, (36)

describing the trajectory ensemble in the inhomoge-
neous field can be re-written as Mathieu’s equation.
Explicitly,

d2Υ

dτ2
+ εΥ cosτ = 0, (37)

where Υ = βx+1, τ = ωt, ε = βE0/ω2. This equation is
widely used to study particles in ion traps [210–213] and
provides a wide range of dynamic information, from the
values of the inhomogeneity parameter β for which the
system is stable, to the timescales involved. From the
phase space study of individual trajectories, shown in
Fig. 12, one can see that they experience two differing
motions: a slow and large oscillation and a small and
rapid one. This allows us to apply Dehmelt’s approx-
imation within the stability region, and its accuracy
is shown in Fig. 12. From this we conclude that the
secular oscillations are indeed responsible for the high-
frequency structures in the time-resolved spectra seen
in Fig. 6.

4 In these analytical calculations and their numerical coun-
terparts, a parabolic potential model was employed instead
of the soft-core and Gaussian potentials used in the remain-
der of the present work.
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Fig. 8 Modulus squared of the Wigner quasiprobability distributions computed for a static field of amplitude E0 = 0.075
a.u. (I = 1.97 × 1014W/cm2) and Gaussian potential (5), propagated up to t = 20 a.u. The left, middle and right panels
have been computed with the TDSE, the HK propagator and the CCS method, respectively. The separatrix and the curve
in phase space for the energy E = 0 are illustrated by the thick lines in the figure. For the HK propagator and the CCS
method we use 107 and 1600 trajectories, respectively. The colour bars give the square of the Wigner quasiprobability
density. From [76]

Fig. 9 Wigner quasiprobability distribution at different instants of time, calculated for a model H+
2 molecule in a static

field of strength E0 = 0.0534 a.u. (I = 1014W/cm2) using an initially delocalised (cat) state given by Eq. (14), with γ = 0.5.
In the top and bottom row, the inter-nuclear separation is taken as R = 6.8 a.u. and R = 4 a.u., respectively. The temporal
snapshots are given from left to right. Panels (a) and (a′) and (a′′) [first row] have been calculated for t = 8 a.u., t = 16 a.u.
and t = 24 a.u., respectively. Panels (b), (b′) and (b′′) [second row] for t = 8 a.u., t = 16 a.u. and t = 30 a.u.. The thin white
lines in the figure give the equienergy curves (including the separatrices). The colour bars give the Wigner quasiprobability
density. From [78]

Fig. 10 Comparison of a the Wigner quasiprobability distribution and b the quantum corrections Q(x, p, t), calculated
for a model H+

2 molecule of inter-nuclear separation R = 6.8 a.u. at time t = 24 a.u. in a static field of strength E0 = 0.0534
a.u. (I = 1014W/cm2) using a Gaussian initial wave packet centred around the upfield potential well. The thin white lines
in the figure give the equienergy curves (including the separatrices). The colour bar on the left panel gives the Wigner
probability density, while that on the right panel gives the magnitude of the quantum corrections. From [78]
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Fig. 11 a Comparison between the absolute value of the autocorrelation function |a(t)|2, see Eq. (15), calculated using
the analytical method in [139] in a field free system (red, dotted line) and numerical computations from [78] using the same
parameters but with a static field of strength E0 = 0.01 a.u. (I = 3.51 × 1012W/cm2) (dark blue solid line) and E0 = 0.05
a.u. (I = 1.72 × 1014W/cm2)(light blue solid line). [Bottom row] Wigner quasiprobability distributions using the same
parameters as a at time t = 0.7 a.u. using in panel b the analytical method in [139] for a field free system and in panel c
the numerical method in [78] for a static field of strength E0 = 0.05 a.u. (I = 1.7 × 1014W/cm2)

4 Conclusions

The take-home message of the present review is that
quantum optics, quantum information, chemical physics
and the theory of dynamical systems have developed
powerful toolkits that are under-used in strong-field and
attosecond physics, among them classical and quantum
phase space. We have provided a few examples of how
phase space arguments and/or quantum quasiprobabil-
ity distributions can be employed in the context of high-
order harmonic generation and strong-field ionisation,
be it for establishing constraints and determining dif-
ferent dynamical regimes, or for studying nonclassical
effects. Moreover, the phase space can also provide guid-
ance for constructing effective Hamiltonians, determin-
ing relevant subspaces and understanding the interplay
between the residual binding potentials and the laser
field in greater depth. This is particularly important
in the context of correlated multielectron dynamics,
for which the large number of degrees of freedom may
pose additional difficulties. Some of these techniques
have been referred to in the traditional setting of laser-
induced nonsequential double ionisation (see Sect. 2.4)
and will become increasingly necessary for extended
systems such as large molecules, solids and nanostruc-

tures. For instance, being able to select the relevant
degrees of freedom and treating them quantum mechan-
ically, while describing the less relevant ones classically,
or incorporating quantum corrections around classical
evolution are widespread strategies in quantum chem-
istry [33,34], cold gases [32,35] and in recent years pho-
tosynthetic compounds [214,215]. Thereby, a key ques-
tion is how to adapt these techniques to a highly tran-
sient, subfemtosecond regime, in the context of atto-
chemistry. Recently, quantum and classical approaches
have been combined to investigate electron and nuclear
dynamics in pump-probe experiments in glycine, and
the initial state was computed using phase space tech-
niques [216]. Even in the single-electron regime, it is
desirable to move from one-dimensional models. This
interest ranges from a more accurate description of the
dynamics [164,165] to studies in orthogonally polarised
fields [217].

In addition to that, it is clear that one must
go beyond traditional modelling in strong-field laser–
matter interaction, which employs either pure quantum
states or classical methods, and often takes the system
to be initially in the ground state. One then assumes
that the ionising electron creates a hole in the orbital
with the lowest binding energy. Nonetheless, one must
bear in mind that, in real-life situations, the atomic and
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Fig. 12 Numerical solutions of Mathieu’s equation
(dashed line) in phase space (panel (a)) and as a position-
time plot for β = 0.004 (panel (b)). The initial positions
and momenta in both cases is x(0) = 0 and p(0) = 0,
respectively. For reference, the continuous line in panel a
shows a closed orbit resulting from the propagation under
a homogeneous laser field. The continuous line in panel b
represents Dehmelt’s approximation to Mathieu’s equation.
From [82]

molecular ions generated by a strong laser field will be
in a coherent superposition of states. This means that
it is important to establish whether there will be coher-
ences between the ionisation channels [218]. Further-
more, the outgoing electron is expected to exhibit a
degree of entanglement with its parent ion, which may
harm coherence. This has been discussed in recent the-
oretical work, in which two time- delayed XUV pulses
are employed to control the degree of entanglement
between vibrational and electronic degrees of freedom
in H2. Entanglement prevents coherent superpositions
of states, which would lead to vibrational wave packets,
from forming [219]. To be able to determine and prepare
the ion in appropriate coherent superposition is really
important in the context of attosecond hole migra-
tion [220,221] and pump-probe schemes [216,219,222],
which rely on well-defined phase relationships. Elec-
tronic coherences also play a key role in XUV-induced
bond formation [223]. Thereby, one must assess how
nuclear and electronic degrees of freedom couple, with
the aim of maximising coherence [224]. This also implies
that a density-matrix formalism and effective Hamilto-
nians [218,225], which are more suitable for open quan-
tum systems, are required. This is particularly true if
one takes into consideration the current trends, towards
extended systems such as large molecules [216,226–
230] and nanostructures [231,232], for which overcom-
ing decoherence, quantifying entanglement and nonclas-
sical behaviour, and controlling the coupling with the
environment will pose major challenges. There is theo-
retical evidence that nuclear degrees of freedom in a
large molecule weaken coherence. Still, it is remark-
able that even in the worst-case scenario phase relations
may survive [216]. The present review is a brief illus-
tration of how phase space tools widely used in other
research areas, such as quasiprobability densities, may
be employed in attosecond physics.
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Ortmann, J.A. Pérez-Hernández, A. Picón, E. Pisanty,
J. Prauzner-Bechcicki, K. Sacha, N. Suárez, A. Zäır, J.
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145. D.B. Milošević, Phase space path-integral formulation
of the above-threshold ionization. J. Math. Phys. 54,
042101 (2013)

146. X.-Y. Lai, C. Poli, H. Schomerus, C.F. de Moris-
son Faria, Influence of the Coulomb potential on
above-threshold ionization: a quantum-orbit analysis
beyond the strong-field approximation. Phys. Rev. A
92, 043407 (2015)

147. A.S. Maxwell, A. Al-Jawahiry, T. Das, C.F. de Moris-
son Faria, Coulomb-corrected quantum interference
in above-threshold ionization: working towards multi-
trajectory electron holography. Phys. Rev. A 96,
023420 (2017)

148. A.S. Maxwell, C.F. de Morissson Faria, Coulomb-free
and Coulomb-distorted recolliding quantum orbits in
photoelectron holography. J. Phys. B At. Mol. Phys.
51, 124001 (2018)

149. A.S. Maxwell, S.V. Popruzhenko, C.F. de Morisson
Faria, Treating branch cuts in quantum trajectory
models for photoelectron holography. Phys. Rev. A 98,
063423 (2013)

150. N.I. Shvetsov-Shilovski, M. Lein, L.B. Madsen, E.
Räsänen, C. Lemell, J. Burgdörfer, D.G. Arbó, K.
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Decleva, A. Palacios, F. Martin, Molecular fragmenta-
tion as a way to reveal early electron dynamics induced
by attosecond pulses. Faraday Discuss. (2021). https://
doi.org/10.1039/D0FD00121J

217. K. Liu, I. Barth, Distinguishing two mechanisms for
enhanced ionization of H+

2 using orthogonal two-color
laser fields. Phys. Rev. A 103, 013103 (2021)

218. N. Rohringer, R. Santra, Multichannel coherence in
strong-field ionization. Phys. Rev. A 79, 053402 (2009)

219. M.J.J. Vrakking, Control of attosecond entanglement
and coherence. Phys. Rev. Lett. 126, 113203 (2021)

220. E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N.
Rohringer, V.S. Yakovlev, S. Zherebtsov, T. Pfeifer,
A.M. Azzeer, M.F. Kling, S.R. Leone, F. Krausz, Real-
time observation of valence electron motion. Nature
466, 739–743 (2010)

221. S. Pabst, L. Greenman, P.J. Ho, D.A. Mazziotti, R.
Santra, Decoherence in attosecond photoionization.
Phys. Rev. Lett. 106, 053003 (2011)

222. G. Sansone, F. Kelkensberg, J.F. Pérez-Torres, F.
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