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Abstract. The parameter dependence and power flow of guided TE-waves in a lossless cubic nonlinear,
dielectric, magnetic planar three-layer structure is studied as follows.

– Using a travelling wave ansatz with stationary amplitude, Maxwell’s equations are transformed to a
system of ordinary nonlinear differential equations.

– The solutions of the system are presented compactly (in terms of hyperbolic and elliptic functions).
– The nonnegative and bounded (“physical”) solutions are determined by using a phase diagram

condition (PDC) that is applied to express the continuity (transmission) conditions at the interfaces
leading to the dispersion relation (DR).

– Based on the PDC, the parameter dependence and stability of the solutions to the DR and corresponding
power flow are studied numerically for permittivities and permeabilities that may be appropriate to
describe metamaterial.

1 Introduction

The theory of electromagnetic wave propagation in non-
linear dielectric slab structure usually considers only non-
magnetic dielectrics [1–3]. Obviously, to be applied to
metamaterials, the theory must be extended by including
magnetic material. Assuming a linear (with respect to the
magnetic field H) permeability this extension is straight-
forward (see Sects. 2 and 3), and most of relevant articles
devoted to guided waves in metamaterial slab structures
[4–12] are considering a nonlinear permittivity and linear
permeability.

Apart from different particular assumptions for the
material parameters in cladding and substrate (see Fig.
1), three of above articles consider a metamaterial film
[4,6,7], thus making a certain contact with the present
article in this respect.

In [4], Darmanyan et al. are investigating waves in a slab
wave guide with negative index nonlinear film surrounded
by “traditional” linear semi-infinite media. They are using
particular solutions (Eqs. (2a)–(2d) as limiting cases of
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elliptic functions) of the Helmoltz equations (see Eq. (1)
in [4]) to obtain special dispersion relations and special
expressions for the power flow. The conditions the prob-
lems’ parameters must satisfy to use equations (2a)–(2d) are
not presented. Thus, the scope of applications seems rather
restricted.

Based on earlier publications, Boardman and Egan
[6] are studying waves in a lossless, cubic nonlinear,
double-negative film bounded by standard, lossless, lin-
ear, non-dispersive, non-magnetic dielectric cladding and
substrate. Depending on different problems’ parameters
different Jacobi functions are used as solutions of the
Helmholtz equation (see Eq. (1) in [6]), leading to numer-
ical evaluation of the dispersion relations, field profiles,
and power flow.

Compared with the present paper, there are two major
differences. The first is the use of a phase diagram [13] to
exclude nonphysical (nonreal and unbounded) solutions of
the Helmholtz equation from the beginning. The second is
to use the Weierstrass’ elliptic functions instead of Jacobi
elliptic functions as solutions of the Helmholtz equation. In
principle, this difference is marginal. However, since we are
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Fig. 1. Geometry of the problem, permittivities εν and per-
meabilities µν according to equations (1) and (2).

interested in the parameter dependence of the solutions,
variable problems’ parameters (and hence variable propaga-
tion constants as solutions of the dispersion relation) imply
variable modulus, and hence different Jacobi functions, and
hence different representations of the dispersion relation.
Thus, numerical evaluation becomes involved without a
compact representation of the field intensities and of the dis-
persion relation.

Manenkov [7] is considering complex nonlinear permit-
tivity ε and permeability µ, depending on the transverse
coordinate in the film. For substrate and cladding complex
linear ε and µ are assumed. Maxwell’s equations are solved
numerically. Since we use a different model (see Eqs.
(1)–(3) below) it seems appropriate to do without a com-
parison here.

We note that none of references [4–12] deals with param-
eter dependence of solutions to the problem (stated in
the next section). But parameter dependence is crucial for
practical applications. If, e.g., the thickness of the waveg-
uide is not suitably related to the material parameters,
the solution of Maxwell’s equations is singular in the cen-
tral layer (see Fig. 6). Similarly, the same holds for the
incident intensity J0 and the material parameters.

The method for studying parameter dependence pro-
posed below is based on the analytical properties of the
solutions J(x, γ) (see Eq. (4)) combined with the depen-
dence of the derivatives

(
dJ
dx

)2
on J , represented as a phase

diagram (see Fig. 2). It is essential for the straightforward
(though involved) evaluation that function Jf(x, γ; pj),
expressed in terms of Weierstrass function ℘(x; g2, g3) (see
[13]), analytically depends on the parameters pj . Hence,
evaluation of the dispersion relation (14) is simple (using
MATEMATICA with built-in function ℘). By selecting
the nonnegative and bounded intensities Jf by considering

the corresponding phase diagrams (see Fig. 2), the depen-
dence of solution γ of (14) on the parameters pj can be
studied easily (see Fig. 3).

The paper is organized as follows. Section 2 describes
the problem. Section 3 is devoted to the solutions of the
basic nonlinear differential equations, to the phase dia-
gram condition (PDC), to the dispersion relation together
with its solvability, and, finally, to the parameter depen-
dence of the propagation constant γ and of the total power
flow Ptot. By selecting particular parameters, the results of
Section 3 are elucidated in Section 4. The paper concludes
with comments in Section 5.

2 Statement of the problem

The structure we consider is shown in Figure 1. The prop-
agation down the guide is in the z-direction. The guide
is lying in the (z, y)-plane so that the problem is inde-
pendent on y. We assume negligible small loss, isotropic,
homogeneous, and magnetic material in the layers with
local permittivities ε depending on the transverse electric
field Ey(x, z, t) as

ε =

 εs = εs + as|Ey|2, x < 0,
εf = εf + af |Ey|2, 0 ≤ x ≤ h,
εc = εc + ac|Ey|2, x > h,

(1)

with εν , aν , ν = s, f, c, real and constant, and permeabili-
ties µ according to

µ =

{
µsµ0, x < 0,
µfµ0, 0 ≤ x ≤ h,
µcµ0, x > h,

(2)

with real constants µν and µ0 as the free space per-
meability. We note here, that the model described by
equations (1) and (2) can be used for traditional mate-
rial with ε, µ > 0. For metamaterial (ε, µ < 0) it is a
rather wide spread approach despite the problems con-
nected with homogenization of the periodic (meta) struc-
tures as mentioned in the Introduction. Returning to this
problem below, we disregard it for the present, and start
with a tentative (TE)-solution

Ey(x, z, t) = Ẽy(x, γ)ei(γz−ωt) (3)

(with Ẽy, γ real) that transforms (see Eqs. (3) and (4)
in [13]) Maxwell’s equations subject to equations (1)
and (2) to the system of ordinary nonlinear differential
equations

See equation (4) above.

(J ′(x, γ))2 =

−2µsasJ
3(x) + 4(γ2 − µsεs)J2(x) + 4CsJ(x) := Rs(J), x < 0,

−2µfafJ
3(x) + 4(γ2 − µfεf)J2(x) + 4CfJ(x) := Rf(J), 0 ≤ x ≤ h,

−2µcacJ
3(x) + 4(γ2 − µcεc)J2(x) + 4CcJ(x) := Rc(J), x > h,

(4)
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where γ and x have been scaled by k0(k2
0 = ω2ε0µ0), and

ε, µ by ε0µ0. E denotes Ẽy with scaled arguments, Cν are
integration constants and J(x, γ) := E2(x, γ).

The problem is to find physical (nonnegative and
bounded) solutions J(x) to equation (4) that satisfy the
continuity (transmission) conditions at the interface x = 0
and x = h together with the radiation conditions at infinity

E(x, γ)→ 0,
dE(x, γ)
dx

→ 0, |x| → ∞. (5)

In particular, the problem is to find physical solutions
Jν(x, γ) for metamaterial layers so that dispersion rela-
tions and power flow can be expressed in terms of Jν(x, γ)
and (J ′ν(x, γ)), suitable to study the parameter depen-
dence (and thus stability) of the solutions Jν(x, γ).

3 Solution

Apart from J(x, γ; pj) = constant(pj denotes the fixed
parameters of the problem), the solutions of equation (4)
are [13]:

See equations (6) and (7) above.

or, equivalently,
See equation (8) above.

with derivative
See equations (9) and (10) above.

where J0, J (h) denote the intensities at x = 0 and x = h,
respectively. The invariants g2, g3 of Weierstrass’ elliptic
function ℘(x; g2, g3) are given by

Js±(x, γ; pj) =
J0(

cosh(x
√
γ2 − µsεs)∓

√
1− µsasJ0

2(γ2−µsεs)
sinh(x

√
γ2 − µsεs)

)2 , x < 0, (6)

Jf±(x, γ; pj) = J0 +
1
2R
′
f(J0)

(
℘− 1

24R
′′
f (J0)

)
± ℘′

√
Rf(J0) + 1

24Rf(J0)R′′′f (J0)

2
(
℘− 1

24R
′′
f (J0)

)2 − 1
48Rf(J0)R′′′′f (J0)

, 0 ≤ x ≤ h, (7)

Jf±(x, γ; pj) = J0 −
9µfafJ

2
0 − 12(γ2 − µfεf)J0 − 6Cf

6℘(x; g2, g3) + 3µfafJ0 − 2(γ2 − µfεf)
− 18(µfafJ

3
0 − 2(γ2 − µfεf)J2

0 − 2CfJ0)
(6℘(x; g2, g3) + 3µfafJ0 − 2(γ2 − µfεf))2

± 18℘′(x; g2, g3)
√
−2µfafJ3

0 + 4 (γ2 − µfεf)J2
0 + 4CfJ0

(6℘(x; g2, g3) + 3µfafJ0 − 2(γ2 − µfεf))2
, (8)

∂xJf±(x, γ; pj) =
1
2
R′f(J0)℘′ ± (6℘2 − g2

2
)
√
Rf(J0)

2
(
℘− 1

24
R′′f (J0)

)2 − 1
48
Rf(J0)R′′′′f (J0)

−
2R′f(J0)℘′

(
℘− 1

24
R′′f (J0)

)2 ± 4
(
℘− 1

24
R′′f (J0)

)
(℘′)2

√
Rf(J0)

(
2
(
℘− 1

24
R′′f (J0)

)2 − 1
48
Rf(J0)R′′′′f (J0)

)2

−
1
6
℘′
(
℘− 1

24
R′′f (J0)

)
Rf(J0)R′′′f (J0)

(
2
(
℘− 1

24
R′′f (J0)

)2 − 1
48
Rf(J0)R′′′′f (J0)

)2 , 0 ≤ x ≤ h, (9)

Jc±(x, γ; pj) =
J(h)

(
cosh((x− h)

√
γ2 − µcεc)∓

√
1− µcacJ(h)

2(γ2−µcεc)
sinh((x− h)

√
γ2 − µcεc)

)2 , x > h, (10)

 g2 = 2µfafCf + 4
3 (γ2 − µfεf)2,

g3 = 2
3µfafCf(µfεf − γ2)− 8

27 (γ2 − µfεf)3,
(11)

with Cf to be determined by the transmission conditions
at x = 0 or at x = h (see below). Integration constants
Cs, Cc are zero according to conditions (5). The prime
in (7) denotes differentiation w.r.t. x for ℘(x; g2, g3) and
differentiation w.r.t. J for Rf(J).

Continuity of Ey and E′y
µ at the surfaces between the

layers implies continuity of J and J′

µ (transmission con-
ditions). Using equations (6)–(9), evaluation of J0 =

Js±(0, γ; pj) = Jf±(0, γ; pj) and Rs(J0)
µ2

s
= Rf (J0)

µ2
f

yields

Cf(γ) =
J2

0

2

(
µfaf − as

µ2
f

µs

)
+ J0

(
µfεf −

µ2
f

µs
εs +

µ2
f

µ2
s

γ2 − γ2

)
. (12)

Similarly, equations J (h) = Jf±(h, γ; pj) = Jc±(h, γ; pj)

and Rf (J
(h))

µ2
f

= Rc(J
(h))

µ2
c

can be evaluated to give a restric-

tion of the (unknown) intensity J (h) in equation (10),

(J (h)(γ, pj))2

2

(
µfaf − ac

µ2
f

µc

)
+ J (h)(γ, pj)

(
µ2

f

µ2
c

γ2 − γ2 + µfεf − εc
µ2

f

µc

)
− Cf(γ) = 0. (13)
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Due to the continuity of J at x = h, the continuity con-
dition for ∂xJ

µ at x = h can be written as

∂xJf±(x, γ; pj)
µf

∣∣
x=h

=

∓
√
−2µcac(Jf±(h, γ; pj))3 + 4(γ2 − µcεc)(Jf±(h, γ; pj))2

µc
·

(14)

Equation (14) represents the dispersion relation (DR)
for a waveguide with permittivities and permeabilities
given by (1) and (2), respectively. Though equation (13)
and the dispersion relation are coupled by requirement
J (h)(γ, pj) = Jf±(h, γ; pj) it is useful to consider them
separately. Since we are interested in physical solutions J ,
at least one root of equation (13) must be positive. If the
discriminant D of equation (13) is nonnegative,

D =
(
µ2

f

µ2
c

γ2 − γ2 + µfεf − εc
µ2

f

µc

)2

+ 2Cf(γ)
(
µfaf − ac

µ2
f

µc

)
≥ 0, (15)

and

µcµfCf(γ)(µfac − µcaf) < 0 or
µcµfCf(γ)(µfac − µcaf) > 0, (16)

then (first case) only one positive root J (h) exists or (second
case) two positive roots exist, respectively. Ambiguity of the
latter case can be removed by the requirement J (h)(γ, pj) =
Jf±(h, γ; pj), since physical Jf±(h, γ; pj), existence pro-
vided, are defined uniquely according to equation (8). In this
context we note that, in general, Jf±(x, γ; pj) is real if x is
real (℘(x; g2, g3) is real for real x) and if Rf(J0) > 0, but
unbounded for vanishing denominator in equations (7)–(9).
It can be seen from equations (7) or (8), Jf±(xp, γ; pj) = J0

at the poles xp of ℘ and ℘′. The constraint Rf(J0) > 0,
that is necessary for real Jf±(x, γ; pj) and ∂xJf±(x, γ; pj),
can be satisfied only for particular propagation constants γ
and particular parameters{εν , µν , aν , J0}. Due to the trans-
mission conditions, Rf(J0) > 0 is related to Rs(J0), and
Rf(Jf±) is related to Rc(Jf±), so that, in general, Rν(J0),
Rν(Jf±) > 0, ν = s, f, c,must hold.

The qualitative behaviour of solutions Jν of equation (4)
((J ′)2 = Rν(J)) conveniently can be determined by con-
sidering phase diagrams {Rν(J), J} [14] as depicted in
Figure 2. Since Rν(J) ≥ 0 must hold, with J varying
monotonically until J ′ = 0, it is clear that the zeros
of Rν(J) are important. Some thought shows that ten
and only ten phase diagrams must be taken into account
(phase diagrams (a)–(j) for Jf , phase diagram (k) for Js,c)
to characterize physical (real, nonnegative, bounded) solu-
tions Jν . In order to find solutions γ = γ (h; pj) of the
dispersion relation (14), first, Jf± must be physical (for
x ∈ (0, h)) with Rc(J±(h, γ; pj)) > 0, and second, the
dispersion relation must be solvable. These requirements
conveniently can be studied by considering the phase dia-
grams in Figure 2. Physical solutions Jν(x, γ; pj) corre-
spond to the (hatched) finite intervals labelled I1. The

(dashed) infinite intervals labelled I2 are associated to
unbounded intensities. In this case, subject to J0 > 0 in
phase diagrams (b), (c), (d), (h), (j) or if J0 ≥ J1 in phase
diagrams (a) and (g), the poles xp(γ, pj) are determined
by

6℘(xp(γ, pj); g2, g3) + 3µfafJ0 − 2(γ2 − µfεf) = 0

as

xp(γ, pj) = ℘(−1)

(
γ2 − µfεf

3
− µfaf

2
J0

)
+ 2Mω̃, (17)

with ω̃ as the real half-period of ℘ and M integer. Denot-
ing, for a certain M > 0, xp > 0 as the smallest xp(γ, pj),
for all γ in a certain domain, J is physical if h < xp, oth-
erwise (h > xp) J is unbounded and cannot be used for
evaluating the dispersion relation (see Fig. 3).

For solutions Jν(x, γ; pj) to be physical, J0 and J (h),
with J (h) according to (13), (15), and (16), must be
located in intervals I1 or I2 (in one of the PDs {Rf , J})
and simultaneously in intervals I1 of PDs {Rs,c, J}). These
requirements can be summarized as

xp > h,

J0 ∈ {(I1 ∪ I2) ∩
(

0,
2(γ2−µsεs)

µsas

]
6= ∅},

J(h) ∈ {(I1 ∪ I2) ∩
[
0,

2(γ2−µcεc)
µcac

]
6= ∅},

I1 = {(0, J2), (A2)} or {(0, J2), (A5)} or {[J1, J2], (A6)},
I2 = {(0,∞), (A3)} or {(0,∞), (A4)} or {(0,∞), (A7)},

(18)

where the condition xp > h refers only to the intervals
I2. Conditions (A2)–(A7) are presented in Appendix A,
where the phase diagrams of Figure 2 are expressed alge-
braically in terms of Rν and ∂JRν(J) using the roots of
Rν(J) = 0. We denote condition (18), subject to (15) and
(16), as phase diagram condition (PDC) in the follow-
ing. In parameter space, the PDC defines regions (referred
to as PDC regions) that represent parameter sets corre-
sponding to bounded nonnegative solutions Jν±(x, γ; pj).
With respect to the DR (14), we first note, if the PDC is
satisfied, that Jf±(h, γ; pj) is continuously differentiable
w.r.t. h, γ, pj (due to the PDC, denominators in Eqs. (8)
and (9) do not vanish, and, since ℘(h, g2, g3) is holomor-
phic in g2(γ, pj), g3(γ, pj) (see [15], 18.5.1–3), Jf±(x, γ; pj)
is continuously differentiable). By varying {h, γ}, pj fixed,
and γ, pj satisfying the PDC, both sides of the DR (14) are
varying continuously, and a contourplot w.r.t. to {h, γ}
can serve as a test for existence of physical solutions
{h, γ}. Due to analytic properties mentioned, this proce-
dure also works if h = h0 is fixed, and a certain parameter
pi is variable. This leads to a representation {pi, γ} that
describes the dependence of γ on pi. Secondly, conditions
(15) and (16) are sufficient for existence of positive roots
J (h). It is necessary to check D ≥ 0 (e.g., by means of a
regions plot, pj fixed, in order to select J0 appropriately
for subsequent evaluation). Thirdly, we emphasize that
DR (14) must be considered for Jf+ and for Jf− sepa-
rately (subject to PDC), leading to two dispersion rela-
tions. For simplicity, we use Jf+(x, γ; pj) in (14), so that

https://www.epjd.epj.org
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Fig. 2. Phase diagrams for solutions Jf±(x, γ; pj), Js±(x, γ; pj) and Jc±(x, γ; pj): (a), (g): Jf±(x, γ; pj) bounded (µfaf < 0);
(e), (f), (i): Jf±(x, , γ; pj) bounded (µfaf > 0); (b), (c), (d), (h), (j): Jf±(x, γ; pj) bounded or unbounded depending on h;

(k): Js±(x, γ; pj), Jc±(x, γ; pj) bounded (µνaν > 0) with J2s,c =
2(γ2−µs,cεs,c)

µs,cas,c
or unbounded (µνaν = 0); comments in the text.

(due to Eq. (9)) ∂xJf+(x, γ; pj)|x=0 = −
√
Rf(J0). Hence,

the transmission condition at x = 0

−
√
Rf(J0)
µf

=
∂xJs±(x, γ; pj)|x=0

µs
= ∓

√
Rs(J0)
µs

must be used to select Js+ or Js− appropriately (depend-
ing on the signs of µf and µs).

As outlined above, the transmission condition at x =
h is represented by the DR (14). In general, since
∂xJc±(x,γ;pj)|x=h

µc
= ±
√
Rs(Jf+(h,γ;pj))

µc
, the RHS can be pos-

itive or negative, depending on the choice of Jc− or Jc+,
respectively. If ac = 0, the solution Jc−(x, γ; pj) is not con-
sistent with condition (5). Thus, only Jc+(x, γ; pj) (that
remains bounded in this case) can be used, leading to con-
straint (in (14))

sign
(
∂xJf+(x, γ; pj)|x=h

µf

)
= −sign(µc). (19)

Additionally to the PDC, (19) must be satisfied.
Returning to the parameter dependence of solutions

γ = γ (h, pj) of the DR (14), as it stands, it relates γ
and h if pj are fixed. In principle, the thickness h does not
play a special role. The Weierstrass’ function ℘(x; g2, g3)
in Jf±(x, γ; pj) and J ′f±(x, γ; pj) depends analytically on h
(if h 6= 0 modulo real period of ℘(x; g2, g3)) and g2 and g3
(see [15], 18.5.1–18.5.4). Hence ℘(x; g2, g3) depends ana-
lytically on γ, h, εν , µν , aν , J0, and, subject to the PDC,
Jf±(x, γ; pj) and J ′f±(x, γ; pj) have the same property,
so that, in place of h in (14), any of the parameters
pi ∈ {γ, h, εν , µν , aν , J0} can be considered. The resulting
dispersion relations DR (γ, pi; pj) depend analytically on
γ and on the problem’s parameters, and thus can be used
to investigate the dependence of γ on any of the param-
eters pi. Clearly, varying parameters imply varying PDC
regions, so that dispersion curves may cross boundaries
between different PDC regions. Due to this possibility it

https://www.epjd.epj.org
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Fig. 3. Dispersion curves (red) γ = γ (h, pj); xp(γ, pj) =

℘(−1)(γ, pj) + 2ω̃ according to equation (17) (blue); PDC
regions: A, corresponding to phase diagram (a) with oscil-
latory Jf+(x, γ; pj), to (g) soliton-like x ∈ [0, h]; B corre-
sponding to phase diagrams (b), (c), (d), (h) with bounded
Jf+(x, γ; pj), x ∈ [0, h]), regions: P ≤ 0 (Ptot = γP ) hatched;
particular points (states)Q1−Q4 annotated in the text, param-
eters (21).

is necessary to take all cases, indicated in Figure 2, into
account when investigating the dependence of the prop-
agation constant γ (pi; pj) on parameters pj . The local
behaviour of γ (pi; pj) can be used to study the stability
of γ w.r.t. pj . A variation pj + δpj of a physical solu-
tion γ (pi; pj) may lead to γ̃ (pi; pj + δpj) that is not con-
sistent with the PDC. It seems suitable to denote such
γ̃ (pi; pj + δpj) as “basically unstable” with respect to the
parameter pj . The other possibilities refer to dispersion
curves within the PDC region, where bifurcation points
(∂γpi = 0, ∂2

γ
pi 6= 0) occur. At a bifurcation point γB the

behaviour of the propagation constant γ is described by
δγ 6 →0 as δpj → 0 (it depends on the sign of δpj whether
two values of γ exist in the vicinity of γB or one γ on
a different branch of the dispersion curve). For the third
possibility (δγ → 0 as δpj → 0) it can be shown, due to
the continuity of γ = γ (pi; pj), that the intensity patterns
are continuous. Usually, γ (pi; pj) is denoted as “stable”
in this case while it is called “bistable” or “unstable” at
bifurcation points (see e.g., Sect. 4).

Apart from a positive factor, the time average power
flow Ptot down the guide is given by

Ptot = γP = γ

 0∫
−∞

Js±(x, γ; pj)
µs

dx+

h∫
0

Jf±(x, γ; pj)
µf

dx

+

∞∫
h

Jc±(x, γ; pj)
µc

dx

. (20)

For traditional material, γ and Ptot are positive. For artifi-
cial material, first, γ = 0 is possible (e.g., if εs < 0, εc < 0),
and, second, P is either positive, zero or negative depend-
ing on the relative values of three terms. Thus, equa-
tion (20) is suitable to study the sign and the strength
of the total power flow (see Sect. 4).

Following the remarks in the introduction the solution
of the problem stated (in Sect. 2) can be summarised as
follows.
– If the phase diagram condition (18), subject to (19),

are satisfied, solutions γ (pi; pj) of the dispersion rela-
tion (14) exist. Inserted into equations (6), (8), and
(10), they lead to physical intensities Jν±(x, γ; pj).

– Conditions (18) and (19) define certain subspaces in
parameter space (see, e.g., A,B in Fig. 3). Branches
γ (pi; pj) with parameters pj inside or on the bound-
aries represent parameter dependence of γ (pj), and
hence stability of solutions Jν±(x, γ; pj) represented
by equations (6), (8), and (10).

– The analytical representation of the total power flow
P according to equation (20), combined with the cor-
responding parameter dependence of the propagation
constant γ can be used to optimize P and to study
special effects, e.g., power flow reversal (see Fig. 8).

4 Numerical example

Before we exploit the foregoing formulae numerically it
is necessary to consider the applicability of the model
assumptions equations (1) and (2).

For traditional material, with positive permittivity ε
and permeability µ, equations (1) and (2) are realistic so
that the results of the previous section can be applied [13].
For metamaterial with both negative ε and µ, this is not
self-evident.

First, loss is an intrinsic feature of metamaterials. But
with complex ε and µ, the present approach does not work,
so that different methods must be used (see, e.g., [16]).

Second, equations (1) and (2) do not model spatial dis-
persion at all. Solution of Maxwell’s equations with non-
local (even real) ε and µ is a non-trivial extension of
the foregoing approach that is not in the scope of the
present article. In an interesting article Gorlach et al. [17]
have presented a theoretical approach for calculating non-
linear susceptibilities of nonlinear discrete metamaterial
with both frequency and spatial dispersion. For the struc-
tures with negligible spatial dispersion effects expres-
sions for local nonlinear permittivities and susceptibili-
ties are defined (see Eqs. (26), (30), and (31) in [17])
and evaluated numerically. As far as we see, some ad hoc
assumptions in equations (17)–(19) [17] lead, admittedly
by a very formal argument, to a nonlinear polarization
P (ω) = (χ(1) + 3χ(3)E(ω))E(ω), consistent with model
equation (1). Further studies of the problem of homoge-
nization of a periodic composite are presented in the lit-
erature [18–21].

Third, it is not clear, whether, in presence of electric and
magnetic fields, a magnetic nonlinearity must be taken
into account [22]. An extension of the present approach in
this direction is (as far as we know) an unsolved problem.
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Fig. 4. Phase diagram reduced by µ2
ν corresponding to point

Q1 in Figure 3.

Fig. 5. Intensity pattern corresponding to point Q1 in
Figure 3.

Despite these limitations and concerns there is a
widespread use of the above model for metamaterials in
the literature [4–12].

Finally, the question has to be addressed whether
the model assumptions (1) and (2), in particular with
εf , µf < 0, are consistent with the Kramers–Kronig Rela-
tions (KKRs) (see [23]).

As a mathematical theorem, the KKRs are valid if the
response of the system is linear, causal, and if the cor-
responding integrals in the KKRs exist. This means that
the response function R(t) is not dependent on the input,
which, at time t, should not produce an output for times
earlier than t (causality). Finally, R(t) must be square
integrable (finite input produces only finite output).

In the literature, on the one side [6] (see Eq. (15)),
[4,12,24,25] (see Eq. (2)), [10] (see Eqs. (1) and (2)), the
Drude model is assumed for the real effective metamate-
rial parameters ε and µ as

ε(ω) = 1−
ω2
p

ω2
, µ(ω) = 1− Fω2

ω2 − ω2
0

,

where ωp and ω0 denote a plasma frequency and a (mag-
netic) resonance frequency, respectively, and F = 0.56.

Fig. 6. Intensity pattern corresponding to point Q4 in
Figure 3.

Fig. 7. Dispersion curve (red) γ = γ (εc, pj), h = 1, parame-
ters (21), representing the parameter dependence and stability
of state Q1 in Figure 3: Q1 is locally stable at εc = 1 with
oscillatory Jf+(x, γ; pj); Regions A,B as described in Figure 3.

Applying the KKRs to the Drude permittivity ε(ω) =

1− ω2
p

ω(ω+iγ) with γ = 0 leads to contradiction (this might
be the reason why the KKRs are not mentioned in [4–12]).

On the other side [26,27], several articles indicate that
causality criteria must be used with care. For instance [28],
in atomically thin crystals it was found that the KKRs do
not hold, confirming a proposition put forward decades
ago [29]. As is well known, the KKRs for µ(ω) are not
compatible with diamagnetism (µ(0) < 1) and =µ > 0 for
ω > 0 [30], and in [31] it was pointed out that the general
µ(ω) may not satisfy the KKRs, motivating alternative
relations to link real and imaginary parts of µ(ω).
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The foregoing references indicate that it depends on the
physical system and/or the model used whether the KKRs
can be applied.

To sum up, there are some limitations related to the
model equations (1) and (2), nevertheless, to demon-
strate how the approach works, we consider a nonlinear
metamaterial film sandwiched between traditional linear
cladding and substrate (see Fig. 1) with parameters (for a
certain ω)

{pj} = {as, ac = 0, af = 0.01, εf = −2, µf = −2, εs = 1,
εc = 1, µs = µc = 1, J0 = 1}. (21)

Here, εf , µf have been chosen in accordance to [19] (see
Fig. 3) and [10] (see Fig. 1) (it seems that the results in
[17] (see Fig. 4) are consistent with this choice).

By evaluating the dispersion relation (14), the PDC
(18), and P according to (20) we obtain results depicted
in Figures 3 and 4. All (red) dispersion curves in Figure 3
are consistent with (18) and (19). As outlined in the cap-
tions of Figure 3, branches a, b, c, f correspond to phys-
ical solutions, branches d, e are associated to intensities
Jf+(x, γ; pj) with a pole inside the film (see Fig. 5b). For
point Q1, Figures 4 and 5 show the corresponding phase
diagrams (reduced by µ2

ν , consistent with Fig. 2b) and the
field pattern {Js−, Jf+, Jc+}, respectively. For the point
Q4 the field pattern is depicted in Figure 6 (xp < h).
Returning to point Q1, {h = 1, γ = 1.28}, it is stable
w.r.t. the thickness h according to the above mentioned
definition of stability. Field patterns of points in the close
vicinity of Q1 are barely distinguishable from field pattern
in Figure 5. The question is whether this property is con-
served if another parameter is variable. Fixing h = 1 and
varying, e.g., εc in the vicinity of εc = 1 (see parameters
(21)), the propagation constant γ is varying due to DR
(14) as shown in Figure 7. This procedure can be used for
any realistic variation of a (realistic) parameter. Next we
consider pointQ2 in Figure 3. As end point of branch b it is
specific. Solving the DR (14) with γ =

√
εsµs =

√
εcµc = 1

one gets hQ2 = 1.818. Since, due to the PDCs (18),
γ2 > ενµν , ν = s, c, must hold, Q2 itself does not repre-
sent a physical solution of the dispersion relation (Js−, Jc+

are singular). Obviously Q2 is unstable if it is approached
from the left on branch b. For h > hQ2 states S on branch
c can be stimulated. Approaching h → hQ2 on branch c
from the right, additional to states on branch c, states on
branch b (in the vicinity of Q2) can be stimulated. Point
Q2 represents a non-physical state of instability (w.r.t. h).
The physical branches a, b, c are outside the regions where
P < 0 so that total power flow Ptot = γP cannot change
sign for these solutions of the dispersion relation. Obvi-
ously, for branch f this is not the case. Thus it seems inter-
esting to consider point Q3 (hQ3 = 2.518, γQ3 = 1.156)
where Ptot is changing sign if the thickness h is varying in
the vicinity of Q3. Since J0 seems to be more susceptible
to experimental control than h we evaluate the disper-
sion relation (14), the phase diagram conditions (18), and
(20) w.r.t. J0 for fixed h = hQ3 . The result is shown in
Figure 8. Increasing J0up to bifurcation point SQ3(J0 = 1,
γ = γQ3), the propagation constant γ jumps to state S on
branch g, connected with a jump of the total power flow.

Fig. 8. (a): dispersion curves (red), h = hQ3 = 2.51 (see
Fig. 3) indicating the possibility of a switch (arrow) SQ3 → S
connected with a power flow reversal; annotations in the text.
Regions A,B, P ≤ 0 as described in Figure 3; (b): enlarged
view in the vicinity of SQ3.

To sum up, if the basic assumptions outlined in Sec-
tions 1 and 2 are realistic for metamaterial, and if, in par-
ticular, metamaterial with parameters according to (21)
exist, the results of the present section might have a cer-
tain physical significance.

The foregoing example indicates that

– the parameter dependence and thus stability
behaviour (with respect to material parameters

https://www.epjd.epj.org
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and J0) can be investigated on the basis of PDC, (19),
and the compact representation (14) of the DR.

– the results of Section 3 are suitable to study the depen-
dence of the total power flow Ptot = γP on certain
parameters. In particular, if µνaν ≥ 0, ν = s,c, due to
(18), vanishing propagation constant γ is impossible.
As depicted in Figure 3 (point Q3), P can change sign.
Hence power flow reversal is possible.

5 Conclusions and comments

For a planar waveguide structure, with permittivity ε and
permeability µ according to equations (1) and (2), respec-
tively, we presented the intensities J(x, γ; pj) of travelling
waves (3) as particular solutions of Maxwell’s equations
(see Eqs. (6), (8), and (9)). We derived the dispersion rela-
tion by applying the transmission conditions to solutions
J(x, γ; pj) (see Eq. (14)).

For physical solutions J(x, γ; pj), we presented, using
a phase diagram approach, conditions (see (18)) that are
suitable to ensure the existence of solutions γ = γ (pi; pj)
of the DR and to describe the parameter dependence of
γ = γ (pi; pj), Jν (x, γ; pj), and Ptot = γP . In particular,
we investigated power flow reversal.

For traditional ε and µ in equations (1) and (2) the fore-
going conclusions represent an approach that works [13]. As
outlined in Section 4, for metamaterial the results must be
considered with a certain reservation. Waveguiding in meta-
materials with a nonlocal response, nonnegliglible dissipa-
tion, and higher-order dispersion cannot be described by the
present approach. Nevertheless, the growth of the “Meta-
material Tree of Knowledge” [32] cannot be foreseen, so
that the model assumptions of the present approach might
become less problematic in the future.

As mentioned, parameter regions where solutions γ of
the dispersion relation exist, and the dependence of γ on
the parameters have not been studied at all in the related
literature (to the best of our knowledge). It seems that
these issues are interesting in themselves, and, needless to
say, are important for practical applications as exemplified
in Section 4.
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Appendix A: Algebraic representation
of the phase diagrams of Figure 2

For evaluation of the PDC (18), in particular for plotting
the PDC regions, it is useful to represent the phase dia-
grams that correspond to physical solutions of the system
(4), algebraically. With

J1,2 =
γ2 − µfεf ∓

√
(γ2 − µfεf)2 + 2µfafCf

µfaf
· (A1)

The phase diagrams (a)–(j) are expressed as

(a),(g): µfaf < 0, J1 ≥ J2, Rf(0) = 0, R′f(0) > 0,

{R′f(J2) < 0, R′f(J1) > 0 or

R′f(J1) = R′f(J2) = 0}, (A2)
(b),(c): µfaf < 0, J1 ≤ J2 < 0, Rf(0) = 0,

R′f(0) > 0, R′f(J2) < 0, R′f(J1) > 0 or

R′f(J1) = R′f(J2) = 0, (A3)
(d),(h): µfaf < 0, J1, J2 complex Rf(0) = 0,

R′f(0) > 0, {J1 + J2 < 0 or J1 + J2 > 0},
(A4)

(f),(i): µfaf > 0, J1 ≤ 0, J2 > 0, {(Rf(0) = 0,

R′f(0) > 0, R′f(J1) < 0, R′f(J2) < 0) or

R′′f (0) > 0}, (A5)
(e): µfaf > 0, 0 < J1 ≤ J2, Rf(0) = 0,

R′f(0) < 0, R′f(J1) > 0, R′f(J2) < 0, (A6)

(j): µfaf ≤ 0, Rf(0) = R′f(0) = R′′f (0) = 0,
(g2 = g3 = 0), (A7)

(k): µνaν ≥ 0, Rν(0) = R′ν(0) = 0, R′′ν (0) > 0,
ν = s,c, (A8)

respectively.
Evaluating (A2)–(A7) by using (A1) and inserting

the result into the PDC (18) yields a lengthy general
(sufficient) condition for physical solutions J(x, γ; pj).
Advantageously, a symbolic computation system can be
used to find the corresponding PDC regions in parameter
space.
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