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Abstract. Due to precision tests of quantum electrodynamics (QED), determination of accurate values of
fundamental constants, and constraints on new physics, it is important in a consistent way to evaluate
a number of QED observables such as the Lamb shift in hydrogen-like atomic systems. Even in a pure
leptonic case, those QED variables are in fact not pure QED ones since hadronic effects are involved through
intermediate states while accounting for higher-order effects. One of them is hadronic vacuum polarization
(hVP). Complex evaluations often involve a number of QED quantities, for which treatment of hVP is
not consistent. The highest accuracy for a calculation of the hVP term is required for the anomalous
magnetic moment of a muon. However, a standard data-driven treatment of hVP, based on a dispersion
integration of experimental data on electron-positron annihilation to hadrons and some other phenomena,
leads to a contradiction with the experimental value of aμ. This experimental value can be considered
as an indirect determination of the hVP contribution to aμ and the scatter of theory and experiment
allows one to obtain a conservative estimation of the related hVP contribution. In this paper, we derive
exact and approximate relations between the leading-order (LO) hVP contributions to various observables.
Using those relations, we obtain for them a consistent set of the results, based on the scatter of aμ values.
While calculating the LO hVP term, we have to remember that next-to-LO (NLO) hVP corrections are
often comparable with the uncertainty of the LO term. Special attention is payed to hVP contribution to
simple atoms. In particular, we discuss the NLO contribution to the Lamb shift in ordinary and muonic
hydrogen and other two-body atoms for Z ≤ 10. We also consider the NLO contribution of the muonic
vacuum polarization to the Lamb shift in hydrogen-like atoms. With the aμ puzzle unresolved, one may still
require present-days values of the hVP contributions to various observable for comparison to experiment
etc. the presence of contradicting values and a lack of consistency means an additional uncertainty for
aμ and for key contributions to it, including the LO hVP one. We present here an estimation of such a
propagated uncertainty in hVP contributions to different QED observables and recommend a consistent
set of the related LO hVP contributions.

1 Introduction

Precision low-energy tests of quantum electrodynam-
ics are not entirely pure QED tests. Even in the
case of purely leptonic systems, theory requires a cer-
tain hadronic input and, in particular, an input from
hadronic vacuum polarization (hVP).

There is a number of QED observables for which we
need such hVP contributions. The most important one
is the anomalous magnetic moment of a muon aμ. A
calculation of the leading hVP contribution to aμ at
the level better than one percent is required for a com-
parison of theory and experiment (see, e.g., [1]). Other
observables include the anomalous magnetic moment
of an electron ae, muonium hyperfine (Mu HFS) inter-
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val νMu (of the 1s state), the Lamb shift in hydrogen
EL(H) for various states, the most important of which
is 1s, and the Lamb shift in muonic hydrogen EL(μH)
for the 2s state or, more accurately for the 2p − 2s
interval. Contributions to the Lamb shift in other ordi-
nary and muonic light atoms such as [μ]D, [μ]3He+, and
[μ]4He+ are also required for theoretical evaluation and
interpretation of experimental data.

While the leading-order (LO) term for Δaμ(hVP) has
been recently accurately calculated in many papers,
the LO contributions for Δae(hVP) ([2,3]) and for
ΔνMu(hVP) ([2]) are found in a few publications only.
There are also not very accurate calculations of the
related contributions to Lamb shift in H [4] and μH (see,
e.g., [5]). A number of results on the next-to-leading-
order (NLO) hVP contributions to aμ and LO and NLO
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hVP contributions to some other observables, which do
not require a high accuracy, exist as well.

Even if the required accuracy of the other applica-
tions is not as high as that for aμ, there is still a ques-
tion of a consistent evaluation of all the hVP contribu-
tions once one makes a ‘grand QED evaluation’ with
many observables. Such an evaluation would be helpful
for a determination of values of fundamental constants
(see, e.g., [6]) or for a ‘gross QED test’ to constrain new
physics.

Here we consider relations between the leading hVP
contributions to various QED observables. Some of the
relations are exact, others are approximate. All the cor-
rections can be presented in a generic form, since they
are proportional to an integral

I =
∫

ds ρ(s)K(s) (1)

over a dispersion variable s. Here K(s) is a result of an
integration over a QED part of the diagrams, usually
expressed in terms of elementary functions, and

ρ(s) =
R(s)
3s

(2)

is a quantity experimentally determined from e+e−-
annihilation to hadrons or extracted from similar phe-
nomena. Accurate calculations may require interpola-
tions or extrapolations of the existing data as well as
theoretical partly model-dependent input in the area
where the data are not very accurate or not available
at all. Until recently the dispersion integration in (1)
was considered as the only way to find LO hVP con-
tributions, however recently lattice calculations started
delivering results with comparable accuracy.

The purpose of our work here is not to find an hVP
contribution by itself, say, to Mu HFS interval from
scratch, but to check how a change in R(s), due to a
possible update of the experimental data or corrections,
could affect the existing results. We take advantage of
exact and approximate relations between K’s for var-
ious observables which we derive in this paper. Such
approximate relations may be not sufficient to find a
contribution by itself, however for a small correction
(compared to a previously obtained value) the approx-
imate relations should be sufficient. They can be also
used to consider the uncertainty due to a scatter of the
data and discrepancies. One more application of the
approximate relations is due to higher-order hVP con-
tributions, for which the high accuracy is not required.

The variety of possible results for the R function is
not entirely due to its successful improvement. There is
a scatter of the experimental results obtained in differ-
ent experiments and/or evaluated by different methods.
Therefore, different existing parameterizations of the R
function could be in part inconsistent.

There are two very different groups of problems in
hVP calculations with the R function for various QED
observables.

• For pure leptonic cases (aμ, ae, and νMu), the hVP
contribution should be taken into account. The
required fractional accuracy for the leading hVP
term differs from an application to application. The
highest one is for Δaμ(hVP). One of the prob-
lems is an internal theoretical problem—the R func-
tion, determined from different groups of data or
with help of corrections being approached differ-
ently, has inconsistencies. That should increase the
uncertainty. The spread is present in the calculation
of Δaμ(hVP) (see, e.g., [1]), but not for two other
leptonic observables. For them the uncertainty due
to the scatter of the results should be estimated.

A bigger problem is a discrepancy between the-
ory and experiment for aμ. There are four options
to resolve the discrepancy. One is ‘new physics’.
Once a model of new physics is introduced to force
agreement between theory and experiment for aμ, it
should be considered for the other observables. The
second option is a possible problem with the exper-
iment on aμ [7]. The third one is due to a possi-
ble incorrectness of the hVP calculations (questions
about the required [raw] data for R(s) and correc-
tions for measurements, say, radiative corrections).
The fourth option is a problem with a contribution
of hadronic light-by-light scattering (hLbL). Other
possibilities are unlikely. For all the options without
involvement of new physics, we can consider either
corrections (one can correct various values to reach
agreement or choose which of the values is a ‘cor-
rect’ one) or an increase in the related uncertainties.
Note, in the case of Mu HFS interval we need not
only ΔνMu(hVP), but also a value of aμ to calculate
the leading term, and a certain hLBL correction to
find one of the higher-order hadronic contributions.
Their treatment should be consistent with the inter-
pretation of the aμ discrepancy.

Let us consider one of the options—the aμ experi-
ment is correct, while the hLbL contribution is rea-
sonably estimated. Then, we can extract

Δafrom expt
μ (LO hVP) = 720.1(6.9) × 10−10 (3)

from a comparison of theory (without the lead-
ing hVP term) [3] and experiment. Indeed, such
an interpretation would affect Δae(LO hVP) and
ΔνMu(LO hVP), probably increasing their values
by a few percent. This example demonstrates the
importance of the interpretation of the aμ discrep-
ancy for other observables. The shift is definitely
a few times larger than the uncertainty of any
‘direct’ theoretical calculation for Δae(LO hVP),
ΔνMu(LO hVP) etc.

Another alternative is to consider the scatter in
determination of aμ (i.e., the very difference in
experimental and theoretical values) as an esti-
mation of the uncertainty in determination of
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Δaμ(LO hVP). In this case, we have to define the
latter as

Δafrom scat
μ (LO hVP) = 705(15) × 10−10 , (4)

which would likely increase the other hVP values by
a few percent (but less that for the related results
‘from experiment’) and set their uncertainty to a
level of a few percent (essentially higher that for
the results ‘from experiment’).

Use of either of those two values of Δaμ(hVP) for
other observables should push the related hVP con-
tributions for other observables beyond the present
uncertainty of their direct calculations. A correct
interpretation of any hVP contribution requires
establishment of a relation between Δaμ(hVP) and
the hVP contribution to an observable quantity of
interest.

• Observables with hadronic nuclei, such as the Lamb
shift in ordinary and muonic atoms, should be
treated differently. We cannot measure the nuclear
radii, but we can extract their value from the
electric-charge form factors. Meanwhile, we basi-
cally measure not the electric form factor GE(q2),
but a value GE(q2)/(1−πh(q2)) (see, e.g., a discus-
sion in [4]). Here πh(q2) is a certain factor related
to hadronic vacuum polarization. That means that
any ‘incorrect’ treatment of the hadronic VP means
rather an effective redefinition of the electric form
factor and the related rms charge radius. At the
present level of accuracy, such a ‘redefinition’ of the
charge radius affects neither a determination of R∞,
nor internal consistency of evaluation of data related
to H, μH, D, μD, etc., as far as the hVP factor
(1 − πh(q2)) is introduced in all the observables in
a consistent way and as far as all the related nuclei
are characterized by the data on the elastic electron-
nucleus scattering. In such a case, the hVP contri-
butions can be completely ignored and that would
not lead to any problem in the interpretation.

However, the situation with compound nuclei is not
that simple as for the hydrogen nucleus, a proton.
For a proton, one has no alternative to the scat-
tering data and the measured quantity is expressed
through GE(q2)/(1 − πh(q2)). For heavier nuclei,
starting with the deuteron, one can construct an effi-
cient nuclear model. In this case, the model ‘speaks’
rather directly in terms of G(q2) and the hVP cor-
rection should be added. Often the radius itself is
obtained from scattering, while a model describes
various higher-order nuclear-structure effects, but
still should produce a reasonable value of the radius
as a consistency test.

Once the overall set of available data includes both
H and D atoms and their muonic analogues, a cer-
tain consistent treatment of hVP is required.

Numerically, the mentioned effects are of minor

Fig. 1 The LO hVP contribution to the anomalous mag-
netic moment of an electron (a muon)

importance for an evaluation of the current data;
however, their importance may change with increase
in the accuracy and increase in the nuclear charge
Z. It is also important to be in control of those small
corrections to be on a safe side.

With a dispersion-integral substitution for the Eucli-
dean momentum q2

1
q2

→ α

π

∫
ds ρ(s)
q2 + s

(5)

one can present the result for a LO hVP contribution
of the observable Xi as

ΔXi(hVP) = Ci

∫
ds ρ(s)Ki(s,mi) . (6)

Here, Ci is a normalization constant (see Table 3) and
mi is a characteristic mass for the observable Xi. For
X being the Lamb shift for an ns state in hydrogen (or
other H-like atoms) and ae, mi = me, while for aμ, νMu

and the Lamb shift in μH (and other muonic atoms)
mi = mμ. As mentioned, often a parameterization for
the dispersion density ρ(s) in terms of the R function
[see (2)] is utilized.

The most important property of the expression (5) is
that the QED kernels Ki(s) are known [8–11] or can be
relatively easily derived for the leading hVP contribu-
tions to various QED observables, while the R function
can be expressed through a cross section of the e+e−
annihilation to hadrons, which is measured (or through
similar effects such as the rate of hadronic modes of τ
decay). That makes the outcome for different observ-
ables Xi correlated. Comparing various Ki we are to
identify those correlations.

The kernels for the leading-order hVP contributions
are known. The result for the anomalous magnetic
moment of a muon (m = mμ) or an electron (m = me)

123



49 Page 4 of 21 Eur. Phys. J. D (2021) 75 :49

Fig. 2 The leading hadronic contribution to the muonium
HFS interval

Fig. 3 The LO hVP contribution to the Lamb shift in
hydrogen and muonic hydrogen

(see Fig. 1) is of the form [8–10]

Ka(s) = −
s2

2m4 − 2s
m2 + 1√

1 − 4m2

s

ln
1 +

√
1 − 4m2

s

1 −
√

1 − 4m2

s

+
(

s2

2m4
− s

m2

)
ln

s

m2
− s

m2
+

1
2

; (7)

the kernel for the LO hVP contribution to the 1s Mu
HFS interval (m = mμ) (see Fig. 2) reads [11] (see also
[12])

KMu(s) = −
( s

4m2
+ 2

) √
1 − 4m2

s
ln

1 +
√

1 − 4m2

s

1 −
√

1 − 4m2

s

+
(

s

4m2
+

3
2

)
ln

s

m2
− 1

2
; (8)

while the result for the Lamb shift in H (m = me) and
μH (m = mμ) (see Fig. 3) is obvious

KL(s) =
m2

s
. (9)

(Here and throughout the paper we apply units in which
� = c = 1.)

Sometimes calculations (within a ‘big evaluation’)
deal with different R functions for different observ-
ables Xi (see, e.g., [6]). (Indeed, nobody applies by
themselves different R’s parameterizations within one
paper, but frequently results, which have already been
obtained in various original papers with different R’s

for different X’s, are utilized within a single review or
compilation without any reservations.) Such an evalua-
tion is inconsistent. A consistent one would suggest the
use of the same R for all the observables involved.

We intend to find the corrections to calculation of
various hVP contributions. One of the purposes is to be
able to correct and to make consistent the results for
different X’s for the case when the original evaluation
has been performed with different R’s. To do that we
should be able to find what would happen with values of
the hVP contributions to two observables if we [slightly]
change the R function.

Having R(s), it is possible to find the LO hVP con-
tribution to any observable directly. We intend to con-
sider relations between the LO hVP contributions for
two reasons. Indeed, the relations will simplify an adap-
tation of a result of a calculation on one observable to
another. (We remind that there is quite a large number
of different evaluations of LO hVP for aμ and a rela-
tively few calculations for other observables. We pre-
pare an ‘instrument’ to adjust any result for aμ to a
calculation for another observable.) As we mentioned,
a direct calculation is possible for all observables and
such relations would only simplify the adaptation of
direct results for aμ(LO hVP) to other quantities. In
the meantime, we also have to deal with indirect results
on aμ(LO hVP) which follow from a comparison of the-
ory and experiment (see Eqs. 3 and 4)). Those indirect
results are not related to any set of data on R (or related
only in part). In this case, we need relations to convert
a result on aμ to other observables. Similar situation
exists with adaptation of lattice results aμ(LO hVP).
Those are direct results, but they are not based on a
dispersion presentation (6).

With the so-called aμ puzzle still unresolved, there
is no consensus choice of a value of aμ. It is uncertain
due to the discrepancy and the uncertainty is essen-
tially larger than [claimed] uncertainties of individual
theoretical or experimental determinations. Since we
have no preferences on the resolution of the discrepancy,
such an uncertainty should be considered as an uncer-
tainty of all the involved key contributions including
the one due to hVP. Once we consider Δaμ(hVP) more
uncertain than its individual determinations [(cf. (4)],
we have to acknowledge that until a consensus on the
solution of the aμ puzzle is reached the experimental
part of the dispersion integrand for Δaμ(hVP) [(cf. (6)]
is compromised and an additional uncertainty should
be assigned to it. That in its turn means an additional
uncertainty for all calculations with R(s). We demon-
strate below that certain relations between hVP contri-
butions to different QED observables could serve this
purpose. We stress that we consider an error in R(s)
just as a possible solution of the problem on the same
ground as the other possibilities (an experimental error
in aμ, a theoretical error in hLbL, or new physics).
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Table 1 LO hVP contribution to various QED observables. Here, ˜EF = 8/3 (Zα)4m3
r/(memμ) is the leading nonrelativistic

(NR) HFS term, which includes only the Dirac’s values of the lepton magnetic moments (see Sect. 4); mr is the reduced
mass of the related two-body system (muonium eμ, hydrogen ep, muonic hydrogen μp). Z is the nuclear charge which is
equal to unity for all the mentioned two-body atoms; however, the result may be generalized to other hydrogen-like atoms
with Z �= 1 as we do for the Lamb shift in this paper

Xi Ci Ki(mi, s) mi

aμ (α/π)2 Eq. (7) mμ

ae (α/π)2 1/3 (m2
i /s) me

ΔEL(1s, H) −4 (α/π)(Zα)4m3
r/m2

e (m2
i /s) me

ΔEL(2s, μH) −(α/2π)(Zα)4m3
r/m2

μ (m2
i /s) mμ

νMu 2 (α/π)2(me/mμ) ˜EF Eq. (8) mμ

Table 2 LO hVP contributions to ae and Lamb shift in hydrogen and muonic hydrogen. The average has the same
uncertainty as individual contributions since both original results are based on experimental data, a large portion of which
is the same

Ref. Δae [10−12] m2
e Π ′

h(0) [10−6] ΔEL(1s) in H [Hz] ΔE(2p − 2s) in μH [meV]

[2] 1.866(11) 1.038(6) −3372(20) 0.011 21(7)
[3] 1.849(11) 1.028(6) −3341(20) 0.011 11(7)
Average 1.858(11) 1.033(6) −3357(20) 0.011 16(7)

2 Slope of the hadronic vacuum
polarization Π ′

h(0) and LO hVP
contributions to various observables

As seen from Table 1, some kernels are of a simple form
and in particular a few of them are ∝ m2/s. Let us
introduce a notation for the slope of hVP polarization
at zero

Π ′
h(0) =

∫
ds ρ(s)

s
. (10)

The slope is given for the vacuum polarization as a
function of the Euclidean momentum. The slope for the
polarization as a function of the standard Minkovsky
four-momentum has the opposite sign.

In the terms of the slope, we find

Δae(LO hVP) =
1
3

(α

π

)2

m2
e Π ′

h(0), (11)

ΔEL(LO hVP, 1s,H) = −4α(Zα)4m3
r

π
Π ′

h(0),(12)

ΔEL(LO hVP, 2s, μH) = −α(Zα)4m3
r

2π
Π ′

h(0) . (13)

The LO hVP for several other observables, such as the
1s − 2s frequency in positronium and its ground-state
HFS interval, is also expressed in terms of Π ′

h(0) (see
Sect. A for detail). Being too small, the positronium
LO hVP contributions are out of our interest here.

Results of the hVP contribution to the Lamb shift
in ordinary and muonic hydrogen, published in vari-
ous recent compilations, are consistent, but based on
old and relatively inaccurate calculations such as [4].
Meanwhile, a few of recent and accurate evaluations of

the hVP contribution to ae have been available in the
literature, which allows us to improve the Lamb shift
results (see below). (We remind that our concern is not
an accuracy of the calculations by itself, but their relia-
bility (for the individual ones) and their overall consis-
tency (for comparison of the results for different observ-
ables).)

To find a value of Π ′
h(0), we use calculations of the

hVP contribution to ge − 2 in (11) The latter was
recently found in a few publications [2,3]. The results of
those direct calculations of the integral over the experi-
mental data for the ae contribution are given in Table 2.
In the same table, we give the extracted value for Π ′

h(0)
and the related results for the hVP contributions to the
Lamb shift in H and μH.

The results from [2] to [3] are in agreement; however,
they are based very much on the same data and we
cannot treat them as uncorrelated. Because of that we
choose their average as a central value and use their
individual uncertainty as the uncertainty of the average.

Note, at this stage we discuss a result of ‘direct calcu-
lations’ only, i.e., the result performed with an explicit
value of the R function and for a quantity directly
related to Π ′

h(0).
We have studied above the most simple kernels from

Table 1. The other are more complicated. To obtain
simple relations, we may rely on their asymptotics.
Even Kae

(s) has a more complicated shape [see (7)]
than it is given in Table 1. However, the dispersion
integral starts1 with s0 = (2mπ)2, which leads to a

1 That is correct in the leading order in α. The channels
with photons can be in principle measured in the same way
as photonless; however, each additional photon brings a fac-
tor of α. Therefore, the channels with photons are rather
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Table 3 The leading hVP contributions in the limit mμ, me → 0. Here we also include the cases where K(s) is simple and
coincides with its asymptotics

Xi Ki: lead(mi, s) mi

aμ 1/3 (m2
i /s) mμ

ae 1/3 (m2
i /s) me

ΔEL(1s, H) (m2
i /s) me

ΔEL(2s, μH) (m2
i /s) mμ

νMu (m2
i /s) [9/2 ln(s/m2

i ) + 15/4] mμ

Fig. 4 Kernel ratio r(s) = Kaµ(s)/Kaµ: lead(s) as a func-
tion of

√
s. We remind that mρ � 0.78 GeV, 2mπ �

0.28 GeV

saturation of the asymptotics

Ka(s) =
m2

e

3s
, (14)

at s � m2
e, that is valid for the whole integration area.

The corrections beyond the leading term due to the
further m2

e/s expansion are below 10−5 for the all area
of the s integration, so we may practically consider the
identity (14) as an exact one, since the uncertainty of
R(s) is always much higher than 10−5. For this reason,
we have given the expression above as an exact one in
Table 1.

A similar equation for the case of aμ is applicable,
but as an approximate one (see Table 3). Its accuracy
with actual s is roughly at 15% level for the most of
the integration area (see the plot in Fig. 4). The low-
est accuracy is at the lowest s, close to the 2π thresh-
old. The error there is about 35%. However, that area
does not contribute too much to the s integral, which
is related to both its central value and the uncertainty.

To understand the accuracy of an approximation for
the kernel K(s), we have to look at the function R(s),
a convolution with which we are to calculate. Roughly

related to NLO. One of such channels is with π0γ interme-
diate states, which starts at s = m2

π. The effect of the π0γ
channel is marginal and is ignored in this paper for the sake
of simplicity. In higher orders, there should also be pure pho-
ton states produced via hadronic loops which means s0 = 0.
Those effects are also negligible for practical applications.

Fig. 5 The R-function determined from the electron-
positron annihilation to hadrons as published in our paper
[5]). The plot was kindly provided to us by Simon Eidelman
and we are grateful to him for his permission to use it in [5]
and in this paper.)

the behavior of the R function is presented in Fig. 5.
The dominant contributions come from s � m2

ρ. Note,
the ω and φ contributions are at s ≈ m2

ρ from the
point of view of the accuracy of the approximation with
a smooth-behaving kernel K. Meanwhile (mμ/mρ)2 �
0.02 which does not make the limit mμ → 0 sufficient
for accurate calculations, but still makes it useful for a
consideration of the correlations between different con-
tributions.

The contribution from the ρ-meson (mρ0 = 775.26
(25) MeV; Γρ = 147.8(9) MeV [13]) as well as from
the ω(mω = 782.65(12) MeV; Γω = 8.49(8) MeV) and
φ (mφ = 1019.461(16) MeV; Γφ = 4.249(13) MeV)
mesons, which come from the same area of s, strongly
dominates in both the LO hVP contribution to aμ and
its uncertainty (see, e.g., [1]).

Comparing the kernel Kaµ
and its asymptotics (see

Fig. 4), we find that except of the area essentially below
the ρ meson mass, the difference between the kernel
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Kaµ
and its asymptotics Kaµ: lead can be described as

Kaµ
(s) = (0.83 ± 0.13)Kaµ: lead(s) . (15)

A use of Kaµ: lead allows us to express any aμ

(LO hVP) result in terms of Π ′
h(0). However, the accu-

racy of (15) may be not entirely sufficient for the whole
area of s integration. We have to specifically consider an
area of low s where the approximation is not that accu-
rate. Another area where 15% in (15) is not sufficient
is related to very high s. The ratio at s → ∞ is unity;
however, the essential result comes from s in a wide
area around m2

ρ for which the unity is not achievable.
As is well known for a while, the experimental result

on aμ [7] does not agree with theory (see [1] for detail).
If any corrections to theory should be done, they are to
be small. We intend to apply the relation in (15) rather
for corrections to results (or differences between the
results) than to the complete values. We are interested
in the area below

√
s = 2 GeV. A reason for that is

that above this value one can not only measure ρ(s),
but also calculate it within pQCD [14,15]. The results
are in good agreement (see, e.g., [16,17]). We do not
expect any big corrections there.

Applying that relation to the corrections should only
allow us to maintain a high accuracy of the results.
Since we consider possible corrections to theory, we
have to choose theoretical values which will be ‘cor-
rected’, i.e., our starting point. There are somewhat
different theoretical results, but for analyzing the shifts
it is not important which one to use. We take advantage
that the accurate calculations were performed in [3] on
aμ(LO hVP) and ae(LO hVP) in a consistent way and
utilize the related results from [3]

Δaμ(LO hVP) = 689.5(3.3) × 10−10 , (16)

Δae(LO hVP) = 1.849(11) × 10−12 (17)

as our starting point. We remind that the latter one cor-
responds to Π ′

h(0)m2
e = 1.028(6) × 10−6 (cf. Table 2).

Denoting a shift (from the reference values) as δ, we
find

δIae
=

(
1.20 ± 0.15

) (
me

mμ

)2

δIaµ
,

δΠ ′
h(0)m2

e = 3 δIae
. (18)

We intend to apply the relation (15) not to the com-
plete contribution to aμ, which is a convolution with
R(s), but to its possible changes due to changes in R(s).
Such an approximation on K(s) with focussing on area
relatively close to mρ is valid for relatively large changes
in R(s). ‘Large change’ means either a shift in aμ larger
than or comparable with the uncertainty of aμ(hVP) or
a serious reconsideration of the uncertainty by increas-
ing or decreasing it by a factor, say, of two. Probability
of all such changes should follow the value of the uncer-
tainty of partial hVP contribution, i.e., by a product
of K(s) and the [absolute] uncertainty R(s) [cf. (6)].

Fig. 6 Direct, indirect, and lattice (with red squares) val-
ues for the LO hVP contribution to the anomalous magnetic
moment of a muon. The lattice results are summarized in
Table 5

The area, which dominates in the uncertainty budget,
is expected to be the most probable area from which
the change would come. That validates the approxima-
tion. Once we consider a small change in aμ, it may
come from any area including those where the approx-
imation in (15) is not applicable.

3 The aμ discrepancy and its consequences
for various LO hVP

The main motivation to obtain the approximate rela-
tions above is the discrepancy in determination of aμ.
One can interpret them as a discrepancy between a
theoretical result, where the uncertainty comes from
hadronic effects, and an experimental one [7], which
may be considered as an indirect determination of the
hadronic contribution.

Theoretical predictions for the LO hVP contribution
to the anomalous magnetic moment of a muon have a
certain scatter (see, e.g., [1,3,18]). The scatter is essen-
tially smaller than the discrepancy of theory and exper-
iment and we ignore it here. As a theoretical value, we
use the result in (16) obtained in [3], which is chosen
by us because in that publication a result on Δae(LO
hVP) is also presented. As mentioned above, a scatter
of theoretical results on Δaμ(LO hVP) is not our con-
cern in this paper, so we can start with any theoretical
result on Δaμ(LO hVP).

In principle, the hadronic NLO includes an uncer-
tainty from the hadronic light-by-light scattering (hLb
L) contribution. In this sense, we can consider the
result

Δafrom expt
μ (LO hVP) = 720.1(6.9) × 10−10 ,
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Table 4 ‘Reconstruction’ of the LO hVP contributions. ‘Scatter’ stands for an evaluation based on Δafrom scat
μ (hVP), while

‘experiment’ is for an evaluation based on Δafrom expt
μ (hVP). A direct value for comparison of the final results is based on

our average in Table 2. For technical evaluations, we have to start with a direct value for which we know Δaμ(LO hVP),
which is based on results of [3]

Comment Δaμ m2
e Π ′

h(0) Δae ΔEL(1s) in H ΔE(2p − 2s) in μH
[10−10] [10−6] [10−12] [Hz] [meV]

Direct (average) — 1.033(6) 1.858(11) −3357(20) 0.011 16(7)
Direct (following [3]) 689.5(3.3) 1.849(11) 1.028(6) −3341(20) 0.011 11(7)
Scatter 705(15) 1.052(25) 1.89(5) −3419(82) 0.011 36(27)
Experiment 720(7) 1.076(15) 1.93(3) −3497(48) 0.011 62(16)

as one extracted from experiment [7] assuming that
hLbL is calculated correctly. (To extract Δafrom

μ expt
(LO hVP) we utilize the QED, NLO hVP, NNLO hVP,
and hLbL-scattering contributions as given in [3]).

The most realistic value, however, is neither theoret-
ical nor experimental, but (4)

Δafrom scat
μ (LO hVP) = 705(15) × 10−10 ,

found from scatter of the theoretical and experimental
results (see Fig. 6). In the evaluations below, we give
values of various hVP contributions, related to direct
theoretical calculations; based on Δafrom expt

μ (LO hVP),
extracted from experiment , and the one due to the scat-
ter of the data. The latter is the estimation recom-
mended in this paper.

On base of the approximate relations between the
LO hVP contributions to aμ and ae [see (15)] and
exact relations between the LO hVP contributions to
ae, Π ′

h(0), and to the Lamb shift in H and μH [see
(10), (11), (12), (13), and Table 2], we find the results
for the LO hVP contribution to various observables as
summarized in Table 4 and Fig. 7.

Note that there is no consensus on the theoretical
value. Results from scan over s in e+e− annihilation are
currently less accurate (around the ρ-meson mass etc.).
The data on τ -decay should be corrected due to viola-
tion of the isotopic invariance (introduction of which in
[20] explained in the principle then discrepancy between
decay data and annihilation by a ρ(0)−γ mixing). How-
ever, there exist a few different parameterizations for
such a correction, which lead to somewhat controver-
sial results [21–23]. Overall analysis sometimes utilizes
τ -decay data (see, e.g., [3,23]), while in other cases it
does not (see, e.g., [18,24]).

Use of recent and more accurate initial-state-radiation
(ISR) data shows a certain discrepancy between differ-
ent experiments (see, e.g., ISR data for the π+π− chan-
nel from KLOE [25–27], BaBar [28], and BESIII [29]
and their comparison in [18]). Nevertheless, the scatter
of theoretical data is essentially smaller than the dis-
crepancy of theory with the experiment. Currently, it
is not that important which theoretical value is used as
input as far as eventually we plan to calculate the value
of Δafrom scat

μ (LO hVP).

Fig. 7 Direct (a from [2], b from [3], and average from
Table 2), indirect (from experiment and from scatter of the-
ory and experiment), and lattice (from [19]) values for the
LO hVP contribution to the anomalous magnetic moment
of an electron and to Π ′

h(0). The lattice value is discussed
below

In our analysis, in this paper we are limited to publi-
cations which consider the LO hVP contribution to [at
least] two observables. One of such papers [3] presents
results on the contributions to aμ and ae while apply-
ing τ -decay data, while the other paper [2], important
for our consideration, gives results for ae and Mu HFS
interval ignoring τ data. Consideration of both options
made our analysis a representative one.

One has also to mention the result for LO hVP from
lattice calculations. Until recently their accuracy was
not comparable with that of theory and experiment.
Significant progress in the field has produced a situation
when the uncertainty of the lattice results is comparable
with the uncertainty of Δafrom scat

μ (LO hVP).
The lattice results are summarized in Table 5. The

results are obtained by independent groups but using
somewhat similar methods. Below we do not apply the
lattice results on Δaμ(LO hVP) to obtain the LO hVP
contribution to other variables, but consider them as a
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Table 5 Lattice results on Δaμ(LO hVP). They are to
be compared with Δafrom scat

μ (LO hVP) = 705(15) × 10−10

from (4)

Δaμ(LO hVP) Refs.

715(19) × 10−10 [30]
711(19) × 10−10 [19]
667(13) × 10−10 [31]
674(28) × 10−10 [32,33]
691(15) × 10−10 [34]
720(16) × 10−10 [35]
737+16

−20 × 10−10 [36]

confirmation that Δafrom scat
μ (LO hVP), which we uti-

lize here, is a reasonable estimation. Once the lattice
results on aμ will reach a somewhat higher accuracy,
they may be applied to other QED observables along
with the technique that was developed in this paper.

There is also a lattice calculation for Δae(LO hVP).
The result [19] of 1.89(6)×10−12 is in perfect agreement
with a result from scatter in Table 4 (see also Fig. 7).

4 LO hVP contribution to muonium HFS
interval

Tables 1 and 3 on the LO hVP contributions contain
results for a number of observables considered above
in detail. One of important QED observables has not
yet been discussed. This remaining case is considered
here. It is for the muonium 1s HFS interval. Prior a
discussion of the LO hVP term, we have to mention the
leading NR contribution to the HFS interval, which is
called the Fermi energy. It has several slightly different
definitions, such as

EF =
8
3

(Zα)4
m3

r

memμ
(1 + ae) (1 + aμ) , (19)

ẼF =
8
3

(Zα)4
m3

r

memμ
, (20)

where the upper version of the Fermi energy is a result
of NR interaction of two full magnetic moments of an
electron and a muon, while the one in the bottom is
with their Dirac’s values. It is convenient to consider
the former as the leading term, while expressing the
recoil effect (including hVP which is one of them) in
units related to the latter. (That is not important for
LO hVP, but a difference in definitions of Fermi energy
as a prefactor for hVP affects definition of NLO hVP.)

Indeed, the anomalous magnetic moments of lep-
tons have their hVP contributions of order α2 and
the related contributions to the muonium HFS inter-
val would be α2(Zα)4me with various suppression of
the mass factors. However, once the leading NR term,
EF , is calculated with using the actual values of ae, aμ,

Fig. 8 Kernel ratios r = KMu/KMu:lead (red) and r0 =
KMu/KMu: 0 (blue) as a function of

√
s. The related asymp-

totics are defined in (21) and (22). We remind that mρ �
0.78 GeV, 2mπ � 0.28 Gev

those contributions are included in EF and we are inter-
ested in finding the hVP contributions beyond them.

The related LO hVP contribution to the muonium
1s HFS interval is given in terms of (6) and (1) in
Table 1 [see also (8)] [11]. It is of order α(Zα)5me with
a characteristic suppression mass factor of (me/mρ)2.
The related asymptotics at s � m is of the form

KMu:lead(s) =
m2

μ

s

[
9
2

ln
s

m2
μ

+
15
4

]
. (21)

The results at the limit of mi → 0 are summarized in
Table 3 and one can note that the asymptotics in (21)
has a logarithmically enhanced term in contrast to all
the other asymptotics considered above [cf. (14) and
(9)]. That does not allow us to easily relate the results
for the hVP contributions to aμ, ae and to the Lamb
shift with that for the Mu HFS interval. To find such
relations, we need an additional simplifying approxima-
tion.

To make such, we note that the dominant contribu-
tion comes from an area around s = m2

ρ (see Fig. 5).
Let us introduce

KMu: 0(s) =
m2

μ

s

[
9
2

ln
m2

ρ

m2
μ

+
15
4

]
. (22)

The expression is less accurate as an approximation
compared to the one in (21); however, it is easily related
to the asymptotics of other kernels [cf. (14) and (9)].
As to the error of the approximation, it is plotted in
Fig. 8. Near the 2π threshold the error is about 30–
35% because of higher-order terms of m2/s expansion.
At

√
s = 2 GeV the error also reaches that level because

of the substitution of

ln s → ln m2
ρ .

The contribution from the area above
√

s = 2 GeV
to the Mu HFS interval is not very large (about 20%)

123



49 Page 10 of 21 Eur. Phys. J. D (2021) 75 :49

Table 6 HVP integrals I for aμ, ae and Mu HFS interval. Here, I(0)
aµ = (mμ/me)

2 Iae is the integral related to
Ka:lead(mμ, s). Values in roman follow the original calculations in [2,3] or experimental result in [7]; the italic ones are
from combinations of original data including the evaluation in this paper

Ref. Iaµ I(0)
aµ Iae IMu

[3] 1.278(6) × 10−2 1.465(9) × 10−2 3.427(20) × 10−7 —
[2] — 1.479(9) × 10−2 3.458(20) × 10−7 1.001(6)

Direct — 1.472(9) × 10−2 3.443(20) × 10−7 0.997(14)
aμ, expt 1.335(13) × 10−2 1.533(21) × 10−2 3.586(49) × 10−7 1.034(18)
Scatter 1.306(28) × 10−2 1.499(36) × 10−2 3.507(85) × 10−7 1.013(23)

and the R function is well described by a step function
obtained from perturbative QCD [14,15].

The latter circumstance makes reliable the high-s end
of the s integration in the dispersion integral, because
of consistency between experimental data and pertur-
bative QCD theory. Due to that, we expect that the
major shift in R(s) (if any) may happen between the
2π-threshold and, say,

√
s = 2 GeV. That allows us to

write for the difference between a result of a direct cal-
culation and one with a true R(s) function, based on
certain value of aμ (which may be obtained from experi-
ment, estimated from scatter of experiment and theory,
or taken from a lattice calculation), as an indirect esti-
mation, the following

δIMu =

[
27
2

ln
m2

ρ

m2
μ

+
45
4

]
(1.1 ± 0.4) δIaµ

. (23)

We remind that we are interested in relatively large
changes in aμ (see discussion above).

As ‘reference’ points (to calculate shift δIMu) we
consider the results from [2] to [3]. In [2] they found
ae(LO hVP) and νMu(LO hVP), which allows one to
relate a result on Iae

to the corrected value of IMu.
Since (23) sets a relation between shifts in Iaµ

and IMu,
we have to find first a shift in Iaµ

from a known shift
in Iae

. The results of [3], which include Δae(LO hVP)
and Δaμ(LO hVP), are suitable for that (see the previ-
ous section for details). In terms of the I integrals, the
results of our evaluations are summarized in Table 6.

The results due to the aμ-discrepancy are

ΔνMu(LO hVP) = 240(4) Hz for expt ,

ΔνMu(LO hVP) = 236(5) Hz for scatter . (24)

5 NLO hVP contribution to the Lamb shift
in ordinary and muonic hydrogen

The NLO hVP contributions to a number of QED
observables are known, but not to all of them. In par-
ticular, the NLO contribution for aμ is known [23,37]
(see also, e.g., [1]) as well as the ones for ae (see, e.g.,
[2,3,37]) and Mu HFS interval [38,39]. (For some vari-
ables such as aμ, ae even NNLO hVP is known [40]; for

aμ, ae, and Mu hfs interval, the hLbL contributions are
of the same orders as NLO hVP and needed for a com-
plete NLO hadronic term (see, e.g., [1,3,23,41,42] for
detail).)

Here we consider the NLO hVP contribution to the
Lamb shift in ordinary and muonic hydrogen. NLO in
H and μH includes a term, which is due to the two-
loop vertex with one of those two loops being hVP (see
Fig. 9). It is of relative order α compared to the related
LO hVP term. In the case of the Lamb shift of an ns
state in hydrogen that is a complete NLO correction.

That NLO term is of order α2(Zα)4m(m/mρ)2. It
comes from a slope of the Dirac form factor F ′

1(0) at
zero momentum transfer and from the value of the Pauli
form factor F2(0) at zero momentum due to the men-
tioned two-loop vertex, depicted in Fig. 9. The latter,
F2(0), is the anomalous magnetic moment of the orbit-
ing lepton. This contribution relates to LO hVP to the
related anomalous magnetic moment and it is indeed
known. However, since two contributions to the Lamb
shift of an s state (due to F ′

1(0) and F2(0) ), which
are technically very similar, we consider both of them
as a single corrections within the same formalism (see
below).

There is also a contribution to the Lamb shift at l 	= 0
in ordinary and muonic hydrogen of the same order as
the mentioned NLO hVP contribution for the s states.
It is completely described by the anomalous magnetic
moment in the same matter as the leading QED term
for l 	= 0, once we deal with a complete value of the
anomalous magnetic moment of the orbiting lepton aL

ΔE
(a)
L (nl) = aL

(Zα)4m2
r

m

j(j + 1) − l(l + 1) − 3/4
l(l + 1)(2l + 1)n3

.

(25)
To find the LO hVP contribution to the Lamb shift of
l 	= 0 states, which is of order α2(Zα)4m(m/mρ)2, i.e.,
of the same order as the NLO hVP contribution for s
states, it is sufficient to utilize the LO hVP contribution
of the anomalous magnetic moment, ΔaL(LO hVP),
into the identity above. Since this contribution is known
(see above), we do not consider it in this paper and
focus on the Lamb shift in ns states.

The integral presentation (in terms of s) for the ver-
tex contribution is of the same shape in H and μH.
While that is a complete result for hydrogen, for its
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Fig. 9 The NLO hVP contribution to the Lamb shift in H
and μH due to the two-loop vertex

Fig. 10 The Uehling-potential (eVP) correction to the LO
hVP contribution. The double horizontal line is for the NR
Coulomb Green function of a bound muon. The NLO cor-
rection is of order α2(Zα)4m

muonic analog we need to take into account other effects
as well.

We remind that in H and μH the LO hVP contribu-
tion to the Lamb shift (see Fig. 3) is proportional to
|Ψ(0)|2, the squared value of the wave function at ori-
gin. In the muonic case, there is a number of different
sources for the α correction to |Ψ(0)|2 in addition to
the two-loop-vertex term discussed above. One of them
is from an NR correction to |Ψ(0)|2 due to the Uehling
potential which is known in a semi-analytic form (see,
e.g., [43]), while the other is due to an NR correction
with electronic vacuum polarization (eVP) on the same
photon as hVP. Those NR specific μ-atom NLO hVP
corrections are presented in Fig. 3. The results could
be generalized for light two-body muonic atoms. The
Uehling correction to the wave function at origin is
given for the 1s and 2s states of atoms A ≤ 10 in [44].

Let us consider now all the mentioned effects in more
detail, starting with the two-loop vertex. A two-loop
vertex, where one loop is a VP one, delivers pure lep-
ton contributions as well as hVP ones. The simplest
leptonic one is the eVP contribution to the Lamb shift
in hydrogen, which is well known [45–48]. A similar con-
tribution is due to muonic vacuum polarization (μVP)
in μH (which can be found with a simple scaling substi-
tution me → mμ). There are also asymmetric in masses
pure leptonic contributions, such as eVP in μH and
μVP in H, which are known only in part.

Let us find Cvert2(m) and Kvert2(m, s) for s states,
defined in general in (6), where m is the mass of the
orbiting particle. Following [49], we obtain for the Lamb
shift of the ns state with an orbiting particle with mass

m

Cvert2(m) = 24
(α

π

)2 (Zα)4

n3

m3
r

m2
(26)

and

Kvert2(m, s) =
1

288

∫ 1

0

dx

[
m2x

D

(
6 + 15x − 13x2

)

+
m4x3

D2

(
10 − 7x + 7x2

)]
, (27)

where

D(x, s) = m2x2 + s(1 − x) .

The identities above are for the sum of two mentioned
earlier contributions (due to F ′

1(0) and F2(0)).
Here s is a dispersion variable [cf. (5)], which can be

introduced both for leptonic and hadronic VP loops. In
the leptonic case, we use the parameterization

1
q2

→ α

π

∫
dv

1 − v2

v2
(
1 − v2

3

)

q2 + 4m2
l

(1−v2)

,

where ml is the lepton mass in the VP loop.
Performing the x-integration, we find

Kvert2(m, s) = − 1
72

{
s(5m2 − 2s)
m2(s − 4m2)

+
s2 + 2m4

m4
ln

s

m2

−s(s3 − 6s2m2 + 8sm4 − 6m6)
m4(s − 4m2)

· J10(s)

}
,

(28)

where

J10(s) =
∫ 1

0

dx
m2

d

=
1√

s
√

s − 4m2

×
{

2 ln
s +

√
s
√

s − 4m2 − 2m2

s +
√

s
√

s − 4m2
+ ln

s

m2

}
.

It is useful to consider asymptotic behavior at s �
m2. The result reads

Kvert2:lead(m, s) =
m2

s

[
1
36

ln
s

m2
+

1
54

]
. (29)

Using the kernel obtained above, we can consider var-
ious leptonic VP contributions to the Lamb shift of s
states in H and μH. Such contributions are eVP and
μVP for H and eVP and μVP for μH. The contribu-
tion, for which the loop particle and the orbiting one
are the same, agrees with the known theoretical result
[48].
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Fig. 11 An ‘asymmetric in masses’ contribution to the
Lamb shift in H due to the two-loop vertex, where one of
the loops is a μVP one

The eVP correction to the Lamb shift in μH reads

ΔEvert:eVP(ns, μH) =
α2(Zα)4

π2n3

m3
r

m2
μ

×
[

1
9

ln2

(
mμ

me

)2

− 10
27

ln
(

mμ

me

)2

+
2π2

27
+

85
162

]
, (30)

which agrees with the result from [50].
The μVP correction to the Lamb shift in hydrogen

(see Fig. 11), which is a new result, is obtained as

ΔEvert:μVP(ns, H) =
α2(Zα)4

π2n3

m3
r

m2
e

(
me

mμ

)2

×
[

2
45

ln
(

mμ

me

)2

+
97
675

]
, (31)

which contributes 27 Hz to the 1 s Lamb shift in hydro-
gen and deuterium.

In the case of the NLO hVP, the diagram in Fig. 9
allows us numerical evaluations only. In the case
of hydrogen, the expression can be simplified (since
m2

e/s � 1)

EhVP:vert2
L (ns) = 24

(α

π

)2 (Zα)4m3
r

n3

×
∫

ds ρ(s)
s

[
1
36

ln
s

m2
e

+
1
54

]
.(32)

There are different possibilities to obtain a fast pre-
liminary estimation. In particular, we consider two sim-
ple methods below. One is to use a simplistic model for
the dispersion function R(s), which we have previously
used for other occasions (cf. [38,39]). A related result
is given in Table 7. For μH, we have applied an exact
kernel, since the asymptotics in (32) is not very accu-
rate for μH. Therefore, our estimation is obtained with
an exact kernel K(s) and approximate function ρ(s).

Another estimation can be obtained with complete
R(s) but very approximate K(s). To begin with, we

use a rough approximation (cf. (32))

Kvert2:approx
L (m, s) =

m2

s

[
1
36

ln
m2

ρ

m2
+

1
54

]
.

which leads to useful relations

Ivert2:lead
L (H) =

[
1
12

ln
m2

ρ

m2
e

+
1
18

]
Iae

,

Ivert2:lead
L (μH) =

[
1
12

ln
m2

ρ

m2
μ

+
1
18

]
I(0)

aµ
. (33)

For numerical estimations, which are given in the first
line of Table 7, we utilize results from [3] for the right-
hand side of the identities in (33).

We have obtained two independent estimations for
the Lamb shift in both ordinary and muonic hydrogen,
and their scatter characterizes the uncertainty of those
estimations.

The estimation can be improved once we use an
approximation of the kernel as a combination of ker-
nels for Mu HFS interval and for ae (or aμ) with the
coefficients good for asymptotics s � m2. In this case,
we can use the identity (32) with ln(s/m2) without a
substitution s → m2

ρ, which is not very accurate for a
broad range of s.

In particular, one can express the asymptotics of this
kernel in terms of asymptotics for the kernels for aμ, ae

and for Mu HFS interval as

Kvert2:lead
L (me, s) =

m2
e

m2
μ

[
1

162
KMu:lead(mμ, s)

+
(

1
6

ln
mμ

me
− 1

72

)
Ka:lead(mμ, s)

]
,

Kvert2:lead
L (mμ, s) =

1
162

KMu:lead(mμ, s)

− 1
72

Ka:lead(mμ, s) . (34)

Using the same coefficients, we apply now the relations
for the complete kernels, which makes those relations
approximate. The result for their integration over s is
known (see above) and, following the scatter results, we
obtain

Ivert2
L (H) � 4.1 × 10−7 ,

Ivert2
L (μH) � 6.1 × 10−3 . (35)

To check the accuracy of (35) and introduce correc-
tions, we have studied the ratios of interest. In previ-
ous sections, we were interested in small corrections to
known values. It was sufficient to study corrections to
R(s) in a relatively narrow area. Here we are to calcu-
late the whole NLO contributions and therefore we are
rather interested in the complete area of s integration.
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Table 7 Calculation of the NLO: vert2 hVP contribution to the Lamb shift in H and μH. We give here no uncertainty, but
illustrate the scatter of the data obtained by different methods. The uncertainty of NLO hVP can be neglected comparing
with the uncertainty of LO hVP. The NLO term rather contributes to the central hVP value, but not to its uncertainty

Ivert2
L (H) Ivert2

L (μH) Comment

4.5 × 10−7 6.0 × 10−3 model from [38,39]
4.4 × 10−7 5.7 × 10−3 ln s → ln m2

ρ and Ia from [3]
4.0 × 10−7 5.5 × 10−3 direct
4.2 × 10−7 5.7 × 10−3 expt
4.1 × 10−7 5.6 × 10−3 scatter

Fig. 12 Kernel ratio r of (36)

The accuracy for the contribution to the Lamb shift
in hydrogen is determined by the ratio

Kvert2
L (me, s)

1
162

m2
e

m2
µ
KMu(mμ, s) +

(
1
6 ln mµ

me
− 1

72

)
Ka(me, s)

= 0.985 ± 0.012 (36)

plotted in Fig. 12.
For muonic hydrogen, the ratios of interest are (see

Fig. 13)

Kvert2
L (mμ, s)

1
162KMu(mμ, s) − 1

72Ka(mμ, s)
= 0.92 ± 0.06 , (37)

and

Kvert2
L (mμ, s)

1
162KMu(mμ, s) − 1

72

m2
µ

m2
e
Ka(me, s)

= 0.93±0.05 . (38)

Using the relations above, we obtain central values
given in Table 7. We still do not give any uncertainty.
The most uncertain estimation can be obtained from
the scatter value. Even its uncertainty is smaller that
the uncertainty of the approximate relations we apply.
The uncertainty of the NLO: vert2 term is much smaller
than the one of LO hVP and can be ignored.

Fig. 13 Kernel ratios r of (37) (red) and (38) (blue)

Finally, for the NLO hVP: vert2 terms we arrive at

ΔEH
L (1s) = 18 Hz ,

ΔEμH
L (2p − 2s) = −0.02 μeV . (39)

6 The hVP contribution to the Lamb shift
in hydrogen and muonic hydrogen

The NLO hVP contributions have been known for aμ

(see, e.g., [18]), ae (see, e.g, [2]), and Mu HFS interval
[38,39], but not for the Lamb shift in both ordinary and
muonic hydrogen. In principle, any accurate evaluation
of LO should be accompanied with an NLO calcula-
tion, since the LO uncertainty is often comparable to
the NLO contribution. The NLO contributions to Lamb
shift in H and μH have been already in part considered
above.

In the case of hydrogen, NLO consists of the vert2
term only. It is of relative order of α to the LO hVP
term. A contribution with an extra Zα exists, but it has
an additional suppression factor of me/mρ. Theory of
hVP for the 1s Lamb shift in hydrogen is summarized
in Table 8. We consider NLO not as the result by itself,
but rather to compare it with the uncertainty of LO.
For the 1s state in hydrogen it is 18 Hz.

The NLO contribution is the same (in units of the LO
term) for any s state. Since the NLO contribution has
an additional factor of α, it is the same in units of the
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Table 8 The hVP contribution in hydrogen. We use here the results based on scatter of aμ data

Term Order Contribution to EL(1s) [Hz]

Leading α(Zα)4m(me/mρ)
2 −3419(82)

NLO α2(Zα)4m(me/mρ)
2 18

Total −3401(82)

Table 9 LO and NLO hVP contributions to the 2p − 2s
Lamb shift in μH, based on scatter estimations. See Sect. B
in Appendix for detail

Term ΔEL(2p − 2s)
[μeV]

LO hVP 11.36(27)
NLO hVP (vert2) −0.02
NLO hVP (Ueh-ψ) 0.04
NLO hVP (Ueh-kern) 0.05
total hVP 11.43(27)

LO term for all the low-Z H-like atoms. In particular,
for an arbitrary s state of a low-Z H-like atom it is

18Hz × Z4

n3
.

The LO hVP term also scales as Z4/n3.
Theory of the Lamb shift in muonic hydrogen is some-

what different from that in hydrogen. In particular,
additionally to the vert2 term there are NR Uehling
contributions. One of them is due to a modification of
the wave function at origin, that has been considered for
a number of occasions (see the left diagram in Fig. 10).
The other one is with eVP on the same photon as hVP
(see the right diagram in Fig. 10). Both are similar to
the corrections in muonic atoms for HFS interaction
and for finite-nuclear-size contributions (FNS) to the
Lamb shift (cf., e.g., [44,51]). We apply here the related
results following [44]. The evaluation of soft contribu-
tions due to the Uehling potential is given in Appendix
in Sect. B for the nuclear charge Z = 1 − 10.

Summary on theory of hVP for the 2p−2s Lamb shift
in μH is given in Table 9. Similarly to the case of hydro-
gen above, here we consider NLO not as the result by
itself, but rather to compare it with the LO uncertainty.
The results on other low-Z two-body muonic atoms are
given in Appendix in Sect. B.

As mentioned in a number of publications (see, e.g.,
[4,5,52]), there is a certain interference in treatment of
the FNS and hVP contributions to the Lamb shift in H
and μH (and other atoms). In a number of situations,
such as, e.g., in determination of the form factors, the
hVP correction is not subtracted while evaluating the
scattering data and therefore instead of form factors

one measures rather

G(q2)

1 − α
π

Πh(q2)
q2

.

For the expansion at low q2, that means that instead
of the charge radius squared we effectively deal with

− 1
6
R2

p +
α

π
Π ′

h(0) . (40)

If only the LO hVP contribution to the Lamb shift
of either ordinary or muonic atom is important, it is
more advantageous not to consider hVP explicitly at
all, which means an effective redefinition of the rms
nuclear charge radius following (40).

Mathematically speaking, FNS and hVP do not make
a single block. While fitting, they have a somewhat dif-
ferent structure and it may be good to separate them.
Corrections, e.g., a soft QED correction for μ atoms,
are also not of exactly the same form. The combina-
toric coefficient is different (see Sect. B in Appendix).
A similar situation is with the radiative corrections
to electron-proton scattering, e.g., eVP corrections for
one-photon exchange have a different (by a factor of
two) coefficient for form factor and for hVP. Because of
logarithmic enhancement for q2 � m2

e, such a correc-
tion can be more important for scattering than for the
bound problem.

In the case of light compound nuclei (deuteron, tri-
ton, helion, α-particle), the situation is more tricky. The
radius can be determined either from muonic atoms
or from scattering. In the meantime, there are various
nuclear models (see, e.g., [53]) which may be efficiently
used for calculation of the nuclear-structure contribu-
tions. A value of the radius used in theory of compound
nuclei is usually not the one obtained from the mod-
els, but they still have to produce such a radius from
the model for a consistency test. The hVP effects are
definitely to be added to nuclear-physics-model calcu-
lations of the radius. However, at the present level of
accuracy that is not really important. The most accu-
rate applications relate H and μH and their isotopes,
where the mentioned effects are rather marginal.

Here, we have calculated hVP corrections in ordinary
and μ atoms and it is up to those who consider their
complete theory to include them or not. However, the
decision should be explicitly explained in order to avoid
confusion and to allow ones to maintain consistency
with other calculations.
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7 Conclusions

In area of precision low-energy tests of QED, there is a
number of discrepancies, such as the proton-radius puz-
zle and a controversy with aμ. These discrepancies cre-
ate problems at two different levels. One that attracts
most of the attention is roughly speaking a question,
which of controversial results are right and which are
wrong. In meantime, there is an additional problem
in the shadow of the previous one. Presence of a con-
troversy means that certain data and certain standard
treatments are compromised. Meanwhile, they are not
applied exclusively to the controversial quantities, but
are often also used for a number of others.

For instance, the proton-radius puzzle tells us that
probably the use of the data on the form factors of a
proton in a wide region, as it is usually done, is incor-
rect. (If it is, it is not clear whether we have a problem
with the data or their interpretation, including the fit-
ting ‘as usual’.) That means not only that the related
value of the proton charge radius is [probably] wrong,
but also that the magnetic radius and various other
quantities such as the so-called Zemach and Friar radii,
cannot be considered as reliable, once they are deduced
from the same evaluation that delivers a probably incor-
rect value of Rp. The Zemach radius [54] is required to
obtain theoretical predictions for the HFS interval in
ordinary and muonic hydrogen, while the Friar radius
[55–57] is a key element of a presentation of a higher-
order FNS contribution, which plays an important role
for a determination of Rp from the Lamb shift in μH.
(The related higher-order FNS contribution is essen-
tially smaller than a discrepancy for the radius from
μH spectroscopy and e − p scattering, but essentially
larger than the uncertainty of Rp due to the μH experi-
ment [58] and of a pure QED part of the related theory
(see, e.g., [5]).) See [59,60] for more details.

A number of recent indications from hydrogen spec-
troscopy [61,62] and electron-proton low-momentum-
transfer scattering [63] have pointed out that the
muonic value of the proton charge radius [58] is in
general correct. (Not all the recent results support the
muonic value of Rp, e.g., the spectroscopic result [64]
confirms the ‘old’ hydrogen value, which is consistent
with a result of a [former] ‘usual’ evaluation from e − p
scattering [65].) However, they do not help for under-
standing what to do with the overall scattering data and
their fits for the electric form factor, that is required for
a calculation of the Friar term in order to eventually
obtain a muonic value of Rp.

The problem with aμ is somewhat different. If theory
is compromised, that means that a calculation of LO
hVP is compromised at the first place. (The [dominant]
pure QED part of theory [66] is much more accurate
and reliable than the LO hVP contribution, while the
higher-order hadronic effects are smaller than LO hVP
and therefore also more reliable (see [1] for detail).)

Standard theoretical evaluations of the LO hVP term
are based on the dispersion integral in (1) over experi-
mental data (presented with the R(s) function). The

same function R(s) is applied for other observables.
The discrepancy for aμ should be considered as the
most accurate test of calculations of the LO hVP con-
tribution through a dispersion integral. The discrep-
ancy indicates that the dispersion calculation is com-
promised. It is the most important not just to update
various hVP results from an occasion to an occasion,
but to check whether a more recent value is consistent
with the previous one, and to be sure that all the results
for different observables, applied within a certain anal-
ysis, are consistent.

Disagreement between experiment and theory on aμ

opens a question, how the hVP results for aμ should
be interpreted. There are four options: (i) experiment
[7] is not correct; LO hVP theory (see, e.g., [3]) is not;
the evaluation of hLbL is not; or certain new physics is
present.

Technically, the option of new physics as a solution of
the discrepancy between theory and experiment leads
to the same consequences for the application as a pos-
sible [relatively] large error in the hLbL contribution.
The experimental value of aμ is applicable in such a
case as well as the R function and all the direct results
on the LO hVP contributions to various observables;
however, one has to consider an additional contribu-
tion to various QED observables, which has not been
accounted for (or has not been correctly accounted for)
previously. Such a contribution (e.g., due to a concep-
tual error in the hLbL term or due to new physics)
for an observable of interest may happen to be larger
than the uncertainties due to LO hVP (theoretical)
and aμ (experimental). In both cases (hLbL and new
physics), the contribution is to be model dependent.
The required new physics should be introduced with a
certain model or one has to consider a completely new
approach to hLbL, drastically different from the previ-
ous calculations. Eventually, that leads to a bunch of
model-dependent corrections to various observables.

Until such a model appears we have to focus our
attention on two other options: either the aμ measure-
ment [7] has a systematic error, or the data on R(s),
applied for a standard calculation of LO hVP, have to
be reconsidered. The data may involve the measure-
ments errors, the errors in interpretation (such as radia-
tive corrections), or models to extend the data beyond
the experimental reach (to low-luminosity kinematic
areas and/or channels).

Without new data or a hint, we are not capable to
choose between hVP theory or experiment2, and there-
fore as an estimation of the accuracy of LO hVP we
consider the scatter of the data from its direct and indi-
rect determination. The estimation, based on the scat-
ter, pretty well agrees with the lattice results [19,30–36]
(see Fig. 6). As a consistent set of hVP contributions,
we choose the values given in Table 10. They are based
on scatter of aμ (see Fig. 6) and details of their evalu-
ation have been given in the paper.

2 Hopefully, first results expected from Fermilab [67] will
soon help to clarify the situation.
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Table 10 The hVP contributions to various QED observ-
ables. We present LO hVP for most of the contributions,
except for the Lamb shift, for which we present LO+NLO

Quantity Value

Δaμ (LO hVP) 705(15) × 10−10

Δae (LO hVP) 1.89(5) × 10−12

ΔνMu(1s) (LO hVP) 236(5) Hz
ΔEH

L (1s) (LO+NLO hVP) −3401(82) Hz

ΔEμH
L (2p − 2s) (LO+NLO hVP) 11.4(3) μeV

m2
e Π ′

h(0) 1.052(25) × 10−6

m2
μ Π ′

h(0) 4.50(11) × 10−2

The muonium 1s HFS interval deserves a somewhat
more accurate consideration. Technically speaking, the
largest hVP contribution to Mu HFS interval is not the
one considered here as the LO hVP term, but another
one due to aμ. They are of the same order in α but have
different suppression mass factors, such as m2

μ/m2
ρ (for

aμ) and memμ/m2
ρ (for a ‘direct’ contribution to Mu

HFS). A small LO hVP contribution to ae is also of the
same order in α but has a suppression factor of m2

e/m2
ρ.

Once we define the leading NR term of the muonium
HFS interval, the Fermi energy EF , as the result of
interaction of full moments of electron and muon as
given in (19), the aμ-related hVP contribution is a part
of the Fermi energy, while the leading hVP correction
to it is ΔνMu(LO hVP). However, we have to consider
the leading NR term and the LO hVP correction to the
Mu HFS interval in a consistent way. Since QED the-
ory of aμ is set, any uncertainty and error is understood
as uncertainty or error of direct or indirect determina-
tion of the contribution of hVP effects. A simultaneous
inclusion in the same theoretical expression of an exper-
imental value of aμ from [7] and ΔνMu(LO hVP) from
a dispersion integration (1) (such as the result from [2])
is inconsistent.

Our recommended set of consistent values for the
involved quantities, based on the scatter for aμ, is

aμ = 11 659 193.7(15.4) × 10−10 ,

ΔνMu(hVP) = 241(5)Hz ,

r
(
aμ, νMu hfs(hVP)

)
= 0.87 , (41)

where we also give a correlation coefficient.
In Table 10, we present for the Lamb shift in hydro-

gen and muonic hydrogen a sum LO+NLO hVP, since
NLO contribution is an original result of this paper.
One may be interested in LO and NLO separately and
not only for ordinary and muonic hydrogen, but also
for other atoms. The NLO hVP in ordinary atoms and
a hard part of the contribution to muonic atoms is dis-
cussed in Sect. 5, while the soft part of the muonic-
atom correction is present in Appendix in Sect. B. Here
we summarize the results for A = 1 − 4 for ordinary
and muonic atoms that are given in Tables 11 and 12,
respectively.

One may also be interested in their intercorrela-
tions. As concerns correlations for the Lamb shift of
the ns states in ordinary and muonic atoms, all the LO
hVP contributions are proportional to the same value,
namely Π ′

h(0) and therefore they are correlated with a
correlation coefficient r = 1. (We remind that the LO
hVP contribution vanishes for l 	= 0.)

We do not consider here few-electron atoms, such
as He, or simple molecules, such as HD+; however,
we expect that LO hVP for most of low-energy vari-
ables is to be described with contact interactions (an
electron-electron or electron-nucleus one) and therefore
it is to be proportional to Π ′

h(0), which makes our find-
ing directly applicable for such atomic and molecular
systems. The exception is the hyperfine interaction (cf.
Sect. 4) for which correlations make a more complicated
form.

Having in mind various projects on accurate measure-
ments of pure leptonic properties, such as the anoma-
lous magnetic moment of electron [68] and muon [67,
69], energy intervals in muonium [70,71] and positron-
ium [72,73], progress in related theoretical QED calcu-
lations [74–78], and in determination of involved fun-
damental constants (such as the fine structure constant
α [79]), a better understanding of related hVP contri-
butions, that is one of the limiting factor of theory of
pure leptonic systems, is important.

After the work was completed a number of new
publications become available [80–86]. They somewhat
improve the situation on certain issues but do not affect
the conclusions of the paper. One of the results of this
paper is the relations between LO hVP contributions to
different observable. The data may play a role of start-
ing point. The most important problem with the data
is a discrepancy of theoretical and experimental results
on aμ. A minor change of a dispersion result for the the-
oretical value is marginal comparing with the size of the
discrepancy. Once we deal with a half sum of theoreti-
cal and experimental values as the central value of our
prediction and their half difference as an estimation of
the uncertainty, any change in actual theoretical values
is negligible.

Still, new data-driven evaluations of the LO hVP con-
tribution to aμ was presented in [80–82]. Two of them
[80,81] utilize e+e− annihilation data only, while the
other [82] uses also the τ -decay data. The consensus on
use or non-use of τ data has not yet reached.

There is a new result on LO hVP from lattice [83].
There has been also a progress in calculation of

hadronic LbL contribution [84–86]. Within our logics
the latter contributes to the indirect determination of
the LO hVP by striping the experimental value of aμ

out of all the other theoretical contributions. The hLbL
one is a dominant contribution to the theoretical uncer-
tainty of such a procedure.

Technically, the results from [80] could be useful for
realization of our strategy line, because that seems to
be the first paper with appropriate description of R(s)
where the LO hVP contribution is calculated with the
same R(s) for aμ, ae, and Mu HFS. That should sim-
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Table 11 The LO+NLO hVP contribution to the 1s Lamb shift in light (Z = 1, 2) [ordinary] hydrogen-like atoms

Atom LO hVP [kHz] LO+NLO hVP [kHz]

1H and 2H −3.42(8) −3.40(8)
3He+ and 4He+ −54.8(1.3) −54.5(1.3)

Table 12 The LO+NLO hVP contribution to the 2p − 2s Lamb shift in light (Z = 1, 2) muonic atoms

Nucleus LO hVP [μeV] LO+NLO hVP [μeV]

1H 11.36(27) 11.43(27)
2H 13.28(32) 13.36(32)
3He 224(5) 226(5)
4He 230(6) 233(6)

plify the evaluations, however, the eventual results (see
Table 10) would not change much.
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Appendix A: LO hVP contribution to the
positronium energy levels

There are two types of the LO hVP contributions to positro-
nium (Ps) energy levels. Both are of order α5me. (There is

Fig. 14 The LO hVP contribution to the energy of the
triplet S state in positronium

also a suppression factor of (me/mρ)
2, where mρ represents

the scale of hadronic masses in the dispersion integral of (6)
where most of the contribution comes from.)

The α5me hVP contributions are exclusively for the S
states, being proportional to the squared value of the wave
function at origin. They are also proportional to Π ′

h(0),
which makes the hVO positronium results to be of inter-
est for this paper.

One of the LO hVP contributions in Ps is a standard
Lamb-shift-type term (see Fig. 3) (cf. Table 1; we remind
that in positronium m = me, mr = me/2)

ΔE(nS) = −α

π

α4me

2n3

(

m2
eΠ

′
h(0)

)

. (A1)

The other LO hVP contribution is one to the energy of a
triplet S state (see Fig. 14)

ΔE(n 2I+1SI) = −α

π

EA
F

n3

(

4m2
eΠ

′
h(0)

)

δI1 , (A2)

where

EA
F =

1

4
α4me

is the annihilation-channel contribution to the leading term
of the Ps 1S HFS interval. The triplet-state contribution
affects both the HFS interval and the energy of center of
mass of the nS states.

An accurate result on the LO hVP contribution to the Ps
1s HFS interval was published in [87]. The result is related
to

m2
e Π ′

h(0) = 1.027(2) ,

which has a smaller uncertainty than those based on calcu-
lations in [2] and [3] (see Table 2), while the latter have been
obtained from more sophisticated evaluations. The central
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Table 13 The numerical results for the wave-function correction for the 1s and 2s states in light muonic atoms (Z ≤ 10)
(cf. [51,94]) following (B3). See also [44]

Nucleus κ Z C
(ψ)
1 (1s) C

(ψ)
1 (2s)

1H 1.3562 1 1.7312 1.4043
2H 1.4284 1 1.8012 1.4523
3H 1.4542 1 1.8256 1.4690
3He 2.9083 2 2.9050 2.1818
4He 2.9345 2 2.9204 2.1920
6Li 4.4428 3 3.6599 2.6942
7Li 4.4546 3 3.6648 2.6976
8Be 5.9511 4 4.2067 3.0926
9Be 5.9604 4 4.2097 3.0949
10B 7.4598 5 4.6392 3.4278
11B 7.4674 5 4.6412 3.4294
12C 8.9684 6 4.9963 3.7181
13C 8.9749 6 4.9977 3.7193
14N 10.4771 7 5.3001 3.9742
15N 10.4827 7 5.3012 3.9751
16O 11.9859 8 5.5644 4.2033
17O 11.9909 8 5.5652 4.2040
18O 11.9953 8 5.5659 4.2046
19F 13.4991 9 5.7987 4.4109
20Ne 15.0035 10 6.0076 4.5991
21Ne 15.0075 10 6.0081 4.5996
22Ne 15.0112 10 6.0086 4.6000

Table 14 The numerical results for the Uehling part of the NLO hVP contribution to the 1s and 2p−2s Lamb shift in light
muonic atoms (Z ≤ 10) (cf. [44]). We remind that following (B1) the units related to the coefficients are α/πELO hVP(ns),
while ELO hVP(2p − 2s) = −ELO hVP(2s). Therefore, the NLO correction is of the same sign as the LO hVP term in both
the 1s and 2p − 2s cases

Nucleus ChVP:Ueh
1 (1s) ChVP:Ueh

1 (2p) − ChVP:Ueh
1 (2s)

1H 3.4972 −3.2597
2H 3.6220 −3.3663
3H 3.6658 −3.4034
3He 5.5450 −4.9614
4He 5.5714 −4.983
6Li 6.8297 −6.0236
7Li 6.8380 −6.0306
8Be 7.7525 −6.8076
9Be 7.7575 −6.8117
10B 8.4792 −7.4424
11B 8.4824 −7.4452
12C 9.0777 −7.9773
13C 9.0801 −7.9795
14N 9.5865 −8.4404
15N 9.5882 −8.4421
16O 10.0284 −8.8487
17O 10.0298 −8.8500
18O 10.0309 −8.8512
19F 10.4201 −9.2147
20Ne 10.7690 −9.5437
21Ne 10.7699 −9.5444
22Ne 10.7706 −9.5452
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value of the result in [87] is reasonable, while the estima-
tion of the theoretical uncertainty in [87] is considered by
us rather as an overoptimistic one. Besides, as we explain in
this paper, the very use of a purely theoretical result based
on the dispersion integration in (1) is questionable because
of a discrepancy between theory and experiment on aμ.

We do not discuss numerical values for positronium here.
They can be easily obtained from our formulas (see Table 4
values of Π ′

h(0) required for (A1) and (A2)). The contribu-
tions are negligible comparing with the current experimental
accuracy [72,88–92].

Appendix B: NLO hVP contribution to the
Lamb shift in two-body muonic atoms with
Z ≤ 10

Let us make a brief ‘parallel’ calculation of the Uehling cor-
rection to the leading FNS term (following [44]) and the LO
hVP term in a muonic atom. It is useful to present both
contributions in the form

ΔEFNS:Ueh(nl) =
α

π
CFNS

1 (nl) ΔEFNS:lead(ns) ,

ΔEhVP:Ueh(nl) =
α

π
ChVP

1 (nl) ΔEhVP:lead(ns) , (B1)

where the total coefficient for an X quantity (= FNS or
hVP) due to the Uehling potential is

CXUeh
1 (nl) = C

(ψ)
1 (nl) + CX: kern

1 (nl) .

Here C
(ψ)
1 (nl) is due to the correction to the wave function

at origin

|ψns(0)|2 →
(

1 +
α

π
C

(ψ)
1 (ns)

)

|ψns(0)|2 . (B2)

It is generic for any δ-function kernels, which is the case for
the leading terms for FNS and hVP (see [44]). The contri-
bution is present only for the ns states.

The other correction, CX: kern
1 is a correction to the δ-

function-like kernel and, in principle, it depends on the ker-
nel. In general, it may not vanish for l �= 0 states in muonic
atoms and, in particular, for both FNS and hVP it does not.

The coefficient C
(ψ)
1 (nl) is well known in a semi-analytic

form [43,51,93,94]

C
(ψ)
1 (1s) =

π(κ2 − 2)

2κ3
+

6 − 8κ2 + 5κ4

3κ2(1 − κ2)
+

2 − 4κ2 + 3κ4 − 2κ6

κ3(1 − κ2)
A(κ) + J(κ) ,

C
(ψ)
1 (2s) =

π(3κ2
2 − 26)

3κ3
2

+
312 − 920κ2

2 + 894κ4
2 − 195κ6

2 + 44κ8
2

18κ2
2(1 − κ2

2)
3

+
104 − 376κ2

2 + 506κ4
2 − 309κ6

2 + 42κ8
2 − 12κ10

2

6κ3
2(1 − κ2

2)
3

A(κ2) + L(κ2) , (B3)

where

κn =
κ

n
=

Zαmr

me n
,

A(z) =

⎧

⎨

⎩

arccos z√
1−z2

, z < 1 ,

ln(z+
√

z2−1)√
z2−1

, z > 1 .

and

J(z) = −2z2

3

∫ 1

0

y
√

1 − y2(y2 + 2)

(1 + yz)2
ln

yz

1 + yz
,

L(z) = −4z2

3

∫ 1

0

y
√

1 − y2(y2 + 2)(y2z2 + 2)

(1 + yz)4
ln

yz

1 + yz
.

The numerical results on the coefficient are summarized in
Table 13 for the 1s and 2s states. As we already mentioned,

C
(ψ)
1 (nl) = 0 for l �= 0 and, in particular, C

(ψ)
1 (2p) = 0.

The correction due to the modification of the contact
term (i.e., the kernel of the interaction) is specific for any
contact term. In the case of the FNS contribution in order
α(Zα)4m [43] (cf. [51,57,95] and [96–102]) the result is of
the form

CFNS: kern
1 (1s) = − π

3κ3
+

6 + κ2

9κ2
+

2 − κ2 + 2κ4

3κ3
A(κ) ,

CFNS: kern
1 (2s) = − π

3κ3
2

+
24 − 44κ2

2 − 29κ4
2 + 22κ6

2

36κ2
2(1 − κ2

2)
2

+
8 − 20κ2

2 + 33κ4
2 − 20κ6

2 + 8κ8
2

12κ3
2(1 − κ2

2)
2

A(κ2) ,

CFNS: kern
1 (2p) = − π

3κ3
2

+
24 − 44κ2

2 + 13κ4
2 − 2κ6

2

36κ2
2(1 − κ2

2)
2

+
8 − 20κ2

2 + 15κ4
2

12κ3
2(1 − κ2

2)
2

A(κ2) , (B4)

where A(κ) has been defined above.
The result for the hVP: kern term is similar to the known

FNS: kern one, but has a different combinatoric coefficient

ChVP: kern
1 (nl) = 2 CFNS: kern

1 (nl).

The numerical results for

ChVP:Ueh
1 = ChVP: kern

1 + C
(ψ)
1

for the 1s Lamb shift and for the n = 2 one (i.e., for the
2p−2s interval) in light muonic atoms are given in Table 14.

A complete result for the hVP contribution (LO+NLO),
which includes the Uehling correction discussed in this
appendix and the ‘hard’ NLO: vert2 term considered in
Sect. 5 (cf. Table 9) for the 2p − 2s Lamb shift in light-
est muonic atoms, is summarized in Table 12 of Sect. 7.
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C. Jung, A. Jüttner, C. Lehner, A. Portelli, and J.T.
Tsang (RBC and UKQCD Collaborations), Phys. Rev.
Lett. 121, 022003 (2018)

31. B. Chakraborty, C.T.H. Davies, P.G. de Oliveira, J.
Koponen, G.P. Lepage, R.S. Van de Water, Phys. Rev.
D 96, 034516 (2017)

32. F. Burger, X. Feng, G. Hotzel, K. Jansen, M. Petschlies,
and D.B. Renner (ETM Collaboration), J. High Energy
Phys. 02, 099 (2014)

33. F. Burger, K. Jansen, M. Petschlies, G. Pientka, Eur.
Phys. J. C 76, 464 (2016)

34. C.T.H. Davies, C. DeTar, A.X. El-Khadra, E. Gamiz,
St. Gottlieb, D. Hatton, A.S. Kronfeld, J. Laiho, G.P.
Lepage, Y. Liu, P.B. Mackenzie, C. McNeile, E.T. Neil,
T. Primer, J.N. Simone, D. Toussaint, R.S. Van de
Water, and A. Vaquero, Arxiv eprint arXiv:1902.04223
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