Skip to main content
Log in

Resonance fluorescence and quantum correlation of two-dimensional parabolic quantum dots: spin–orbit interaction effects

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In the present study, we theoretically study the resonance fluorescence of a two-dimensional quantum dot with parabolic confinement under the effect of Rashba spin–orbit interaction and the magnetic field. We investigate the dependence of the resonance fluorescence and second-order correlation function on the strength of Rashba spin–orbit interaction and the magnetic field has. According to the numerical analyses conducted in this work, location and width of the peaks in the spectrum, as well as the second-order correlation function are modified by the Rashba spin–orbit interaction. In addition, our results show that the presence of magnetic field leads to the strong modification of both the resonance fluorescence spectrum and the second-order correlation function. Overall Rashba spin–orbit interaction and magnetic field can be used for the arbitrary control of the resonance fluorescence characteristics in a quantum dot.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Khurgin, G. Sun, L.R. Friedman, R.A. Soref, J. Appl. Phys. 78, 7398 (1995)

    Article  ADS  Google Scholar 

  2. S.M. Sadeghi, S.R. Leffler, J. Meyer, Phys. Rev. B 59, 15388 (1999)

    Article  ADS  Google Scholar 

  3. T.G. Ismailov, B.H. Mehdiyev, Physica E 31, 72 (2006)

    Article  ADS  Google Scholar 

  4. C. Guan, Y. Xing, C. Zhang, Z. Ma, Appl. Phys. Lett. 102, 163116 (2013)

    Article  ADS  Google Scholar 

  5. A. Khaledi-Nasab, M. Sabaeian, M. Sahrai, V. Fallahi, J. Opt. 16, 055004 (2014)

    Article  ADS  Google Scholar 

  6. M. Sahrai, M.R. Mehmannavaz, H. Sattari, Appl. Opt. 53, 2375 (2014)

    Article  ADS  Google Scholar 

  7. H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A.L. Holmes Jr., C.K. Shih, Phys. Rev. Lett. 88, 087401 (2002)

    Article  ADS  Google Scholar 

  8. B.D. Gerardot, D. Brunner, P.A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N.G. Stoltz, P.M. Petroff, R.J. Warburton, Nature 451, 441 (2008)

    Article  ADS  Google Scholar 

  9. E.B. Flagg, A. Muller, J.W. Robertson, S. Founta, D.G. Deppe, M. Xiao, W. Ma, G.J. Salamo, C.K. Shih, Nat. Phys. 5, 203 (2009)

    Article  Google Scholar 

  10. B.R. Mollow, Phys. Rev. 188, 1969 (1969)

    Article  ADS  Google Scholar 

  11. X. Xu, B. Sun, P.R. Berman, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Science 317, 929 (2007)

    Article  ADS  Google Scholar 

  12. C.R. Ooi, E.A. Sete, W.M. Liu, Phys. Rev. A 92, 063847 (2015)

    Article  ADS  Google Scholar 

  13. K.J. Ahn, J. Förstner, A. Knorr, Phys. Rev. B 71, 153309 (2005)

    Article  ADS  Google Scholar 

  14. R. Sánchez, G. Platero, T. Brandes, Phys. Rev. Lett. 98, 146805 (2007)

    Article  ADS  Google Scholar 

  15. A. Muller, E.B. Flagg, P. Bianucci, X.Y. Wang, GD.G. Deppe, W. Ma, J. Zhang, G.J. Salamo, M. Xiao, C.K. Shih, Phys. Rev. Lett. 99, 187402 (2007)

    Article  ADS  Google Scholar 

  16. R. Sánchez, G. Platero, T. Brandes, Phys. Rev. B 78, 125308 (2008)

    Article  ADS  Google Scholar 

  17. A. Moelbjerg, P. Kaer, M. Lorke, J. Mørk, Phys. Rev. Lett. 108, 017401 (2012)

    Article  ADS  Google Scholar 

  18. F. Carreño, M.A. Antón, F. Arrieta-Yáñez, Phys. Rev. B 88, 195303 (2013)

    Article  ADS  Google Scholar 

  19. J.M. Zajac, S.I. Erlingsson, Phys. Rev. B 94, 035432 (2016)

    Article  ADS  Google Scholar 

  20. G.Y. Kryuchkyan, V. Shahnazaryan, O.V. Kibis, I.A. Shelykh, Phys. Rev. A 95, 013834 (2017)

    Article  ADS  Google Scholar 

  21. H. Hassanabadi, H. Rahimov, L. Lu, C. Wang, J. Luminesc. 132, 1095 (2012)

    Article  ADS  Google Scholar 

  22. O. Aytekin, S. Turgut, M. Tomak, Physica E 64, 29 (2014)

    Article  ADS  Google Scholar 

  23. B. Gisi, S. Sakiroglu, E. Kasapoglu, H. Sari, I. Sokmen, Superlatt. Microstruct. 86, 166 (2015)

    Article  ADS  Google Scholar 

  24. M. Kumar, S. Lahon, P.K. Jha, S. Gumber, M. Mohan, Physica B 438, 29 (2014)

    Article  ADS  Google Scholar 

  25. B. Vaseghi, G. Rezaei, V. Azizi, Opt. Quant. Electron. 42, 841 (2011)

    Article  Google Scholar 

  26. B. Vaseghi, G. Rezaei, V. Azizi, S.M. Azami, Physica E 44, 1241 (2012)

    Article  ADS  Google Scholar 

  27. B. Vaseghi, G. Rezaei, M. Malian, Opt. Commun. 287, 241 (2013)

    Article  ADS  Google Scholar 

  28. M. Jin, W. Xie, Superlatt. Microstruct. 73, 330 (2014)

    Article  ADS  Google Scholar 

  29. E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  30. T. Chakraborty, P. Pietiläinen, Phys. Rev. Lett. 95, 13 (2005)

    Google Scholar 

  31. Y.A. Bychkov, E.I. Rashba, JETP Lett. 39, 66 (1984)

    Google Scholar 

  32. G. Dresselhaus, Phys. Rev. 100, 580 (1955)

    Article  ADS  Google Scholar 

  33. B. Vaseghi, S.M. Razavi, Physica B 506, 23 (2017)

    Article  ADS  Google Scholar 

  34. M.O. Scully, S.M. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 2008)

  35. R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 2000)

  36. O. Voskoboynikov, C.P. Lee, O. Tretyak, Phys. Rev. B 63, 165306 (2001)

    Article  ADS  Google Scholar 

  37. O. Voskoboynikov, O. Bauga, C.P. Lee, O. Tretyak, J. Appl. Phys. 94, 5891 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Vaseghi.

Additional information

Contribution to the Topical Issue “Quantum Correlations”, edited by Marco Genovese, Vahid Karimipour, Sergei Kulik, and Olivier Pfister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaseghi, B., Azizi, V., Khosravi, M. et al. Resonance fluorescence and quantum correlation of two-dimensional parabolic quantum dots: spin–orbit interaction effects. Eur. Phys. J. D 73, 51 (2019). https://doi.org/10.1140/epjd/e2019-90296-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90296-8

Navigation