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Abstract. The differential cross sections for low-energy muonic hydrogen atom scattering in liquid hydro-
genic targets have been calculated in the incoherent approximation using the Van Hove response function.
A simple model of liquids and the available experimental parameters have been employed for a descrip-
tion of the diffusive and vibrational modes in these targets. At collision energies below about 10 meV, the
obtained cross sections are very different from the analogous cross sections for scattering in hydrogenic
gases.

1 Introduction

Many experiments in low-energy muon physics were per-
formed in the liquid mixtures of hydrogen isotopes. In
particular, such hydrogenic targets were employed for
studying the muon-catalyzed pd and pt fusion in the
muonic molecules pdµ and ptµ (see, e.g., [1–5]). The yields
of different products from these fusion reactions strongly
depend on the populations of hyperfine states of the
muonic molecules. These yields are functions of the con-
centrations of deuterium and tritium admixtures in the
H2 targets, which is known as the Wolfenstein-Gershtein
effect [6,7]. This is due to a complicated chain of processes
from the Coulomb capture of the negative muons to for-
mation of the muonic molecules. The time evolution of
the spin and kinetic energy of the dµ and tµ atoms is of
particular importance. In order to compare the theoretical
fusion rates with the experimental data, it is necessary to
accurately describe the kinetics of muon-catalyzed fusion.
Detailed kinetics calculations [3–5], were performed using
then available cross sections for scattering of the muonic
atoms from the hydrogen-isotope nuclei [8–10]. However,
in the considered experiments, these processes take place
in the molecular liquid targets. One may thus expect that
the realistic cross sections are very different from that for
the scattering from free nuclei or molecules, which has
already been shown in the case of solid hydrogenic tar-
gets [11]. An estimation of the differential cross sections
for muonic atom scattering from the liquid hydrogenic
targets in a simple incoherent approximation is the aim
of this work. The obtained results can be applied for
an accurate simulation of the new experimental study of
muon-catalyzed pt fusion, which is underway at JINR in
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Dubna. This experiment has been planned in order to
clarify the large discrepancies between theory and experi-
ment in the ptµ case, and to observe more fusion channels
(e.g., ptµ→ 4He + e+ + e−) for the first time [12,13].

A method of estimating the differential cross sections
for muonic hydrogen atom scattering in liquid hydrogenic
targets in the incoherent approximation is presented in
Section 2. Some examples of the calculated cross sec-
tions for the liquid hydrogen, deuterium, and hydrogen
with a small admixture of deuterium or tritium, at the
temperature T = 22 K and saturated-vapor pressure, are
shown in Section 3. A summary of the obtained results
and conclusions are given in Section 4.

2 Method of calculation

Since a muonic hydrogen atom aµ (a = p, d, or t) is a small
neutral object, the cross section for aµ scattering in a
condensed target can be calculated using the methods that
were developed for a description of the neutron scattering.
In the incoherent approximation, the partial differential
cross section per a single target molecule can be expressed
in terms of the incoherent fraction Si(κ, ω) of the Van
Hove response function S(κ, ω) [14]

∂2σ

∂Ω∂ε′
=
k′

k
σmol Si(~κ, ω). (1)

The squared amplitude for aµ scattering from a free
hydrogenic molecule is denoted here by σmol, the energy
transfer ω and momentum transfer κ to the condensed
target are defined as

ω = ε− ε′ −∆E, κ = k − k′, (2)
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where ε and ε′ are the initial and final kinetic energies
of the atom; vectors k and k′ denote the corresponding
momenta. The energy transfer due to internal transi-
tions in the atom and the target molecule is denoted by
∆E. equation (1) is exact for the incoherent processes of
internal transitions in the atom (spin flip) or molecule
(rotational-vibrational excitations). In the case of strictly
elastic scattering, the approximation S ≈ Si is valid for
higher momentum transfers, when the coherent processes
are relatively small. It has been shown in reference [11]
that the total cross sections for aµ scattering in solid
hydrogens are practically unaffected by the coherent pro-
cesses at collision energy ε & 1–2 meV. In equation (1), the
rotational-vibrational transitions in the target molecules
and the spin-flip transitions in the scattered atom aµ are
taken into account in the free-molecule squared ampli-
tudes σmol, which were calculated in reference [15] for all
combinations of the hydrogen isotopes. These calculations
employed the amplitudes for aµ scattering from the bare
hydrogen-isotope nuclei [9,10] as the input.

Function Si in equation (1) describes the translative
motion of molecules in a liquid target. The studies of liq-
uid H2 and D2 using slow neutron scattering showed that
both the diffusive and collective modes are present in the
dynamics of these quantum liquids (see, e.g., Refs. [16–19]
and references therein). These studies revealed the phonon
spectra similar to those characteristic for polycrystalline
powders. Thus, despite the lack of a periodic structure
in the liquid hydrogens, it is reasonable to describe their
properties in terms of the Debye temperature for a cer-
tain range of the momentum transfers. At lowest energies,
the scattering in liquids is dominated by the diffusive
motion of target particles, which results in the presence of
a broad quasielastic peak centered at the incident energy.
At the liquid hydrogen density, the interactions between
the neighboring molecules are important. This leads to a
recoil-less scattering at lowest κ and ω. For example, such
effect was observed in the lowest rotational excitation of
H2 in collision with neutrons [20].

Many advanced theoretical models and computer pro-
grams were developed for a description of neutron scat-
tering from liquid H2 and D2 (see, e.g., Refs. [21–23]).
These models lead to different forms of the response
function, which is usually convoluted with a response
from the integral degrees of freedom of the molecules
H2 and D2. Such convolution involves the spin correla-
tions that are characteristic for the neutron scattering
from these molecules and different from the analogous
case of muonic hydrogen atom scattering. In our approach,
the spin correlations and the rotational-vibrational struc-
ture of the molecules are already taken into account in
the squared amplitudes σmol. For these reasons, below
we evaluate the response function for the specific case
of muonic atom scattering, using a simple general model
from reference [24].

In liquid hydrogens, the diffusive motion at small κ is
well described [16] by the Langevin equation

M
d2R

dt2
= −ζM dR

dt
+ F s(t) , (3)

where M is the molecular mass, R is a position of the
molecule, ζ denotes the strength of a frictional force due
to the movement in liquid, and F s is a stochastic force
connected with the scattering from other molecules. The
coefficient ζ is related to the self-diffusion coefficient Ds

by the Einstein relation

ζ = kBT/(MDS) , (4)

in which kB denotes Boltzmann’s constant. Equations (3)
and (4) lead to the following diffusion contribution [24]:

Sdiff(κ, ω) =
1

π
exp(−2W )βTω [nB(ω) + 1]

× Dsκ
2

ω2 + (Dsκ2)2
, (5)

to the response function Si. Function exp(−2W ) denotes
the Debye-Waller factor and the Bose factor nB(ω) is
defined as

nB = [exp(βTω)− 1]−1, (6)

where βT = 1/(kBT ). Equation (5) can be applied for
small κ and ω, apart from the limit κ, ω → 0. The width
∆diff at the half maximum of the quasi-elastic Lorentzian
factor in equation (5) equals 2Dsκ

2. Since the neutron
experiments revealed that ∆diff is almost constant at
higher momentum transfers, we fix its value at κ > κmax.
For example, κmax ≈ 1.7 Å−1 in the case of 20-K liquid
deuterium [16].

The collective-motion contribution Spho to Si can be
described using the following incoherent phonon expan-
sion for a harmonic crystal [14,24]:

Svib(κ, ω) = exp(−2W )
∞∑
n=1

gn(ω)(2W )n/n! , (7)

without the strictly elastic term δ(ω), which is char-
acteristic for scattering in solids. Functions gn, which
describe the subsequent n-phonon processes, and the
exponent 2W (κ2) of the Debye-Waller factor are given
in reference [11] for the isotropic Debye model of a solid.
We estimate the effective Debye temperature ΘD using
the relation:

ΘD =
hcs
kB

(
3

4π

NA
V

)2

, (8)

where h is Planck’s constant, cs denotes the sound veloc-
ity, NA is Avogadro’s constant, and V represents the
molar volume. The corresponding Debye energy is defined
as ωD = kBΘD.

In theory of liquids, a generalized frequency spec-
trum Z(ω) was introduced [25], which is analogous to
the density of vibrational states in solids. The Langevin
equation (3) leads to the following contribution from the
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Fig. 1. Generalized frequency spectrum Z(ω) (in arbitrary
units) for the simple model of 22-K liquid hydrogen.

diffusive motion:

Zdiff(ω) =
2

πζ

ζ2

ω2 + ζ2
(9)

to Z(ω). A contribution from the collective vibrations is
given by the standard Debye density Zvib(ω) of vibrational
states. These two contributions are shown in Figure 1
for the 22-K liquid hydrogen at saturated-vapor pressure.
The values of parameters Ds, cs, and V are taken from
reference [26]. The presented plot exhibits characteristic
features, which are observed in liquids. The spectrum at
lowest ω is determined by the diffusive modes. In particu-
lar, Z(ω) tends to a finite value when ω approaches zero.
For solids, this limit equals zero. The Debye frequency ΘD
corresponds to the large peaks in liquids, which are due
to the finite-frequency collective oscillations. The tail at
large ω, which is apparent in the experiments, is consistent
the Enskog theory for a fluid of hard spheres [27].

For the first estimation of the cross sections for muonic
atom scattering in liquid hydrogens, we use a sum of the
functions (5) and (7)

Si(κ, ω) ≈ Sdiff(κ, ω) + Svib(κ, ω) (10)

as a fair approximation of the total response function.
Figure 2 presents the function (10) for the 22-K liquid H2

at saturated-vapor pressure. In this plot, one can clearly
distinguish the diffusive contribution at the lowest ω, and
then the subsequent contributions from the one-phonon
and two-phonon processes.

For large κ and ω, any system (apart from liquid
helium at lowest temperatures) is accurately described
by the asymptotic Gaussian form [14,24]

Si(κ, ω) = exp[−(ω − ωR)2/∆2
R] , ∆R =

√
8ETωR/3

(11)

in which ωR = κ2/(2M) denotes the recoil energy and
ET is the mean kinetic energy of a hydrogenic molecule
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Fig. 2. Incoherent response function (10) for the 22-K liquid
hydrogen at saturated-vapor pressure.

in the considered liquid. In solid and liquid hydrogens,
this energy is significantly greater than the Maxwellian
energy 3

2kBT owing to large zero-point vibrations of the
light hydrogenic molecules in these quantum systems [28].
The mean kinetics energy can be estimated using the
following formula

ET = 3
2

∫ ∞
0

dω Zvib(ω)ω
[
nB(ω) + 1

2

]
. (12)

The asymptotic response function (11) leads to a correct
free-molecule limit at large energy transfers.

3 Results of calculations

Our calculations of the cross sections have been performed
for liquid hydrogen and deuterium at 22 K and saturated-
vapor pressures, which corresponds to the conditions of
the experiments performed at PSI [3,4] and JINR [12].
At 22 K, practically all symmetric molecules H2 and D2

are in the ground rotational state K = 0. Thus, we are
dealing with the liquid parahydrogen (para-H2) and orth-
odeuterium (ortho-D2). Only freshly prepared targets are
statistical mixtures of the rotational states K = 0 and
K = 1, due to a slow rotational deexcitation of the sym-
metric molecules [26]. Such targets are often called normal
hydrogens and labeled as nH2 and nD2, respectively.

An estimation of the Debye temperature using equa-
tion (8) and the parameters cs and V from reference [26]
results in ΘD ≈ 66 K and ωD ≈ 5.7 meV, for both hydro-
gen and deuterium. For our conditions, the value of
self-diffusion coefficient Ds equals 1.12× 10−4 cm2/s for
hydrogen and 0.49× 10−4 cm2/s for deuterium [26]. These
parameters have been applied for plotting Figures 1 and 2,
and for calculating the cross sections. In order to illustrate
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Page 4 of 8 Eur. Phys. J. D (2018) 72: 40

0

0.5

1

1.5

2

1 10 10
2

total

diffusion

vibrations

1-phonon

energy ε [meV]

in
c
o
h
e
re

n
t 
fa

c
to

r 
fo

r 
liq

u
id
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contributions from the diffusive and vibration modes to
the total cross section, the following function

Cinc(ε) =
1

4π

(
Maµ

M

)2 ∫
dΩ dε′

k′

k
Si(κ, ω) (13)

is shown in Figure 3. In equation (13), Maµ denotes the
mass of aµ andM is a reduced mass of the system which
consists of the impinging muonic atom and a single hydro-
genic molecule. Function Cinc is a ratio of the cross section
for aµ scattering from this molecule in the liquid tar-
get and the corresponding cross section for the same free
molecule. In definition (13), it is assumed that the latter
cross section is constant. Function Cinc falls from the max-
imal value of (Maµ/M)2, at ε → 0, to the free-molecule
limit of 1 at ε & 100 meV. The quasielastic diffusive mode
is most important at lowest energies. The vibration mode
includes annihilation and creation of one phonon and
many phonons. The plotted one-phonon contribution to
Cinc has a maximum at the Debye energy.

The total cross section for scattering of the pµ atom
from liquid para-H2 is shown in Figure 4. The atom
is in the ground spin state F = 0 during the scatter-
ing process. The contributions to the cross section from
the molecular motion in liquid para-H2 and from the
rotational-vibrational excitations of the target molecule
H2 are shown separately. The latter contribution begin
to appear at ε ≈ 40 meV, which corresponds to the first
rotational excitation K = 0 → 2 of H2. The transition
K = 0 → 1 is forbidden for the state F = 0 of pµ. The
doubled total cross section for pµ(F = 0) scattering from
a bare proton [9] is shown for a comparison. In this Figure,
three regimes of scattering are visible. For ε . 100 meV,
effects of the target molecule interactions with the neigh-
boring H2 molecules are important. Above this energy,
the scattering passes to the free-molecule regime. Finally,
above about 1 eV (depending on the choice of hydrogen
isotopes [15]), the free-nuclei regime is achieved.
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Fig. 4. Total cross section for pµ(F = 0) scattering in the
22-K liquid para-H2. The label “liquid” denotes scattering
without internal excitations of the target molecules. The label
“H2 excitations” represents a contribution from the rotational-
vibrational excitations of the H2 molecule. The label “doubled
nuclear” denotes the doubled cross section for the elastic
scattering pµ(F = 0) + p.
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Fig. 5. Total cross sections for pµ(F = 0) scattering in the
22-K liquid and gaseous para-H2.

The total cross sections for pµ(F = 0) scattering in the
liquid and gaseous parahydrogen are shown in Figure 5.
One can see that the cross sections begin to significantly
diverge below 10 meV. The differential cross sections for
aµ scattering from the hydrogenic targets are strongly
anisotropic. This can be conveniently shown using the
transport cross sections

σtr(ε) =

∫
dΩ dε′ (1− cosϑ)

∂2σ

∂Ω∂ε′
, (14)

where ϑ denotes the scattering angle. These cross sections
are employed for a simple description of the slowing down
process of different particles. The transport cross sections
for pµ(F = 0) scattering in the liquid and gaseous para-H2

are plotted in Figure 6.
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Fig. 6. Transport cross sections for pµ(F = 0) scattering in
the 22-K liquid and gaseous para-H2.
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Fig. 7. The same as in Figure 5 for pµ(F = 1).

The cross section for scattering of the pµ atom in the
excited spin state F = 1 significantly differs from that for
the ground spin state F = 0. The amplitudes of pµ(F = 0)
and pµ(F = 1) scattering from a proton have the oppo-
site signs and quite different magnitudes. Moreover, in the
case of pµ(F = 1) scattering from the H2 molecule, the
ortho-para rotational transitions are allowed due to the
proton exchange between the atom and the H2 molecule. A
difference of the both cross sections is apparent while com-
paring Figure 5 with Figure 7. Other differences between
the cross sections are due to the scattering in hydro-
genic targets with various populations of the molecular
rotational states. The cross sections for the pµ(F = 1)
scattering in liquid and gaseous normal hydrogen are pre-
sented in Figure 8 as an example. In nH2, a population of
the excited rotational state K = 1 is equal to 75%. As a
result, the rotational deexcitation K = 1→ 0 is possible,
which significantly changes the cross sections at lowest
energies (see Figs. 7 and 8).

Energies of the hyperfine splitting in the muonic hydro-
gen atoms (182 meV for pµ and 48.5 meV for dµ) are
much greater than the Debye energy of about 6 meV.
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Fig. 8. Total cross sections for pµ(F = 1) scattering in liquid
and gaseous nH2.
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Fig. 9. Total cross sections for the spin flip process pµ(F =
1) + H2 → pµ(F = 0) + H2 in the 22-K liquid and gaseous
para-H2.

Therefore, the energy transfer ω in the spin-flip transi-
tions is relatively large. As a result, the spin-flip cross
sections in aµ scattering from the liquid hydrogens only
slightly differ from the corresponding cross sections for
hydrogenic gases. The reaction pµ(F = 1)+H2 → pµ(F =
0) + H2 in the liquid and gaseous parahydrogen is plotted
in Figure 9. An significant difference between the spin-
flip cross sections is apparent only below 2 meV. Let us
note that the effective spin-flip reaction in the scatter-
ing pµ + H2 is due to the muon exchange between the
protons [29].

Figures 10 and 11 present the total and transport cross
sections for scattering of the dµ atom in the ground spin
state F = 1/2 from the liquid and gaseous orthodeuterium
at 22 K. The corresponding cross sections for dµ scattering
in the upper spin state F = 3/2 are similar since the mean
amplitudes for the scattering dµ(F = 1/2)+d and dµ(F =
3/2) + d are quite close. The mean amplitude denotes
here averaging over the total spin of the system dµ + d.
Moreover, the rotational transition K = 1→ 0 in the scat-
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Fig. 10. Total cross sections for dµ(F = 1/2) scattering in the
22-K liquid and gaseous ortho-D2.
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Fig. 11. Transport cross sections for dµ(F = 1/2) scattering
in the 22-K liquid and gaseous ortho-D2.

tering dµ + D2 is allowed for the both states F = 1/2
and 3/2. As a result, the cross sections for dµ(F = 1/2)
and dµ(F = 3/2) scattering in nD2, where the popu-
lation of the rotational ortho-state K = 0 equals 2/3,
are similar. The cross sections of the spin-flip process
dµ(F = 3/2) + D2 → dµ(F = 1/2) + D2 in the 22-K liquid
and gaseous ortho-D2 are shown in Figure 12. A rela-
tive difference between these cross sections is significantly
greater (17% at 1 meV) than in the pµ+ H2 case. This is
caused by a smaller hyperfine splitting in the dµ atom.

The experimental studies of fusion reactions in the
muonic molecules pdµ and ptµ are often performed in
liquid H2 targets with small admixtures (. 1%) of deu-
terium or tritium [2–4,12]. Small amounts of the heavier
isotopes do not practically change the density of liquid
hydrogen and the sound velocity. In the case of dµ scatter-
ing in hydrogen with a small concentration of deuterium,
collisions with the H2 molecules are most frequent. The
cross sections for dµ scattering from the H2 molecules
in the 22-K liquid and gaseous H/D mixture are plotted
in Figure 13. These cross sections does not depend on
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Fig. 12. Total cross sections for the spin flip process dµ(F =
3/2) + D2 → dµ(F = 1/2) + D2 in the 22-K liquid and gaseous
ortho-D2.
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Fig. 13. Total cross sections for dµ scattering from the H2

molecule in the 22-K liquid and gaseous para-H2.

the spin of dµ. In such H/D mixtures, dµ collision with
the deuterons takes place mostly in the HD molecules,
since the concentration of D2 molecules in the equili-
brated H/D mixture is very small. The total cross sections
for dµ(F = 1/2) scattering from the HD molecule in liq-
uid and gaseous hydrogen are plotted in Figure 14. This
molecule is in the ground rotational state since the asym-
metric hydrogenic molecules rapidly deexcite to the state
K = 0 at low temperatures. For calculating the response
function Sdiff, we have takenDs = 0.77×10−4 cm2/s. This
is a value of the diffusion coefficient for a D2 molecule
which diffuses in liquid H2 [26]. However, this is a fair
approximation for the molecules HD and HT moving in
liquid hydrogen, at small concentrations of deuterium and
tritium. The total cross sections for tµ scattering from
the H2 and HT molecules in the liquid and gaseous H/T
mixture (small tritium concentration) are presented in
Figures 15 and 16.

In the kinetics equations for the muon-catalyzed fusion
in H/D/T mixtures, the rates of different important

https://epjd.epj.org/
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Fig. 14. Total cross sections for dµ(F = 3/2) scattering from
the HD molecule in the 22-K liquid and gaseous para-H2.
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Fig. 15. Total cross sections for tµ scattering from the H2

molecule in the 22-K liquid and gaseous para-H2.

reactions are employed. In particular, the spin-flip rates
are needed for a correct description of the time spectra
of fusion products. In Figure 17 we present the calcu-
lated spin-flip rates for dµ(F = 3/2) scattering from the
HD molecule and tµ(F = 1) scattering from the HT
molecule in liquid hydrogen. The rates are normalized to
the density of 2.12× 1022 mols/cm3, which is common in
low-energy muon physics. This is the number density of
liquid hydrogen at 20.4 K and saturated-vapor pressure.

4 Conclusions

The differential cross sections for low-energy scattering of
the muonic hydrogen atoms from liquid hydrogens have
been estimated in the incoherent approximation. The Van
Howe response function and the simple model of liq-
uid hydrogen, which takes the diffusive and vibrational
degrees of freedom into account, have been employed.
Our calculations show that effects associated with the
presence of liquid are very important for kinetic energies
below 10 meV. Above 100 meV, the corresponding cross
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Fig. 16. Total cross sections for tµ(F = 0) scattering from the
HT molecule in the 22-K liquid and gaseous para-H2.
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Fig. 17. Total rates of spin deexcitation in the scattering
dµ(F = 3/2) + HD and tµ(F = 1) + HT in the 22-K liquid
hydrogen.

sections for scattering in liquid and gaseous hydrogens
are practically identical. In the case of spin-flip reactions,
an appreciable difference between these cross sections is
apparent only below a few meV, which is caused by a
relatively high (compared to the Debye energy) energy
transfers to the target. This difference (12% for the scat-
tering pµ(F = 1) + H2 and 17% for dµ(F = 3/2) + D2

at 1 meV) is however significant for the spin-dependent
processes, before a steady-state condition is reached.

Thermalization of the energetic (∼ 1 eV) pµ atoms in a
pure liquid hydrogen is fast (.10 ns) owing to high magni-
tudes of the scattering cross sections and a large number
density of the target molecules. The same conclusion holds
for thermalization of the dµ atoms in a pure liquid deu-
terium. As a result, the time spectra, such as the spectrum
of dd-fusion products, are affected by properties of the
liquid only at short times (.10 ns).

Another situation can be observed in the case of liquid
hydrogen with small admixtures of deuterium and tri-
tium. The negative muons from a beam are captured

https://epjd.epj.org/
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mostly by the H2 molecules, which leads to formation of
the pµ atoms and subsequent formation of the dµ or tµ
atoms in the muon exchange reactions pµ+ d→ dµ+ p or
pµ + t → tµ + p. The released energy greatly accelerates
the new atoms. They cannot be effectively slowed down
to thermal energies in scattering from the abundant H2

molecules because of the deep Ramsauer-Townsend min-
ima in the elastic scattering processes dµ+ p and tµ+ p at
laboratory energies of about 5 eV and 10 eV [10], respec-
tively. As a result, scattering from the molecules HD and
HT establishes an effective mechanism of deceleration and
spin deexcitation of the dµ and tµ atoms, due to the pres-
ence of the deuteron or triton in the target molecules.
Since the concentrations of deuterium and tritium are
small, the region of thermal energies is reached at much
larger times than in the case of pure liquid H2 and D2.
Therefore in such H/D/T mixtures, at large times, one
can expect significant effects associated with the dynamics
of the hydrogenic liquids.
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