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Abstract. Nonlinear corrections on electromagnetic fields in vacuum have been expected. In this study, we
have theoretically considered nonlinear Maxwell’s equations in a one-dimensional cavity for a classical light
and external static electromagnetic fields. A general solution for the electromagnetic corrective components
including that of a longitudinal standing wave was derived after a linearization. The main purpose is to
give a detailed feature of the previously reported resonant behavior [Shibata, Euro. Phys. J. D 74:215
(2020)], such as the effect of external static fields and the polarization fluctuation. These results favor the
development of new and effective method for experiment.

1 Introduction

The classical electromagnetic fields in vacuum are
described by the linear Maxwell’s equations. Several
theories assert that a nonlinear correction arises from
virtual electron–positron pairs, but these have yet to
be observed in experiments. The nonlinear correction
is considered to affect such as the radiation from pul-
sars [1,2] or neutron stars [3], the Wichmann–Kroll
correction [4] on the Lamb shift, and the interaction
between a nucleus and electrons through the Uehling
potential [5–7]. The most widely considered theories are
the Heisenberg–Euler model [8,9] and the Born–Infeld
model [10], which is sometimes applied to calculate a
hydrogen atom [11–14].

In experiments, a cavity system is often used, such
as the PVLAS (Polarizzazione del Vuoto con LASer)
[15,16], BMV (Biréfringence Magnétique du Vide) [17],
and OVAL (Observing VAcuum with Laser) experi-
ments [18]. These instruments explore the changes in
the refractive index, or birefringence, when light passes
through an external magnetic field. The calculation of
the refractive index is, for example, concisely summa-
rized in Refs. [19–21]. In these calculations, a station-
ary plane wave with non-classical dispersion relation is
assumed to derive the refractive index. In a mathemati-
cal viewpoint, assuming a stationary solution and solv-
ing an eigenvalue problem would require an infinitely
long time. On the other hand, there are few stud-
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ies which treat the nonlinear correction in a shorter
timescale. For example, it has been considered par-
tially in Refs. [22,23]. A resonant phenomenon has been
reported recently in Ref. [23] showing that the nonlin-
ear corrective term to the classical field can increase
resonantly with time. Such an increasing behavior may
make it easy to detect the vacuum nonlinearity. There-
fore, studying the resonant behavior in more detail may
prove valuable in developing more effective experiment.

In this study, we consider the nonlinear correction in
a one-dimensional cavity system. We solve the initial
and boundary problem and derive the minimum non-
linear correction for a general classical electromagnetic
field. Based on the solution, we discuss its property
and in particular, the resonant behavior of the non-
linear correction such as its dependency on external
static electromagnetic fields and a polarization change.
In addition, we show that the present study does not
contradict the calculation of the well-known birefrin-
gence.

2 Notations

We normalize electromagnetic fields by using the elec-
tric constant ε0 and magnetic constant μ0. The electric
field E is multiplied by ε

1/2
0 , and the magnetic flux den-

sity B is divided by μ
1/2
0 . Two Lorentz invariants are

defined as F = E2 − B2 and G = E · B, and the non-
linear electromagnetic Lagrangian we consider in this
study is given by

L =
1
2
F + C2,0F

2 + C0,2G
2, (1)
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where C2,0 and C0,2 are the nonlinear parameters and
we suppose them to be sufficiently small. For the anal-
ysis, their values are not necessary and the results can
be applied not only for the Heisenberg–Euler model
but also for the Born–Infeld model provided that the
Lagrangian in Eq. (1) is a good approximation. We
use the ratio of the Heisenberg–Euler model, i.e.,
C0,2/C2,0 = 7 only in Fig. 1.

This Lagrangian leads to nonlinear Maxwell’s equa-
tions. A part of the electromagnetic fields can be
described by the linear classical Maxwell’s equations.
We refer to this part as “classical term” and express
it by a subscript c. The classical term does not always
satisfy the nonlinear Maxwell’s equations. The differ-
ence from the classical term is referred to as “nonlinear
corrective term” and expressed by a subscript n. By
these notations, we express both the electric field and
magnetic flux density as E = Ec + En,B = Bc + Bn,
respectively. For a given classical term, if it is over-
whelmingly larger than the nonlinear corrective term,
by using Fc = E2

c −B2
c and Gc = Ec ·Bc, the polariza-

tion and magnetization of vacuum can be approximated
as

P (0) = 4C2,0FcEc + 2C0,2GcBc,

M (0) = −4C2,0FcBc + 2C0,2GcEc.
(2)

As in Ref. [23], we call the corresponding corrective
term as the “minimum corrective term” and express the
components by E(0)

n ,B(0)
n , respectively. These satisfy

the following linearized equations:

∇ · B(0)
n = 0,

∇ × E(0)
n + c−1∂tB

(0)
n = 0,

∇ · E(0)
n = −∇ · P (0),

∇ × B(0)
n − c−1∂tE

(0)
n = c−1∂tP

(0) + ∇ × M (0),

(3)

where c is the speed of light and ∂t expresses the partial
derivative with respect to time t. These equations may
be good approximations, while the minimum corrective
term is much smaller than the classical term. If the
electromagnetic fields are of class C2, by eliminating
the magnetic flux density and using

S(0) = ∇
(
∇ · P (0)

)
−c−2∂2

t P (0)−c−1∂t∇×M (0), (4)

we obtain a wave equation for the minimum corrective
electric field as

(� − c−2∂2
t

)
E(0)

n = −S(0). (5)

The “resonant condition” shown in Ref. [23] is

S(0) �= 0,
(� − c−2∂2

t

)
S(0) = 0. (6)

More precisely, if a part of S(0) satisfies this condition,
the corresponding minimum corrective term increases
resonantly, in proportion to time or distance.

3 One-dimensional cavity system and
classical term

We consider a one-dimensional cavity system. Two mir-
rors of perfect conductor are located at x = 0, l, and we
calculate in the inside region of 0 ≤ x ≤ l. All functions
depend only on x and t. We introduce new variables as

α = t − c−1x, β = t + c−1x. (7)

We first describe the classical term. Its input begins
at a certain negative time, and at t ≥ 0, we assume
that the classical term can be expressed by the sum of
a stationary wave part (with a subscript r) and a static
part (with a subscript s) as

Ec = Er + Es, Bc = Br + Bs. (8)

The static part depends only on x in the case of one
dimension and therefore must be a constant. As for the
stationary wave part, the boundary conditions are given
such that the y, z components of the electric field and
the x component of the magnetic flux density are always
zero at x = 0, l. The boundary conditions are related
only to the wave part. Let τ = c−1l, and by using arbi-
trary functions p and q to have a period of 2τ and being
of class C3, a general stationary wave part at t ≥ 0 can
be expressed as

Er =

( 0
p(α) − p(β)
q(α) − q(β)

)
, Br =

( 0
−q(α) − q(β)
p(α) + p(β)

)
. (9)

The period 2τ of p and q is necessary to satisfy the
boundary conditions at x = l. We can assume as

∫ 2τ

0

p(ξ)dξ = 0,

∫ 2τ

0

q(ξ)dξ = 0, (10)

without loss of generality because adding a constant to
p and q is the same as changing the static magnetic
flux density. For the following calculations, we extend
the domains of p and q to all real numbers by the peri-
odicity.

Both p and q can have shorter periods. For example,
let kl = nπ, n ∈ N and ω = ck, a standing wave of
a single mode is given by p(ξ) = (Ap/2) cos ωξ, q =
0. This yields Er = Ap sin kx sin ωtey and Br =
Ap cos kx cos ωtez, where ey,z are the unit vectors
along the y, z directions, respectively. The fundamen-
tal period of p is 2π/ω = 2τ/n. Then, we define the
fundamental period as 2τp if p is not identically zero.
τ/τp is a natural number. τq is defined in a similar man-
ner. We also introduce a symbol τM . If both p and q are
not identically zero, τM expresses the larger one of τp

and τq. If only one of τp or τq is defined, τM expresses
the defined one.
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The amplitude A of the wave part is defined by

A = 2max
(

max
ξ

|p(ξ)|,max
ξ

|q(ξ)|
)

. (11)

Hence, we obtain A = Ap in the above example. From
the form of the wave part, Ap is obviously the ampli-
tude in the conventional sense, and thus, the present
definition is consistent. Another indicator to express the
magnitude of the wave part is introduced by

A′ =
2τM

π
max

(
max

ξ
|p′(ξ)|,max

ξ
|q′(ξ)|

)
. (12)

In the example, A′ = Ap and is equal to the amplitude.
In general, A′ and A are different values.

Lastly, we give a limitation to the magnitudes of the
classical term. The considered Lagrangian in Eq. (1)
is limited to the quadratic with respect to F and G.
In addition, we only consider the minimum corrective
term. For these treatments, we assume the following
inequality:

(C2,0 + C0,2)(Es + Bs + A)2 � 1. (13)

Note that this inequality does not contain A′. It is
uncertain how A′ can differ from A, and thus excluded
in this evaluation.

4 Solution of the minimum corrective term

We calculate the minimum corrective term for the clas-
sical term described in the preceding section. The non-
linear correction exists from the very beginning of the
input, and the minimum corrective term depends on
the classical term at t < 0. However, investigation of
the variety of inputs is beyond the focus of our present
study. Rather, the response of the minimum corrective
term for the classical term at t ≥ 0 expressed in Eq. (8)
is more important as it implies possibility of resonant
behavior. Then, we consider a general initial distribu-
tion of the minimum corrective term at t = 0 to absorb
the effect of the classical term at t < 0.

4.1 x component

In the one-dimensional system, the x component of the
minimum corrective term can be calculated alone. The
corresponding ∇× terms in Eq. (3) do not have the
x component. Then, using a constant a, the following
expression is necessary:

E(0)
nx (x, t) = −P (0)

x (x, t) + a. (14)

If the initial distribution can be expressed by −P
(0)
x (x, 0)

+ a, it is the unique solution. Otherwise, the solution
does not exist. The solution is that of a longitudinal

standing wave. The magnetic flux density is always zero
because it is independent of x and the boundary con-
dition requires B

(0)
nx (0, t) = 0.

4.2 y and z components

Both Esx and Bsx do not contribute to the y, z compo-
nents of the minimum corrective term and are omitted
hereinafter. We define the following two-dimensional
vectors as

Ẽn =

(
E

(0)
ny

E
(0)
nz

)
, B̃n =

(
B

(0)
nz

−B
(0)
ny

)
,

j =
(

jy

jz

)
=

(
∂tP

(0)
y − c∂xM

(0)
z

∂tP
(0)
z + c∂xM

(0)
y

)
.

(15)

We made an special definition for B̃n to simplify the
expressions in the following calculation. The boundary
conditions are expressed as Ẽn(0, t) = 0 and Ẽn(l, t) =
0 and the initial distribution as Ẽ0(x) = Ẽn(x, 0) and
B̃0(x) = B̃n(x, 0). Each component is supposed to be
of class C2[0, l] and to be much smaller than A. From
the boundary conditions, the following are necessary:

Ẽ0(0) = 0, Ẽ0(l) = 0. (16)

For the arguments of j, we use (α, β), not (x, t). We
can uniquely divide j into an even part j(e) and odd
part j(o) such that

j(α, β) = j(e)(α, β) + j(o)(α, β), (17)

where j(e)(α, β) = j(e)(β, α) and j(o)(α, β) = −j(o)

(β, α). Their detailed forms are shown in Appendix A.
Because p and q are periodic, both j(e) and j(o) have a
period of 2τ in both α and β.

The minimum corrective term which satisfies the
boundary conditions at x = 0, l is given by

Ẽn(x, t) = − 1
4

∫ β

α

j(e)(α, ξ) − j(e)(ξ, β)dξ

− 1
4

(∫ β

−α

j(o)(α, ξ)dξ +
∫ α

−β

j(o)(ξ, β)dξ

)

+ K(α) − K(β),

B̃n(x, t) = − 1
4

∫ β

α

j(e)(α, ξ) + j(e)(ξ, β)dξ

− 1
4

(∫ β

−α

j(o)(α, ξ)dξ −
∫ α

−β

j(o)(ξ, β)dξ

)

+ K(α) + K(β),
(18)

where the function K(Z) is defined at Z ≥ −τ and has
a period of 2τ because of the boundary conditions at
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x = l. The values of the function at −τ ≤ Z ≤ τ are
determined by the initial distribution as follows:

K(Z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

4

∫ Z

−Z

j(e)(ξ, Z)dξ

+
1

2

[
B̃0(−cZ) + Ẽ0(−cZ)

] (−τ ≤ Z ≤ 0)

1

4

∫ Z

−Z

j(e)(ξ, Z)dξ

+
1

2

[
B̃0(cZ) − Ẽ0(cZ)

] (0 ≤ Z ≤ τ).

(19)
For Z ≥ τ , the function is periodically connected as

K(Z) = K(Z − 2τ). This function K(Z) is of class
C2[−τ,∞) if and only if

B̃
′
0(0) = −c−1j(e)(0, 0), B̃

′
0(l) = −c−1j(e)(τ, τ),

Ẽ
′′
0(0) = c−2∂tj

(e)(0, 0), Ẽ
′′
0(l) = c−2∂tj

(e)(τ, τ).
(20)

Inversely, if the initial distribution satisfies the condi-
tions in Eqs. (16,20), the function K can be defined
as in Eq. (19) and extended as K(Z) = K(Z − 2τ) for
Z ≥ τ . (The extended function is expressed by the same
symbol.) Then, the minimum corrective term which sat-
isfies the initial and boundary conditions is uniquely
given by Eq. (18). Each component is of class C2 in
(x, t) ∈ [0, l] × [0,∞).

4.3 Explicit resonant behavior

One remarkable and interesting behavior of the mini-
mum corrective term is the resonant increase with time.
For this purpose, we fix x and regard Eq. (18) as func-
tions of t. First, K has a period of 2τ and it never con-
tributes to the resonance. This indicates that the initial
distribution is irrelevant to the resonance. Second, the
integrals of j(e) from α to β also have a period of 2τ
and they do not contribute to the resonance. This fact
leads to the result that although S(0) satisfies the reso-
nant condition in Eq. (6), the corresponding minimum
corrective term does not always increase resonantly. An
example will be provided in the subsequent Sect. 5.1.

The situation slightly differs for j(o). Let

Γ (α) =
1
2τ

∫ 2τ

0

j(o)(α, ξ)dξ, (21)

we obtain

∫ β

−α

j(o)(α, ξ)dξ = 2tΓ (α) +
∫ β

−α

j(o)(α, ξ) − Γ (α)dξ,

(22)
where the second term of the right-hand side has a
period of 2τ . Obviously, the resonant behavior is deter-
mined by Γ . The functions p2, pq and q2 have a period
of 2τ and let their mean values be Λ2p, Λpq and Λ2q.

Defining Q1,2,3 as

Q1 = 4C2,0

(
4Λ2p + E2

sy + B2
sz

)

+ C0,2

(
4Λ2q + E2

sz + B2
sy

)
,

Q2 = 4C2,0

(
4Λ2q + E2

sz + B2
sy

)

+ C0,2

(
4Λ2p + E2

sy + B2
sz

)
,

Q3 = (4C2,0 − C0,2) (4Λpq + EsyEsz − BsyBsz) ,

(23)

then Γ is given by

Γy(ξ) = 2 [Q1p
′(ξ) + Q3q

′(ξ)] ,

Γz(ξ) = 2 [Q3p
′(ξ) + Q2q

′(ξ)] .
(24)

Rewriting the minimum corrective term, we obtain
(

E
(0)
ny

E
(0)
nz

)
= −

(
Q1 Q3

Q3 Q2

)
t
∂

∂t

(
Ery

Erz

)
+ . . . ,

(
B

(0)
ny

B
(0)
nz

)
=

(−Q2 Q3

Q3 −Q1

)
t
∂

∂t

(
Bry

Brz

)
+ . . . ,

(25)

where the dots on the right-hand sides of both expres-
sions have a period of 2τ and do not increase resonantly,
while the exhibited parts express the resonant increase.
These expressions explicitly show the relation between
the classical term and the resonant part of the minimum
corrective term. For example, possible sum and differ-
ence of frequencies do not increase resonantly. They can
only appear in the omitted part shown by dots.

4.4 Limits on applicable time

The linearization shown in Eq. (3) is acceptable only
when the minimum corrective term is much smaller
than the classical wave part. In the case that the min-
imum corrective term can increase resonantly, there
must be an upper limit to the applicable time.

However, it is not clear whether the upper limit can
be determined by using only the resonant part shown
in Eq. (25). Hence, an evaluation of the omitted parts
becomes necessary as shown in the next two sections.
As we show later, if Es = 0 and q = 0, the omitted
parts are much smaller than the classical wave part. In
this case, the applicable time can be evaluated only by
the resonant part.

Let us calculate for a standing wave of a single mode
of p(ξ) = (A/2) cos ωξ and q = 0, where ω = ck, kl =
nπ, n ∈ N. The classical term is given by

Ec = ASXST ey, Bc = Bsyey + (ACXCT + Bsz)ez.
(26)

In here and later examples, we define X = kx, T = ωt
and the trigonometric functions sin, cos are expressed
by the capital letters S,C with a subscript. For exam-
ple, sin kx is abbreviated as SX .

In this example, Λ2p = A2/8 and j(e) = 0. It can
be seen that the zero initial distribution is compatible
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with the boundary conditions in Eq. (20) and is adopted
here. The corresponding electric field is given as

E(0)
ny (x, t) = − AQ1SXTCT

+
1
4
C2,0A

3

× [3SX(S3T − 3ST ) + S3X(ST − 3S3T )]

− 4C2,0A
2BszS2XS2T

− (4C2,0B
2
sz + C0,2B

2
sy)ASXST ,

E(0)
nz (x, t) = − AQ3SXTCT

+ (4C2,0 − C0,2)ABsy

×
(

1
2
AS2XS2T + BszSXST

)
.

(27)
For each component, the first line on the right-hand
side is the resonant part and the remaining terms are
the non-resonant part. Worth noting is that the z com-
ponent of the electric field can increase resonantly. This
wave component never exists in the classical wave.

Figure 1 demonstrates the resonant increase of the
minimum corrective electric field for Bsy/A = 2, Bsz/A
= 0.5 at X = π/2. The absolute values of the resonant
and non-resonant parts are shown, respectively. Con-
trary to the phase difference of both parts, they are not
correlated. The superficial correlation is caused by the
choice of X. At this point, the non-resonant parts of
y and z components are (3/2)C2,0A

3(S3T − 21ST ) ≈
−(63/2)C2,0A

3ST and −3C2,0A
3ST , respectively, and

they show the π/2 phase offset to the resonant parts.
At other points, the terms of S2T and S3T can stand
out. Note that both parts are derived by the classi-
cal term and their interaction is discarded within the
range of the linearization. Therefore, they cannot inter-
act within the range of this study.

We would like also to mention the difference in mag-
nitudes of both the resonant parts of y and z com-
ponents in Fig. 1. Quantitatively, the values of Q1 =
31C2,0A

3 and Q3 = 3C2,0A
3 are the reason. Qualita-

tively, the origin of the resonant behavior of y and z
components is slightly different. For the classical term
in Eq. (26), q = 0 and Es = 0 and the classical electric
field has only the y component. The resonant part of the
y component of the minimum corrective electric field is
generated by the classical electromagnetic wave regard-
less of the static magnetic flux density. On the other
hand, for the generation of the resonant part of the
z component, the classical electromagnetic wave needs
to be converted to the orthogonal component through
P (0) or M (0). It is accomplished by the existence of
both Bsy and Bsz. This feature is represented in Q3

which is proportional to BsyBsz.
We then evaluate the applicable time. If the lineariza-

tion is possible, while the resonant part is sufficiently
smaller than A, an upper bound can be evaluated as

ωt � 1
|Q1| ,

1
|Q3| . (28)

In particular, if Bsy = 0, then Q3 = 0 and we obtain
the last inequality in Ref. [23].

5 Evaluation of the omitted terms of j(e)

In this section, we evaluate the magnitudes of the inte-
grals of j(e), i.e.,

∫ β

α

j(e)(α, ξ)dξ. (29)

The other integrals can be evaluated similarly.
We calculate for the terms appearing in Eq. (A.1)

in Appendix A. Similar discussion can be done for the
other expressions. The integral becomes

− 2Esy

(
2p′(α)

∫ β

α

p(ξ)dξ + q′(α)
∫ β

α

q(ξ)dξ

)

− 2Eszq
′(α)

∫ β

α

p(ξ)dξ

+ 2c−1x(EsyBsy − EszBsz)q′(α)

− 4c−1xEsyBszp
′(α) + oA,

(30)

where several terms which will be of the order of (C2,0+
C0,2)(Es +Bs +A)2A when multiplied by the nonlinear
parameters; for example, Esyp(α)p(β) are gathered by
the symbol oA. Recalling that p and q have periods of
2τp and 2τq, respectively, the three integrals in the first
and second lines are of the order of C2,0EsAA′. If A′
and A are comparable, these terms are much smaller
than A.

On the other hand, the terms containing c−1x will
be of the order of (τ/τM )C2,0EsBsA

′ and τ/τM can be
much larger than unity. This suggests that the lineariza-
tion can collapse at the initial time t = 0. In another
viewpoint, the evaluation that (τ/τM )C2,0EsBsA

′ � A
may indicate an upper bound of the applicable fre-
quency. It can be easily shown that the c−1x containing
term remains in the entire minimum corrective term.
Therefore, we have to investigate the magnitude of this
term and check the validity of the linearization for each
individual case.

Another natural question may arise about the sym-
metry with respect to x. If both p and q are symmetric
for x and l − x, the minimum corrective electric field
should have the same symmetry. Although the form of
c−1x is not apparently consistent with the symmetry,
it is solved by calculating K.

5.1 Example of non-resonant property

Let us consider as an example

Ec = (ASXST + Es)ey, Bc = Bsey + ACXCT ez,
(31)
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Fig. 1 Magnitudes of the resonant and non-resonant parts of the minimum corrective electric field of the a y and b z
components, normalized by C2,0A

3. The static magnetic flux density is given by Bsy/A = 2, Bsz/A = 0.5, and the results
at X = π/2 are shown

where Es �= 0, Bs �= 0, ω = ck, kl = nπ and n ∈ N. We
show the following three properties: (1) Even though
S(0) satisfies the resonant condition, the correspond-
ing minimum corrective term does not increase reso-
nantly. (2) The spatial symmetry about x and l − x
holds. (3) The term containing c−1x is not necessarily
much smaller than A.

For our purpose above, we only consider S
(0)
z and cor-

responding E
(0)
nz and B

(0)
ny . It can be seen that ∂tj

(o)
z = 0,

and we obtain

S(0)
z = −c−2∂tj

(e)
z = 2k2(4C2,0 − C0,2)AEsBsCXCT .

(32)
Clearly, this satisfies the resonant condition in Eq.
(5). Nevertheless, from the above discussion, the corre-
sponding minimum corrective components E

(0)
nz , B

(0)
ny do

not increase resonantly. In fact, letting c1 = −(4C2,0 −
C0,2)AEsBs and c2 = (4C2,0 − C0,2)A2Bs/2 yields

E(0)
nz = c1XSXCT + c2S2XS2T + Kz(α) − Kz(β),

B(0)
ny = c1(XCX + SX)ST + c2C2X(1 − C2T )

− Kz(α) − Kz(β),
(33)

and no resonant increase with time.
We next consider the second property, i.e., the sym-

metry about x and l − x. In E
(0)
nz , the term including

c−1x is proportional to c1 and a part of Kz is also pro-
portional to c1 through the integral of j

(e)
z . We dis-

card the influence of the initial distribution because it
is somewhat arbitrary.

Let us fix a position 0 < x < l/2. It is sufficient to
calculate the time from zero to 2τ . Let Ψ = ωτ = nπ.

Finally, the whole part proportional to c1 in E
(0)
nz at x

is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−CXTST (0 ≤ T < X)

−XCXST − SX(T − X)CT (X ≤ T < Ψ − X)

CX(T − Ψ)ST + (2X − Ψ)SXCT (Ψ − X ≤ T < Ψ + X)

XCXST + SX(T + X − 2Ψ)CT (Ψ + X ≤ T < 2Ψ − X)

−CX(T − 2Ψ)ST (2Ψ − X ≤ T < 2Ψ).

(34)
A similar calculation at l − x shows that the corre-

sponding value is always multiplied by CΨ = (−1)n,
and the magnitudes at x and l − x are equal. As for
the magnetic flux density, the whole part proportional
to c1 at l − x can be obtained by multiplying −CΨ to
the corresponding part at x. Including Kz, the natural
symmetry is confirmed to hold. Noting that the second
derivative of Eq. (34) with respect to time is not contin-
uous, this discontinuity is compensated by the part of
the initial distribution proportional to c1 and the whole
minimum corrective term is confirmed to be of class C2.

We turn to the third property by evaluating the
magnitude of Eq. (34). It has yet to be shown that
this term is much smaller than the classical ampli-
tude A. Because c1 � A, it would be desirable that
this term is at most in the order of unity. The val-
ues in Eq. (34) take the form of aST + bCT . As a
more readable form, we introduce the envelope given by
(a2+b2)1/2. Then, we randomly select 0 < X < Ψ/2, as
X = (

√
2/10)Ψ, 0.2Ψ +Sin−10.1, (π/10)Ψ , and calculate

for 0 ≤ T < 2Ψ . The envelopes for n = 100, 1000 are
shown in Fig. 2. The vertical axis is of the order of n
and not unity.

6 Evaluation of the omitted terms of j(o)

We next evaluate the integral of the second term on the
right-hand side of Eq. (22). For terms appearing in Eq.
(A.5) in Appendix A, we obtain
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Fig. 2 The envelopes of Eq. (34) at X = (
√

2/10)Ψ, 0.2Ψ + Sin−10.1, (π/10)Ψ for a n = 100 and b n = 1000. Note that
the maximum values are of the order of n

4p′(α)

∫ β

−α

p2(ξ) − Λ2pdξ + 4q′(α)

∫ β

−α

p(ξ)q(ξ) − Λpqdξ

− 2Bsyq′(α)

∫ β

−α

p(ξ)dξ

+ 2Bsz

[
2p′(α)

∫ β

−α

p(ξ)dξ + q′(α)

∫ β

−α

q(ξ)dξ

]
+ oA.

(35)
Except for the second term, after multiplying 8C2,0

the integrals are shown to be of the order of (C2,0 +
C0,2)(A + Bs)AA′, which will be much smaller than A.
The second term will be of the order of (τ/τM )(C2,0 +
C0,2)A2A′. It is not necessarily smaller than A because
the ratio τ/τM can be very large. Similar evaluations
hold for the other terms.

6.1 Example for integral of pq

We evaluate the magnitude of the second term because
it is also not proven to be much smaller than A. We
consider an example given by p(ξ) = (Ap/2) cos ωpξ
and q(ξ) = (Aq/2) cos ωqξ, where Ap and Aq are the
respective amplitudes and ωp = cnpπ/l, ωq = cnqπ/l
and np, nq ∈ N. If the difference between np and nq is
unity, the second term is of the order of npC2,0ApA

2
q,

and the term can exceed A for a large np. Mathemat-
ically, it has been confirmed that we can enlarge the
term including the integral of pq by considering large
np and nq. However, a physical picture of the nonlinear
Lagrangian will impose an upper bound for these inte-
gers, i.e., there will be a shortest applicable wavelength.
Within this limitation, a careful evaluation is necessary
to confirm the premise of the linearization.

7 Relation to birefringence

The birefringence may be the most widely studied non-
linear optical effect when light passes through a static

electromagnetic field. Here, we clarify the relationship
between the birefringence and the present calculation.

In the calculation of birefringence, a plane wave pass-
ing through static electromagnetic fields is assumed to
have a general dispersion relation, which is determined
by solving an eigenvalue problem. Then, the refractive
index is determined. In this process, a direct time evolu-
tion of the nonlinear correction is not treated. Instead,
a possible stationary behavior is only assumed. The sta-
tionary plane wave has an amplitude which is compat-
ible to the classical wave. So in the viewpoint of time
evolution, such a large non-classical plane wave can-
not emerge suddenly. Such a plane wave can only be
achieved after a very long, or infinite, time as the clas-
sical light eventually varies with a somewhat small non-
linear effect. In other words, considering a stationary
nonlinear correction and an eigenvalue problem corre-
sponds to considering a very long timescale.

On the other hand, the present calculation is done
in a relatively short timescale, as can be seen by
the inequality of an upper bound of the applicable
time. Therefore, the timescales of the birefringence and
present study are completely different and under these
conditions, it is expected that both results may be inde-
pendent.

8 Example of resonant behavior in
three-dimensional system

We also consider a three-dimensional example to prove
that the resonant behavior is not a characteristic of
one-dimensional systems only. The details of the calcu-
lation are stated in Appendix B, and the result includes
both solutions for two- and one-dimensional systems.
We show an example here. The classical term is given
by Eq. (B.2), and the corresponding minimum correc-
tive electric field is given by Eq. (B.10). Figure 3 shows
the magnitudes of the resonant and the remaining parts
of the minimum corrective electric field in Eq. (B.10) for
k̂ = (

√
2/4,

√
2/4,

√
3/2) and E = (

√
6/4,

√
6/4,−1/2),

at k1x = π/2, k2y = π/4, k3z = π/4. Compared to
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Fig. 3 Example of resonant behavior in a three-
dimensional system. In the minimum corrective electric field
in Eq. (B.10) (see “Appendix B”), the magnitudes of the res-
onant part in Eq. (B.12) and the remaining part are shown.

The classical parameters are k̂ = (
√

2/4,
√

2/4,
√

3/2) and
E = (

√
6/4,

√
6/4, −1/2). The calculation is performed at

k1x = π/2, k2y = π/4, k3z = π/4

Fig. 1(a), the value of the vertical axis is only about
1/150. There are two reasons for this difference. One
is the existence of the static magnetic flux density in
the calculation in Fig. 1. The values of Bsy = 2A and
Bsz = A/2 yield Q1 = 31C2,0A

3. If the static field does
not exist, it drops to Q1 = 2C2,0A

3. The other stems
from the conditions of divergence free of the transverse
component of the electric field and magnetic flux den-
sity. In the one-dimensional system, both E(0)

n and B(0)
n

have only y and z components and spatially depend
only on x. Therefore, the conditions of divergence free
hold automatically. On the contrary, these conditions
do not clearly hold in the three-dimensional system.
All components are connected through the conditions,
and the resonant increase will be restricted. The mag-
nitude of the resonant part is given in Eq. (B.13). Its
maximum value is shown in Eq. (B.14) and is about
0.32C2,0A

3 for the present parameters. At the selected
point, the magnitude is smaller and about 0.21C2,0A

3.
The ratio of 31 : 0.21 is about 600 : 4, and we can
understand the difference of the vertical axes of Figs.
1, 3. Note that the magnitude of the resonant part of
the three-dimensional system depends not only on the
position but also on the directions of wavenumber and
polarization.

9 Final remarks

We have investigated in extensive details the minimum
corrective term of nonlinear electromagnetism in the
one-dimensional cavity system. In Eq. (18), we have
shown both the y and z components of the minimum
corrective term for a general classical term given in
Eq. (8). In particular, the resonant increase is explicitly
shown in the form of Eq. (25) and the effect of external

static electromagnetic fields is elucidated through the
parameters Q1,2,3 in Eq. (23). An upper bound for the
applicable time of the linearization in Eq. (28) is also
evaluated. For future experiments, these equations may
prove valuable in determining an effective magnitude of
the external fields. A desirable experimental apparatus
may be capable of a precise measurement and a strong
external magnetic field, for example, systems for the
PVLAS experiment or an optical lattice clock [24].

The most remarkable effect of the external fields that
is revealed in the present study is that a light com-
ponent perpendicular to the incident classical compo-
nent can also increase resonantly, as shown in Fig. 1
and E

(0)
nz in Eq. (27). This result can likewise benefit

present and future experimental systems to distinguish
the generated nonlinear correction from the incident
light. Moreover, the results obtained here also do not
contradict the well-known change in refractive index
because both calculations are performed in completely
different timescales.

According to the analysis of j(e) and the example in
Sect. 5.1, it has been shown that the resonance does
not occur just by satisfying the resonant condition in
Eq. (6). A physical reason is attributed to the bound-
ary conditions. For example, the first term of E

(0)
nz in

Eq. (33) is proportional to XSXCT , which is a spe-
cial solution of the wave equation. Ignoring the bound-
ary condition, a temporally resonant special solution is
possible, in the form of CXTST . Therefore, for the reso-
nant increase of the minimum corrective term, the com-
patibility of S(0) satisfying the resonant condition and
the boundary conditions is of importance. By exten-
sion, this compatibility is also important in two- and
three-dimensional systems.

To precisely evaluate the resonant behavior, an anal-
ysis beyond the linearization is essential. Probably, the
increase of the nonlinear correction will be restrained at
the applicable upper bound or comparable timescale.
The analysis without linearization can conserve the
total energy and, therefore, will allow us to fully grasp
the essence of the resonant increase. Concrete analysis
and evaluation of these effects in an actual experiment
will be the subject of future studies.
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