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Abstract. The present knowledge of Lamb shift, fine-, and hyperfine structure of the 2S and 2P states in
muonic helium-3 ions is reviewed in anticipation of the results of a first measurement of several 25 — 2P
transition frequencies in the muonic helium-3 ion, u*He™. This ion is the bound state of a single negative
muon 1~ and a bare helium-3 nucleus (helion), *He*™.

A term-by-term comparison of all available sources, including new, updated, and so far unpublished
calculations, reveals reliable values and uncertainties of the QED and nuclear structure-dependent contri-
butions to the Lamb shift and the hyperfine splitting. These values are essential for the determination of
the helion rms charge radius and the nuclear structure effects to the hyperfine splitting in p*He™. With this
review we continue our series of theory summaries in light muonic atoms [see A. Antognini et al., Ann. Phys.
331, 127 (2013); J.J. Krauth et al., Ann. Phys. 366, 168 (2016); and M. Diepold et al. arXiv:1606.05231

(2016)].

1 Introduction

Laser spectroscopy of light muonic atoms and ions, where
a single negative muon orbits a bare nucleus, holds the
promise for a vastly improved determination of nuclear
parameters, compared to the more traditional methods of
elastic electron scattering and precision laser spectroscopy
of regular electronic atoms.

The CREMA collaboration has so far determined the
charge radii of the proton and the deuteron, by mea-
suring several transitions in muonic hydrogen (up) [1-3]
and muonic deuterium (ud) [4,5]. Interestingly, both val-
ues differ by as much as six standard deviations from the
respective CODATA-2014 values [6], which contain data
from laser spectroscopy in atomic hydrogen/deuterium
and electron scattering. This discrepancy has been coined
“proton radius puzzle” [7-9]. However, the discrepancy
exists for the deuteron, too. Interestingly, for the proton
and the deuteron, the muonic isotope shift is compatible
with the electronic one from the 1S-2S transition in H and
D [10,11]. The respective radii are

rp(up) = 0.84087(26)P(29)h

= 0.84087(39) fm 1,21 (1)
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r,(CODATA'14) = 0.87510(610) fm 6] (2

ra(pd) = 2.12562(13)P(77)th
= 2.12562(78) fm [4 (3
rqa(CODATA'14) = 2.14130(250) fm. 6] (4)

Very recently, the CREMA collaboration has measured
a total of five transitions in muonic helium-3 and -4 ions
[12], which have been analyzed now.

These measurements will help to improve our under-
standing of nuclear model theories [13,14] and shed more
light on the proton radius puzzle. Several ideas exist to
solve the puzzle [15], some within the standard model
[16,17] and others proposing muon specific forces beyond
the standard model [18-21]. These ideas lead to pre-
dictions which can be tested with precise charge radius
determinations in muonic helium ions.

The measurement of the charge radius in both, helium-
3 and helium-4 ions will in addition help understand the
discrepancy between several measurements of the helium
isotope shift in electronic helium [22-26] which yield the
difference of the squared charge radii (see Fig. 1).

Several other experiments are on the way to contribute
to the puzzle in the future [15] by precision spectroscopy
measurements in electronic hydrogen [28-30] and He™
[31,32], as well as by electron scattering at very low Q2
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Fig. 1. Difference of squared helion-to-alpha particle charge radii as obtained from laser spectroscopy of transitions in regular,
electronic helium-3 and helium-4 atoms [22-24] when combined with accurate theory (*[26], **[25]). A 4o discrepancy persists.
Also shown are the individual theory uncertainties which enter 72 — 2 (u*He™: [27], u>He™: this work), as well as the expected
uncertainty from our laser spectroscopy of the Lamb shift in muonic helium ions. Note that the combination of the two theoretical
uncertainties should contain correlations which will partly cancel in the total uncertainty.

[33,34] and muon-scattering [35]. The He™ spectroscopy,
in combination with our measurement in muonic helium
ions, will be able to determine the Rydberg constant
independently from hydrogen and deuterium. This is par-
ticularly interesting as the proton charge radius and the
Rydberg constant are highly correlated which means that
a change in the Rydberg constant could also resolve the
puzzle [29].

The determination of the helion charge radius from
muonic helium spectroscopy requires accurate knowledge
of the corresponding theory. Similar to muonic hydrogen
[3], deuterium [5], and helium-4 ions [27], we feel there-
fore obliged to summarize the current knowledge on the
state of theory contributions to the Lamb shift, fine-, and
hyperfine structure in muonic helium-3 ions.

The accuracy to be expected from the experiment will
be on the order of 20 GHz, which corresponds to ~
0.08 meV.! In order to exploit the experimental precision,
theory should, ideally, be accurate to a level of

Ttheory ~ O(0.01 meV). (5)

This would result in a nearly hundred-fold better accuracy
in the helion rms charge radius r, compared to the value
from electron scattering of

rp = 1.973(14) fm, (6)

deduced by Sick [36].

A more precise value has been given by Angeli et al. [37],
which should be discarded. Their value is based on a
charge radius extraction from p*He* by Carboni et al. [38]
and on the isotope shift measurement from Shiner et
al. [22]. The Carboni measurement has however shown
to be wrong [39], and the more recent measurement of the
electronic isotope shift by van Rooij et al. [23] disagrees
by 40 from the Shiner one [22], see Figure 1.

We anticipate here that the total uncertainty in the the-
oretical calculation of the Lamb shift transition amounts
to 0.52meV (corresponding to a relative uncertainty of
~0.03%), neglecting the charge radius contribution to be

11meV = 241.799 GHz.

extracted from the p®Het measurement. This value is
completely dominated by the two-photon exchange con-
tributions which are difficult to calculate but have seen
wonderful progress in recent years [14,40,41]. The total
uncertainty of the pure QED contributions (without the
two-photon exchange) amounts to 0.04 meV and is thus in
the desired order of magnitude. Note that while the theory
uncertainty from the two-photon exchange in r, is of sim-
ilar size as the experimental uncertainty (Eq. (1)), already
for pd the theory uncertainty is vastly dominant (Eq. (3)).
Experiments with muonic atoms are thus a sensitive tool
to determine the two-photon exchange contributions.

2 Overview

The n = 2 energy levels of the muonic helium-3 ion are
sketched in Figure 2. The helion has nuclear spin T = 1/2,
just as the proton. Hence the level scheme is very similar to
the one of muonic hydrogen. However, the helion magnetic
moment g = —2.127625308(25) [6] (here given in units
of the nuclear magneton) is negative, which swaps the
ordering of the hyperfine levels.

A note on the sign convention of the Lamb shift contri-
butions used in this article: The 2S level is shifted below
the 2P levels due to the Lamb shift. This means that, fun-
damentally, the 2S Lamb shift should be given a negative
sign.

However, following long-established conventions we
assign the measured 2S;/, — 2P/, energy difference a
positive sign, i.e. E(2P) — E(2S) > 0. This is in accord with
almost all publications we review here and we will men-
tion explicitly when we have inverted the sign with respect
to the original publications where the authors calculated
level shifts.

Moreover, we obey the traditional definition of the
Lamb shift as the terms beyond the Dirac equation and
the leading order recoil corrections, i.e. excluding effects of
the hyperfine structure. In particular, this means that the
mixing of the hyperfine levels (Sect.5) does not influence
the Lamb shift.

The Lamb shift is dependent on the rms charge radius of
the nucleus and is treated in Section 3. We split the Lamb
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Fig. 2. The 2S and 2P energy levels in the muonic helium-3 ion. The inset on the right displays the shift A of the 2P levels
due to the mixing of levels with same quantum number F'| as described in Section 5. The figure is not to scale.

shift contributions into nuclear structure-independent con-
tributions and nuclear structure-dependent ones. The
latter are composed out of one-photon exchange dia-
grams which represent the finite size effect and two-photon
exchange diagrams which contain the polarizability con-
tributions.

In Section 4, we treat the 2S hyperfine structure, which
depends on the Zemach radius. It also has two-photon
exchange contributions. However, these have not been
calculated yet and can only be estimated with a large
uncertainty.

In Section 5, we compile the 2P level structure which
includes fine- and hyperfine splitting, and the mixing of
the hyperfine levels [42].

For the theory compilation presented here, we use the
calculations from many sources mentioned in the follow-
ing. The names of the authors of the respective groups are
ordered alphabetically.

The first source is E. Borie who was one of the first to
publish detailed calculations of many terms involved in
the Lamb shift of muonic atoms. Her most recent calcula-
tions for up, pud, p*He™, and p3He™ are all found in her
reference [43]. Several updated versions of this paper are
available on the arXiv. In this work we always refer to [44]
which is version-7, the most recent one at the time of this
writing.

The second source is the group of Elekina, Faustov, Kru-
tov, and Martynenko et al. (termed “Martynenko group”
in here for simplicity). The calculations we use in here are
found in Krutov et al. [45] for the Lamb shift, in Mar-
tynenko et al. [46,47] and Faustov et al. [48] for the 2S
hyperfine structure, and Elekina et al. [49] for the 2P fine-
and hyperfine structure.

Jentschura and Wundt calculated some Lamb shift con-
tributions in their references [50,51]. They are referred to
as “Jentschura” for simplicity.

The group of Ivanov, Karshenboim, Korzinin, and She-
lyuto is referred to “Karshenboim group” for simplicity.
Their calculations are found in Korzinin et al. [52] and in
Karshenboim et al. [53] for Lamb shift and fine structure
contributions.

The group of Bacca, Barnea, Hernandez, Ji, and Nevo
Dinur, situated at TRIUMF and Hebrew University, has
performed ab initio calculations on two-photon exchange
contributions of the Lamb shift. Their calculations are
found in Nevo Dinur et al. [14] and Hernandez et al. [40].
For simplicity we refer to them as “TRIUMF-Hebrew
group”.

A recent calculation of the two-photon exchange using
scattering data and dispersion relations has been per-
formed by Carlson, Gorchtein, and Vanderhaeghen [41].

Item numbers # in our tables follow the nomenclature
in references [3,5]. In the tables, we usually identify the
“source” of all values entering “our choice” by the first
letter of the (group of) authors given in adjacent columns
(e.g. “B” for Borie). We denote as average “avg.” in the
tables the center of the band covered by all values v; under
consideration, with an uncertainty of half the spread, i.e.

If individual uncertainties are provided by the authors we
add these in quadrature. We would like to point out that
uncertainties due to uncalculated higher order terms are
often not indicated explicitly by the authors. In the case
some number is given, we include it in our sum. But in gen-
eral our method cannot account for uncertainty estimates
of uncalculated higher order terms.

Throughout the paper, Z denotes the nuclear charge
with Z = 2 for the helion and alpha particle, a is
the fine structure constant, m, = 199m, is the reduced
mass of the muon-nucleon system. “VP” is short for
“vacuum polarization”, “SE” is “self-energy”, “RC” is
“recoil correction”. “Perturbation theory” is abbreviated
as “PT”, and SOPT and TOPT denote 2nd and 3rd order
perturbation theory, respectively.
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Fig. 3. Item #1, the leading order 1-loop electron vacuum
polarization (eVP), also called Uehling term.

3 Lamb shift in muonic helium-3

3.1 Nuclear structure-independent contributions

Nuclear structure-independent contributions have been
calculated by Borie, Martynenko group, Karshenboim
group, and Jentschura. The contributions are listed in
Table 1, labeled with #i. The leading contribution is
the one-loop electron vacuum polarization (eVP) of
order a(Za)?, the so-called Uehling term (see Fig.3). It
accounts for 99.5% of the radius-independent part of the
Lamb shift, so it is very important that this contribution
is well understood. There are two different approaches to
calculate this term.

Borie [44] (p.4, Tab.) and the Karshenboim group [52]
(Tab.I) use relativistic Dirac wavefunctions to calculate
a relativistic Uehling term (item #3). A relativistic recoil
correction (item #19) has to be added to allow comparison
to nonrelativistic calculations (see below). Borie provides
the value of this correction explicitly in [44] Table6,
whereas the Karshenboim group only gives the total
value which includes the correction, thus corresponding
to (#3 + #19).

Nonrelativistic calculations of the Uehling term (item
#1) exist from the Martynenko group [45] (No. 1, Tab.1)
and Jentschura [51], which are in very good agreement.
Additionally, a relativistic correction (item #2) has to
be applied. This relativistic correction already accounts
for relativistic recoil effects (item #19). Item #2 has
been calculated by the Martynenko group [45] (No. 7+10,
Tab.1), Borie [44] (Tab.1), Jentschura [50,51] (Eq.17),
and Karshenboim et al. [53], which agree well within all
four groups, however do not have to be included in Borie’s
and Korzinin et al.’s value because their relativistic Dirac
wavefunction approach already accounts for relativistic
recoil effects.

Both approaches agree well within the required uncer-
tainty. As our choice for the Uehling term with relativistic
correction (#1 + #2) or (#3 + #19) we take the average

AFE(Uehling + rel. corr.) = 1642.3962 + 0.0018 meV.
(8)
Item #4, the second largest contribution in this sec-
tion, is the two-loop eVP of order a?(Za)?, the so-called
Kaillén-Sabry term [54] (see Fig. 4). It has been calculated
by Borie [44] (p. 4, Tab.) and the Martynenko group [45]
(No.2, Tab.1) which agree within 0.0037meV. As our
choice we take the average.
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Fig. 4. Item #4, the two-loop eVP (Kéllen-Sabry) contribu-
tion. This is Figures 1b—1d from the Martynenko group [45].

W

h

Fig. 5. Item #b5, the one-loop eVP in 2-Coulomb lines.

Item #5 is the one-loop eVP in two Coulomb lines of
order a?(Za)? (see Fig. 5). It has been calculated by Borie
[44] (Tab.6), the Martynenko group [45] (No.9, Tab. 1),
and Jentschura [50] (Eq. 13) of whom the latter two obtain
the same result, which differs from Borie by 0.0033 meV.
As our choice we adopt the average.

The Karshenboim group [52] (Tab.I) has calculated the
sum of item #4 and #5, the two-loop eVP (Kéillén-Sabry)
and one-loop eVP in two Coulomb lines (Figs.4 and 5).
Good agreement between all groups is observed.

Item #6+7 is the third order eVP of order o®(Za)?. Tt
has been calculated by the Martynenko group [45] (No. 4+
11 + 12, Tab. 1) and the Karshenboim group [52] (Tab.I).
Borie [44] (p.4) adopts the value from Karshenboim et
al., Martynenko et al. and Karshenboim et al. differ by
0.004 meV, which is in agreement considering the uncer-
tainty of 0.003meV given by the Martynenko group. As
our choice we adopt the average and obtain an uncertainty
of 0.0036 meV via Gaussian propagation of uncertainty.

Item #29 is the second order eVP of order o?(Za)?*. Tt
has been calculated by the Martynenko group [45] (No. 8+
13, Tab. 1) and the Karshenboim group [52] (Tab. VIII).
Their values did agree in the case of d, however for u>He™
they differ by 0.004 meV. This difference is twice as large
as the value from Martynenko et al. but this contribu-
tion is small, so the uncertainty is not at all dominating.
We reflect the difference by adopting the average as our
choice.

Items #9, #10, and #9a are the terms of the Light-by-
light (LbL) scattering contribution (see Fig.6). The sum
of the LbL terms is calculated by the Karshenboim group
[52] (Tab. I). Borie [44] also lists the value from Karshen-
boim et al. Item #9 is the Wichmann-Kroll term, or “1:3”
LbL, which is of order a(Za)*. This item has also been cal-
culated by Borie [44] (p.4) and the Martynenko group [45]
(No. 5, Tab. 1) who obtain the same result. Item #10 is the
virtual Delbriick or “2:2” LbL, which is of order a?(Za)?.
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Fig. 6. The three contributions to Light-by-light scatter-
ing: (a) Wichmann-Kroll or “1:3” term, item #9, (b) Virtual
Delbriick or “2:2” term, item #10, and (c) inverted Wichmann-
Kroll or “3:17 term, item #9a'.

(a) (b)
1 7
i
h h
Fig. 7. Item #20, the muon-self energy (a) and the muon
vacuum polarization (b), a(Za)*.

Ttem #9a is the inverted Wichmann-Kroll term, or “3:1”
LbL, which is of order a®(Za)? The sum of the latter
two is also given by the Martynenko group [45] (No.6,
Tab. 1). As our choice we use the one from Karshenboim et
al., who are the first and only group to calculate all three
LbL contributions. The groups are in agreement when tak-
ing into account the uncertainty of 0.0006 meV given by
Karshenboim et al.

Item #20 is the contribution from muon self-energy
(uSE) and muon vacuum polarization (uVP) of order
a(Za)* (see Fig. 7). This item constitutes the third largest
term in this section.? This item has been calculated by
Borie [44] (Tabs. 2 and 6) and the Martynenko group [45]
(No. 24, Tab.1). They differ by 0.001 meV. As our choice
we adopt the average.

Ttems #11, #12, #30, #13, and #31 are all corrections
to VP or uSE and of order o?(Za)?.

Item #11 is the uSE correction to eVP (see Fig.8).
It has been calculated by all four groups. Martynenko et
al. calculate this term (Eq.99) in [45], however in their
table (No.28) they use the more exact calculation from
Jentschura. Jentschura [50] (Eq. 29), and the Karshenboim
group [52] (Tab. VIII a) are in excellent agreement. Borie
[44] (Tab. 16) differs significantly because she only calcu-
lates a part of this contribution in her App. C. This value
does not enter her sum and thus is also not considered in
here. On p. 12 of [44] she states that this value should be
considered as an uncertainty. As our choice we adopt the
number from Jentschura and Karshenboim et al.

2In ordinary hydrogen-like atoms this term is the leading order
Lamb shift contribution: The leptons in the loop are the same as
the orbiting lepton. This term can thus be rescaled from well-known
results in hydrogen.

Fig. 8. Item #11, muon self-energy corrections to the elec-
tron vacuum polarization o?(Za)*. This figure is Figure2
from Jentschura [55]. It corresponds to Figure 6(a) from
Karshenboim [52].

h

Fig. 9. Item #12, eVP loop in SE are radiative corrections
with VP effects. This is Figure11l(b) from a publication by
the Martynenko group [45] which is the same as Figure4 in
Pachucki [56]. It is Karshenboim’s Figure 6(d) in reference [52].

h

Fig. 10. Item #30, hadronic VP in SE contribution, corre-
sponds to Figure 6(e) in Karshenboim et al.’s [52].

Item #12 is the eVP in uSE (see Fig.9). This item has
been calculated by the Martynenko group [45] (No.27,
Tab.1) and the Karshenboim group [52] (Tab.VIII d),
which are in perfect agreement. On p. 10 of [44] Borie men-
tions that she included the “fourth order electron loops”
in “muon Lamb shift, higher order” term, which is our
item #21. As we include item #21 from Borie, we will
not on top include item #12.

Ttem #30 is the hadronic vacuum polarization (hVP) in
uSE (see Fig. 10). This item has only been calculated by
the Karshenboim group [52] (Tab. VIII e) which we adopt
as our choice.

Item #13 is the mixed eVP + uVP (see Fig.11).
The calculations from Borie [44] (p.4) and the Marty-
nenko group [45] (No.3, Tab.1) roughly agree, whereas
the value from the Karshenboim group [52] (Tab. VIII b)
is 0.002meV larger. As our choice we take the average.


https://epjd.epj.org/

Page 6 of 22

(a) (b)
1Y H®
€ e 2
I
h h

Fig. 11. Item #13, the mixed eVP-uVP contribution.
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Fig. 12. Item #31, the mixed eVP- and hadronic VP contri-
bution, comes from the Uehling correction to the hadronic VP
correction. See Figure 6(c) in Karshenboim et al.’s [52].

h

Fig. 13. Item #32, muon VP in SE contribution, is auto-
matically included in a rescaled electronic *He' QED value of
higher order SE contributions (see text).

Item #31 is the mixed eVP + hVP (see Fig.12) which
has only been calculated by the Karshenboim group [52]
(Tab. VIII ¢). We adopt their value as our choice.

Item #32, the muon VP in SE correction shown in Fig-
ure 13 is not included as a separate item in our Table 1.
It should already be automatically included in the QED
contribution which has been rescaled from the QED of
electronic *He™ by a simple mass replacement m. — m,,
[57]. This is the case only for QED contributions where
the particle in the loop is the same as the bound particle -
like in this case, a muon VP correction in a muonic atom.
The size of this item #32 can be estimated from the rela-
tionship found by Borie [58], that the ratio of hadronic to
muonic VP is 0.66. With the Karshenboim group’s value
of item #30 [52] one would obtain a value for item #32 of
—0.0004/0.66 meV = —0.0006 meV. This contribution is
contained in our item #21, together with the dominating
item #12 (see also p. 10 of Ref. [44]).

Item #21 is a higher-order correction to uSE and VP
of order a?(Za)* and a?(Za)%. This item has only been
calculated by Borie [44] (Tabs.2 and 6). On p.10 she

Eur. Phys. J. D (2017) 71: 341

points out that this contribution includes the “fourth
order electron loops”, which is our item #12. It also
contains our item #32. We adopt her value as our choice.

Item #14 is the hadronic VP of order a(Za)?*. It has
been calculated by Borie [44] (Tab. 6) and the Martynenko
group [45] (No. 29, Tab. 1). Borie assigns a 5% uncertainty
to their value. However, in her reference [44] there are two
different values of item #14, the first on p.5 (0.219meV)
and the second in Table 6 on p. 16 (0.221 meV). Regarding
the given uncertainty this difference is not of interest. In
our Tablel, we report the larger value which is further
from that of the Martynenko group in order to conserva-
tively reflect the scatter. Martynenko et al. did not assign
an uncertainty to their value. However, for pud [59] they
estimated an uncertainty of 5%. As our choice we take
the average of their values and adopt the uncertainty of
5% (0.011meV).

Item #17 is the Barker-Glover correction [60]. It is a
recoil correction of order (Za)*m3/M? and includes the
nuclear Darwin-Foldy term that arises due to the Zitter-
bewegung of the nucleus. As already discussed in App. A
of [5], we follow the atomic physics convention [61], which
is also adopted by CODATA in their report from 2010
[62] and 2014 [6]. This convention implies that item #17
is considered as a recoil correction to the energy levels
and not as a part of the rms charge radius. This term has
been calculated by Borie [44] (Tab.6), the Martynenko
group [45] (No.21, Tab. 1), and Jentschura [51] and [50]
(Eq. A.3). As our choice we use the number given by Borie
and Jentschura as they give one more digit.

Item #18 is the term called “recoil, finite size” by Borie.
It is of order (Za)®(r)(s)/M and is linear in the first
Zemach moment. It has first been calculated by Friar [63]
(see Eq.F5 in App.F) for hydrogen and has later been
given by Borie [44] for ud, u*He™, and p*Het. We dis-
card item #18 because it is considered to be included in
the elastic TPE [64,65]. It has also been discarded in up
[3], ud [5], and p*He™ [27]. For the muonic helium-3 ion,
item #18 in [44] (Tab.6) amounts to 0.4040 meV, which
is five times larger than the experimental uncertainty of
about 0.08meV (see Eq. 5), so it is important that the
treatment of this contribution is well understood.

Item #22 and #23 are relativistic recoil corrections of
order (Za)® and (Za), respectively. Item #22 has been
calculated by Borie [44] (Tab.6), the Martynenko group
[45] (No.22, Tab.1), and Jentschura [50] (Eq.32). They
agree perfectly. Item #23 has only been calculated by the
Martynenko group [45] (No.23, Tab.1) whose value we
adopt as our choice.

Item #24 are higher order radiative recoil corrections
of order a(Za)® and (Z%a)(Za)*. This item has been cal-
culated by Borie [44] (Tab.6) and the Martynenko group
[45] (No. 25, Tab. 1). Their values differ by 0.015meV. As
our choice we adopt the average.

Item #28 is the radiative (only eVP) recoil of order
a(Za)®. Tt consists of three terms which have been calcu-
lated by Jentschura and Wundt [50] (Eq.46). We adopt
their value as our choice. Note that a second value
(0.0072meV) is found in [51]. However, this value is just
one of the three terms, namely the seagull term, and is
already included in #28 (see [50], Eq. 46).
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The total sum of the QED contributions without
explicit nuclear structure dependence is summarized in
Table 1 and amounts to

AELS

Zindep. = 1644.3466 & 0.0146 meV. (9)
Note that Borie, on p.15 in reference [44] attributes an
uncertainty of 0.6meV to her total sum. The origin of
this number remains unclear [66]. Its order of magnitude
is neither congruent with the other uncertainties given in
reference [44] nor with other uncertainties collected in our
summary. Thus it will not be taken into account.

3.2 Nuclear structure contributions

Terms that depend on the nuclear structure are separated
into one-photon exchange (OPE) contributions and two-
photon exchange (TPE) contributions.

The OPE terms (also called radius-dependent contri-
butions) represent the finite size effect which is by far
the largest part of the nuclear structure contributions and
are discussed in Section 3.2.1. They are parameterizable
with a coefficient times the rms charge radius squared.
These contributions are QED interactions with nuclear
form factor insertions.

The TPE terms can be written as a sum of elastic and
inelastic terms, where the latter describe the polarizability
of the nucleus. These involve contributions from strong
interaction and therefore are much more complicated to
evaluate, which explains why the dominant uncertainty
originates from the TPE part. The TPE contributions are
discussed in more detail in Section 3.2.2.

The main nuclear structure corrections to the nS states
have been given up to order (Z«a)® by Friar [63] (see
Eq. (43a) therein)

2nZ o
AEﬁn.size = 3 ‘W(O)F
Zam,
X <<7”2> - (r*)2) + (Za)*(FreL + mfFNREL)> ,

(10)

where ¥(0) is the muon wave function at the origin, (r?)
is the second moment of the charge distribution of the
nucleus, i.e. the square of the rms charge radius, 7%.
(r®)(2) is the Friar moment,* and Frgr, and Fxger con-
tain various moments of the nuclear charge distribution
(see Eq. (43b) and (43c) in Ref. [63]). Analytic expressions
for some simple model charge distributions are listed in
App. E of reference [63].

As the Schrédinger wavefunction at the origin ¥(0) is
nonzero only for S states, it is in leading order only the S
states which are affected by the finite size. However, using
the Dirac wavefunction a nonzero contribution appears for
the 2Py /5 level [68]. This contribution affects the values

3 <r3)(2) has been called “third Zemach moment” in [63]. To avoid
confusion with the Zemach radius rz in the 2S hyperfine struc-
ture we adopt the term “Friar moment”, as recently suggested by
Karshenboim et al. [67].
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h

Fig. 14. Item #rl, the leading nuclear finite size correction
stems from a one-photon interaction with a helion form factor
insertion, indicated by the thick dot.

for the Lamb shift and the fine structure and is taken into
account in the section below.

The Friar moment (r®)() has not been included in
ud [5] because of a cancellation [69-71] with a part
of the inelastic nuclear polarizability contributions. The
TRIUMF-Hebrew group pointed out [14,40], that in the
case of p3Het however, a smaller uncertainty might be
achieved treating each term separately. This discussion is
not finished yet and we will therefore continue with the
more conservative treatment as before. See Section 3.2.2.

3.2.1 One-photon exchange contributions (finite size
effect)

Finite size contributions have been calculated by Borie
([44] Tab.14), the Martynenko group ([45] Tab.1), and
the Karshenboim group ([53] Tab.III). All of these con-
tributions are listed in Table 2, labeled with #ri.

Most of the terms, given in Table 2, can be parameter-
ized as ¢ - rp? with coefficients ¢ in units of meV fm=2.
Borie and Karshenboim et al. have provided the contri-
butions in this parameterization, whereas Martynenko et
al. provide the total value in units of energy. However,
the value of their coeflicients can be obtained by dividing
their numbers by rz? . The value they used for the charge
radius rg is 1.9660 fm* [73]. In this way the numbers from
Martynenko et al. can be compared with the ones from
the other groups.

Item #rl, the leading term of equation (10), is the one-
photon exchange with a helion form factor (FF) insertion
(see Fig. 14). Item #r1 is of order (Za)*m? and accounts
for 99% of the OPE contributions. Borie ([44] Tab. 14,
b,), the Martynenko group ([45] No. 14), and the Karshen-

boim group ([53] Tab.III, A;?])V 5) obtain the same result
which we adopt as our choice. This contribution is much
larger than the following terms, but its absolute precision
is worse, which we indicate by introducing an uncertainty.
For that we take the value from Borie which is given with
one more digit than the values of the other authors and
attribute an uncertainty of 0.0005 meV, which may arise
from rounding.

Item #r2 and #r2’ are the radiative correction of order
a(Za)®. The equation used for the calculation of item #12
is given in equation (10) of [74]. It has been calculated by
Borie [44] (Tab.14, b,) and the Martynenko group [45]
(No. 26, only Eq. (92)). Note that the value from the Mar-
tynenko group was published with a wrong sign.

4 This value has been introduced by Borie [44] as an average of
several previous measurements [23,24,72].
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Very recently the Martynenko group updated their cal-
culation of higher-order finite size corrections [75] using
more realistic, measured nuclear form factors. The results
contain a coefficient (in our work termed item #r2) which
agrees with the old value, and an additional, previously
unkown term which cannot be parametrized with rﬁ and
therefore is given as a constant. This constant is found in
our Table2 as item #r2’. In reference [75] the values are
given for the 1S state but can easily be transferred to the
2S state via the 1/n? scaling. For the 2S state this results
in

1/8 x (= 0.6109) meV
=1/8 x (—0.1946 % — 0.1412) meV
= —0.0243meV/ fm*rZ — 0.0177 meV.

(11)

Borie and Martynenko get the same result for item #r2,
which we adopt as our choice. Additionally we adopt the
constant term from Martynenko as item #r2’.

Item #r3 and #r3’ are the finite size corrections of order
(Za)S. They have first been calculated in reference [63].
Ttem #r3 and #r3’ consider third-order perturbation the-
ory in the finite size potential correction and relativistic
corrections of the Schrédinger wave functions. There are
also corrections in the TPE of the same order (Za)°,
but these are of different origin. Borie [44] (Tab.14, b,
and Tab. 6) and the Martynenko group [45] (Eq. (91)) fol-
low the procedure in reference [63] and then separate their
terms into a part with an explicit 72 dependence (item
#r3) and another one which is usually evaluated with an
exponential charge distribution, since a model indepen-
dent calculation of this term is prohibitively difficult [44].
Differences in sorting the single terms have already been
noticed in the ud case [5], where we mentioned that e.g.
the term (r?)(In(ur)) in Frgr of equation 10 is attributed
to #r3 and #r3’ by Martynenko et al. and Borie, respec-
tively. The difference in this case amounts to 0.007 meV
for #13’. Note that in equation (91) from the Martynenko
group [45], the charge radius has to be inserted in units
of GeV~1, with rg = 1.966 fm =9.963 GeV ™.

Item #r4 is the one-loop eVP correction (Uehling) of
order a(Za)*. It has been calculated by all three groups,
Borie [44] (Tab. 14, b4), Martynenko et al. [45] (No. 16,

Eq. (69)), and Karshenboim et al. [53] (Tab. III, AEZY, o).
On p. 31 of [44], Borie notes that she included the correc-
tion arising from the Kallén-Sabry potential in her b,. This
means that her value already contains item #r6, which
is the two-loop eVP correction of order o?(Za)?. Item
#1r6 has been given explicitly only by the Martynenko
group [45] (No.18, Eq.73). The sum of Martynenko et
al.’s #r4 and #v6 differs by 0.016 meV /fm? from Borie’s
result. Using a charge radius of 1.9660 fm this corresponds
to roughly 0.06 meV and, hence, causes the largest uncer-
tainty in the radius-dependent OPE part. The origin of
this difference is not clear [66,76]. A clarification of this
difference is desired but does not limit the extraction of
the charge radius. As our choice we take the average of
the sum (#rd++#r16) of these two groups. The resulting
average does also reflect the value for #r4 provided by
Karshenboim et al. [53].
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Item #r5 is the one-loop eVP correction (Uehling)
in second order perturbation theory (SOPT) of order
a(Za)*. Tt has been calculated by all three groups, Borie
[44] (Tab.14, b.), the Martynenko group [45] (No.17,
Eq.70), and the Karshenboim group [53] (Tab.III,

AES}V g)- On p. 31 of [44], Borie notes that she included
the two-loop corrections to ey ps in her b.. This means
that her value already contains item #r7, which is the
two-loop eVP in SOPT of order o?(Za)*. Ttem #r7 has
only been given explicitly by the Martynenko group [45]
(No.19). The sum of Martynenko et al.’s #r5+#r7 differs
by 0.003meV from Borie’s result. As our choice we take
the average of the sum (#r5+#rt7) of these two groups.
Again here, our choice reflects the value for #r5 provided
by Karshenboim et al. [53], too.

Item #18 is the finite size correction to the 2Py /5 level
of order (Za)8. It has only been calculated by Borie [44]
(Tab. 14, b(2p;/2). This correction is the smallest in this
section and is the only term which affects the 2P, /5 level.
In consequence, the effect on the Lamb shift is inverse,
i.e. if the 2P level is lifted “upwards”, the Lamb shift gets
larger. Thus, in contrast to Borie, we include this cor-
rection with a positive sign. At the same time this term
decreases the fine structure (2P3/ — 2Py /o energy differ-
ence) and is hence listed in Table4 as item #{10 with a
negative sign.

The total sum of the QED contributions with an explicit
dependence of rg? is summarized in Table 2 and amounts
to

AErLdeep. (TE2)
= —103.5184(98) meV fm 2 1>

+0.1354(33) meV. (12)

3.2.2 Two-photon exchange contributions to the Lamb
shift

Historically, the two-photon exchange (TPE) contribution
to the Lamb shift (LS) in muonic atoms has been consid-
ered the sum of the two parts displayed in Figures 15a,b
and 15c,d, respectively:

LS LS LS
AETPE = AEFriar + AEinelastic (13)
with the elastic “Friar moment” contribution AFLS 5

Friar
and the inelastic part AEiI;lilaStiC, frequently termed
“polarizability”.

The elastic part, AELS,  is shown in Figures 15a and
15b. It is sensitive to the shape of the nuclear charge dis-
tribution, beyond the leading (r?) dependence discussed
in Section 3.2.1. This part is traditionally parameterized
as being proportional to the third power of the rms charge
radius and it already appeared in equation (10) as the sec-
ond term proportional to (r®)(). The coefficient depends

on the assumed radial charge distribution.

5 formerly known as “third Zemach moment”, see footnote3 on
p. 7 for disambiguation.
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(a) (c)
0 p
h h

(b) (d)
2 W
h h

Fig. 15. (a)+(b) Elastic AELS,, and (c)+(d) inelastic
AELS| . two-photon exchange (TPE) contribution. The
thick dots in (a) indicate helion form factor insertions. The
blob in (c) and (d) represents all possible excitations of the
nucleus.

The inelastic part, AEIHE]%UC is shown in Figures 15¢
and 15d. It stems from virtual excitations of the nucleus.
The inelastic contributions are notoriously the least well-
known theory contributions and limit the extraction of the
charge radius from laser spectroscopy of the Lamb shift.

Equation (13) is valid for the nuclear contributions as
well as for the nucleon contributions. This means that
elastic and inelastic parts have to be evaluated for both,
respectively.

The nuclear parts of AELXS, are then given as §EaA,,
and 0EZ . ... for a nucleus with A nucleons, and the
nucleon parts as dER,, and §EN | .. .

With that, the total (nuclear and nucleon) TPE is given
as®

AETPE - 6EFr1ar + 6EFr1ar + 5E

+OEN (14)

inelastic inelastic*

We refer here to two calculations of the TPE contribu-
tions. The first stems from the TRIUMF-Hebrew group,
who perform ab initio calculations using two different
nuclear potentials. They have published two papers on
the TPE in muonic helium-3 ions: Detailed calculations
are given in Nevo Dinur et al. [14], and updated results
are found in Hernandez et al. [40]. The second calculation
has been performed by Carlson et al. [41], who obtain
the TPE from inelastic structure functions via dispersion
relations.

The two calculations are very different, so that com-
parisons of any but the total value may be inexact [41].
An attempt to compare the different approaches is given
in TableII of reference [41]. Here, we want to refer to this
table only and later compare the total values as suggested.
Note that we proceed differently to our previous compila-
tion for ud [5] (Tab. 3), where we listed and compared 16

6 Compared to the notation of the TRIUMF-Hebrew group [14}
the terms in equation (14) correspond to 64 6V 54 and 6V

Zem’ “Zem’ “pol?
respectively.

pol?
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individual terms (labeled #pl...16) which together yield
the sum of the four terms of equation (14).

The nuclear Friar moment contribution is calcu-
lated by the TRIUMF-Hebrew group to be 5EFr1ar =
10.49(24) meV [14,40]. Previous values have been given
by Borie [44] (10.258(305) meV) and Krutov et al.,[45]
(10.50(10) meV)” using a Gaussian charge distribution
and assuming an rms radius of 1.966(10) fm. These uncer-
tainties do not include the (rather large) dependence of the
calculation on the charge distribution [36,45]. This type of
uncertainty is gauged within the ab-initio calculation of
[14] by using two different state-of-the-art nuclear poten-
tials. We therefore use the more recent value provided by
the TRIUMF-Hebrew group. Their value also agrees with
a value of 10.87(27) meV which is obtained in [14] from the
third Zemach moment (%)) = 28.15(70) fm® that was

extracted from electrons scattering off *He by Sick [36].

The nuclear polarlzablhty contribution from the
TRIUMF-Hebrew group is 6 B2, .. = 4.16(17) meV [14,
40]. The first calculation of the nuclear polarizability con-
tribution in p3He™ has been published in 1961 [77]. The
recent value from the TRIUMF-Hebrew group replaces a
former one of 4.9meV from Rinker [78] which has been
used for more than 40 years now.

As mentioned before, the total TPE contribution has
a nuclear part and a nucleon part. The nucleon Friar
moment contribution from the TRIUMF-Hebrew group
amounts to SEN, = 0.52(3)meV. They obtain this
value using §ER.. (up) = 0.0247(13) meV from pp and
scale it according to equation (17) in reference [14]. This
procedure has also been done in [5] for ud.® SEN. (up)
is a sum of the elastic term (0.0295(13) meV) and the
non-pole term (—0.0048 meV) which have been obtained
by Carlson et al. in reference [79].
The nucleon polarizability contribution from
TRIUMF-Hebrew group amounts to 5Eme1 astic
0.28(12) meV. It is obtained using the proton polar-
izability contribution from pp and scaling it with the
number of protons and neutrons,” as well as with the
wavefunction overlap, according to equation (19) of
reference [14]. Furthermore it is corrected for estimated
medium effects and possible nucleon-nucleon interfer-
ences. The proton polarizability contribution used here
amounts to 0.0093(11) meV and is the sum of an inelastic
term (0.00135meV [81]) and the proton subtraction term
o = —0.0042(10) meV which has been calculated

subtraction .
for muonic hydrogen in reference [82].

the

7Sum of 10.28(10) meV and 0.2214(22) meV, which correspond
to line 15 and 20 from Table 1 in reference [45], respectively.

8 In equation (12) of reference [5], we used a scaling of the nucleon
TPE contribution by the reduced mass ratio to the third power,
which is only correct for 5Eme1amc JER”M should be scaled with
the fourth power [14,71]. This is due to an additional m, scaling
factor compared to the proton polarizability term. This mistake has
no consequences for pd yet, as the nuclear uncertainty is much larger,
but the correct scaling is relevant for g3Het and p*He™.

9 Assuming isospin symmetry, the value of the neutron polariz-
ability contribution used in [14] is the same as the one of the proton,
but an additional uncertainty of 20% is added, motivated by studies
of the nucleon polarizabilities [80].
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Summing up all nuclear and nucleon contributions eval-
uated by the TRIUMF-Hebrew group [14,40] yields a total
value of the AEES L of [14,40]

AEES - (nuclear potentials)
- (;Eﬁriar + 6EIJ?\1Ciar + 5Ei1?191astic
= 15.46(39) meV.'0

L)
+0E;

inelastic

Recently, Carlson et al. [41] have also calculated the
TPE in pHet. Their result of

AFEXS . (dispersion relations) = 15.14(49) meV  (16)

is in agreement with the one from the TRIUMF-Hebrew

group. As our choice we take the average of equations (15)
and (16) and remain with

AEES L =15.30(52) meV. (17)

As conservative uncertainty we use the larger one (from

Eq. (16)) and add in quadrature half the spread. A

weighted average of the two values (Egs. (15) and (16))

which would reduce the total uncertainty is not adequate

as certain contributions are effectively fixed by the same
data [83].

3.3 Total Lamb shift in yu3He™

Collecting the radius-independent (mostly) QED contri-
butions listed in Table 1 and summarized in equation (9),
the radius-dependent contributions listed in Table 2 and
summarized in equation (12), and the complete TPE con-
tribution AEY3 . from equation (17), we obtain for the
2S — 2P energy difference in p3He™

+ 0.1354(33) meV — 103.5184(98)r2 meV /fm?
+ 15.3000(5200) meV

= 1659.78(52) meV — 103.518(10)r2 meV /fm?, (18)

where in the last step we have rounded the values to
reasonable accuracies.

One should note that the uncertainty of 0.52meV from
the nuclear structure corrections AELS ., equation (17),
is about 30 times larger than the combined uncertainty of
all radius-independent terms summarized in Table 1, and
13 times larger than the uncertainty in the coefficient of
the rZ-dependent term (which amounts to 0.038 meV for
rn = 1.966 fm). A further improvement of the two-photon
exchange contributions in light muonic atoms is therefore
strongly desirable.

4 2S hyperfine splitting

The 2S hyperfine splitting (HFS) in muonic helium-3 ions
has been calculated by Borie [44] and Martynenko [47].

10 As explained in the introduction, we use a different sign
convention, which explains the minus sign in references [14,40].
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(There is also the more recent paper [46] from Martynenko
et al., but it is less detailed and reproduces all numbers
from [47], with one exception to be discussed for #h27.)
The values are summarized in Table 3 and labeled with
#hi.

We also adapted the ordering according to increasing
order/complexity of the terms and grouped them themat-
ically as: Fermi energy with anomalous magnetic moment
and relativistic corrections discussed in Section 4.1, vac-
uum polarization and vertex corrections in Section 4.2,
nuclear structure contributions and corrections listed in
Section 4.3, and the weak interaction contribution in
Section 4.4.

4.1 Fermi energy with muon anomalous magnetic
moment and Breit corrections

4.1.1 hl and h4 Fermi energy and muon AMM correction

Ttem #hl is the Fermi energy AFpem; which defines
the main splitting of the 25 hyperfine levels. Borie and
the Martynenko group have both calculated the Fermi
energy, however, their values disagree by 0.055meV (see
Tab. 3). For the calculation Borie uses equation (13) in
her reference [44]. Martynenko uses equation (6) in his
reference [47]. The Fermi energy is calculated using funda-
mental constants only. Thus we repeated the calculation
for both equations, the one from Borie and the one
from Martynenko which resulted to be the same: Both
equations yield the same result, as they should, which is

8(atZ®)m?

AEFermi = 3
3nsm,m,

pp, = —171.3508 meV, (19)

where m,, is the muon mass, m,, is the proton mass, m,. is
the reduced mass, and pp, is the helion magnetic moment
to nuclear magneton ratio of yj, = —2.127625 308(25) [6].
We use the value in equation (19) as our choice. This value
agrees neither with Borie’s value (—171.3964 meV) nor
with the one from the Martynenko group (—171.341 meV).

The value for the Fermi energy corrected for the muon
anomalous magnetic moment (AMM) a, is then also
updated to

AEFermi,AMM = AEFermi : (1 + au) = —171.5506 me(\/ )
20

with a correction of —0.1998 meV.
All further corrections from Borie given as coefficients
€, are applied to this value analogous to
AFEpermi amm - (1 + ¢€). (21)
Note, that in Table 3, for the contributions given by Borie,
we use her coefficients but apply them to our value of the
Fermi Energy given in equation (20). The value for the
Fermi Energy in equation (20) is evaluated to a precision
of 0.0001 meV. If the number of significant digits from
Borie’s coefficients is too small to yield this precision we
attribute a corresponding uncertainty. For example item
#h28* has the coefficient €3, = 0.0013; here the coefficient
is only precise up to a level of 0.00005, which we include
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as uncertainty. This uncertainty is propagated upon multi-
plication with the Fermi energy (Eq. (20)) and then yields
0.0086 meV.

4.1.2 h2 Relativistic Breit correction

Item #h2 is the relativistic Breit correction of order
(Za)8. Tt is given congruently by both authors as
AER . = —0.0775meV  and AEg/frel = —0.078 meV,
respectively. We take the number from Borie as our choice,
which is given with one more digit and attribute an
uncertainty of 0.0001 meV due to the precision in her
coeflicient.

4.2 Vacuum polarization and vertex corrections

4.2.1 h8 and h9: Electron vacuum polarization in a
one-photon one-loop interaction (h8) and in a one-photon
two-loop interaction (h9)

The Feynman diagrams corresponding to #h8 and #h9
are analogous to those shown in Figures 3 and 4, respec-
tively, and constitute the analogs to the Uehling- and
Kallén-Sabry contributions in the Lamb shift. #h8 is of
order a(Za)*, #h9 is of order a?(Za)*.

Borie calculates the main electron VP contribution (“by
modification of the magnetic interaction between muon
and nucleus”), which is a one-photon one-loop interac-
tion. It amounts to a correction ey p; = 0.00315, which
results in an energy shift of —0.5405 meV (#h8). She also
gives ey p; = 2.511 - 1075 for one-photon two-loop inter-
actions, resulting in —0.0043meV (#h9). These terms
are evaluated on p.21 of her document [44], using her
equation (16).

Martynenko calculates these contributions to be
—0.540meV and —0.004 meV, respectively. These values
are found in the table in reference [47].

Martynenko mentions that his value for our item #h9
consists of his equations (15,16). The numerical result
from equation (15) corresponds to two separate loops (see
our Fig. 4a) and is given as —0.002 meV, whereas equa-
tion (16) describes the two nested two-loop processes
where an additional photon is exchanged within the elec-
tron VP loop (see our Figs. 4b and 4c). One can conclude
that its numerical value is also —0.002meV.

Both authors give congruent results within their preci-
sions, as our choice we write down the numbers by Borie
which are given with one more digit. We attribute an
uncertainty to item #h8 due to the precision in Borie’s
coefficient.

4.2.2 h5 and h7: Electron vacuum polarization in SOPT in
one loop (h5) and two loops (h7)

Ttems #h5 and #h7 are the SOPT contributions to items
#h8 and #h9, respectively.

Borie’s value for our item #hb is given by the coefficient
evpz = 0.00506 and her value for our item #h7 by
evpa = 3.928 - 107%. This results in energy shifts of
—0.8680(9) meV and —0.0067 meV, respectively (those
values are for point nuclei; the finite size correction is
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taken into account in our #h25 and #h26). The uncer-
tainty in item #hb5 originates from the precision of
€V p2-

The corresponding values from Martynenko are
—0.869meV (#h5) and —0.010meV (#h7).

Due to slight differences between the two authors, as
our choice we take the average of items #h5 and #h7,
respectively. The uncertainty of item #h5 is the above
uncertainty and half the spread between both authors
added in quadrature.

4.2.3 h13 and h14: Vertex correction (= self energy
happening at the muon-photon vertex)

Item #h13 is the muon self-energy contribution of order
a(Za)b (it is the analogue to a part of item #20 in the
Lamb shift, see Fig.7a). It has only been calculated by
Borie as

evertex = o Zav) (1112 - ;) = —0.9622-107*- Z. (22)

Its numerical value is thus 0.0330meV, however this
includes a muon VP contribution of —0.0069 meV (#h12,
see Sect. 4.2.4). For our item #h13, we use the value from
Borie as our choice. We therefore should not include #h12,
which is discussed later.

Borie also cites a higher order correction of Brod-
sky and Erickson [84] which results in a correction of
—0.211-107%= — 0.0036 meV (#h14). Very probably the
sign of the energy shift is not correct because the coeffi-
cient is negative, but the Fermi energy of helium-3 also
has a negative sign, thus the energy shift should be pos-
itive. (The analogous contributions in muonic hydrogen
and deuterium are negative, which is a further hint to a
wrong sign since the helium-3 Fermi energy is negative,
contrary to hydrogen and deuterium.)

4.2.4 h12: Muon VP and muon VP SOPT

Item #h12 is the one-loop muon vacuum polarization.
Borie on p.19 (below the equation of eyerpex) Of refer-
ence [44] gives the coefficient as 0.3994 - 10~* - Z. In com-
bination with the Fermi energy this yields —0.0069 meV.
Martynenko obtains a value of —0.007 meV which is con-
gruent to Borie’s value. However, Borie’s value of this
contribution is already included in our item #h13, which
has been discussed in the previous section. Hence, we do
not include it separately in ‘our choice’.

4.2.5 h18 Hadronic vacuum polarization

Item #h18 is the hadronic vacuum polarization. Borie
gives this contribution as epyvp = 0.2666 - 10~% - Z, which
amounts to —0.0091 meV on p. 19 of her paper. This con-
tribution is analogous to our Figure 3, but with a hadronic
loop in the photon line. Since Martynenko does not pro-
vide a value for hadronic VP in muonic helium-3 ions, we
use Borie’s value as ‘our choice’.
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4.3 Nuclear structure and finite size corrections

Analogously to Section 3.2, we categorize the nuclear
structure contributions to the 2S HFS as one-photon
exchange (OPE) and two-photon exchange (TPE) pro-
cesses, respectively. We list first the by far dominant
contribution to nuclear structure: the Zemach term,
which is an elastic TPE process. The following subsec-
tions describe the known elastic TPE corrections in the
2S HFS. So far, to our knowledge there are yet no calcu-
lations with respect to the inelastic TPE contribution to
the 2S HFS. Thus we only give a simplified estimate with
a large uncertainty. Later the section is concluded with
the one-photon exchange (OPE) corrections to nuclear
structure in the 2S HFS.

4.3.1 h20 Zemach term and h23, h23b*, h28* nuclear
recoil

Item #h20 is the elastic TPE and the main finite size cor-
rection to the 2S HFS. This correction arises due to the
extension of the magnetization density (Bohr-Weisskopf
effect) and is also called the Zemach term [85]. The
Zemach term is usually parameterized as [86]

AEHFS

Zemach — 7AEFermi,AMM 2(ZOé)mr rz (23)
with m,. being the reduced mass and rz the Zemach radius

of the nucleus [36]

ry— —/OM[GE<q>GM<q>—11j§.

24
= (24)
Here, Gg(q) and Gy (q) are the electric and magnetic form
factors of the nucleus, respectively.

The corresponding coefficient to the Fermi energy in
equation (23) is given by Borie on p. 23 of [44] as

€zem = —2(Za)m, vz = —0.01506fm™" r5.  (25)

With our Fermi energy from equation (20), item #h20 is

AEHFS

Zemach —

2.5836 7z meV /fm = 6.5312(413) meV,
(26)

where, in the second step, we inserted the most recent

Zemach radius from Sick [36] (rz = 2.528(16) fm).

Note that Borie’s published value of AELFS - differs
from the one given here, because she uses a different
Zemach radius of rz = 2.562fm, assuming a Gaussian
charge distribution.

Martynenko, in his reference [47], gives a value of
AEHFS = 6.047meV. This value contains a recoil con-
tribution and is thus not directly comparable with our
item #h20. However, this value has been updated L73}
and is now available as two separate values of AEIS =
6.4435 meV = (6.4085 4 0.0350,¢c0i1) meV. The first can
be compared to equation (26). The second is the recoil
correction and listed in our table as item #h23. Marty-
nenko notes [47] that changing from a Gaussian to a dipole
parameterization results in a change of the final number

of 2%.
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h h h

Fig. 16. (a) Item #h15, uSE contribution to the elastic two-
photon exchange; (b) item #h16 the vertex correction to the
elastic two-photon exchange, which results in two terms (the
vertex correction can take place either at one or the other
photon); and (c) item #h17, spanning photon contribution to
the elastic two-photon exchange, also referred to as jellyfish
diagram.

Regarding our item #h20, we do not consider the
respective value from Martynenko because it is model-
dependent and therefore carries a large uncertainty. This
uncertainty can be avoided using the model-independent
Zemach radius from Sick and the coefficient given by Borie
as stated above.

A new contribution which hasn’t been calculated for
up and pd is our item #h23b*. It is an additional recoil
contribution which amounts to 0.038 meV. It has only
been calculated by Martynenko and we adopt his value
as our choice. In order to account for the precision given
by Martynenko, we write 0.0380(5) meV.

Another contribution which has not been calculated for
up and pd is item #h28*. It is a two-photon recoil cor-
rection, calculated by Borie in 1980 [87], who followed the
procedure of Grotch and Yennie [88]. This contribution
is not listed in Borie’s recent reference [44], but should
be included [89]. It is given by ez, = 0.0013 and there-
fore results in —0.2230(86) meV, using our Fermi energy
from equation (20). The attributed uncertainty originates
from the number of significant digits in ez, (the value
of the coefficient is considered to be accurate only to
+0.00005). Regarding the contributions given by Marty-
nenko, no overlap is found, which is why we list this item
separately.

4.3.2 h24 electron VP contribution to two-photon
exchange

Ttem #h24, the electron VP contribution to the 2S5 HFS
elastic two-photon exchange in muonic helium-3 ions is
only calculated by Martynenko [47]. The corresponding
Feynman diagrams are shown in Figure 4 of his helium
2S HF'S paper [47]. These are analogous to our Figure 15,
but with a VP loop in one of the exchange photons. A
numerical value of the contribution is given in his equa-
tion (38) of 0.095meV and thus enters our choice, where
we write 0.0950(5) meV and therefore account for the
precision given by Martynenko.

4.3.3 h15, hl6, h17 radiative corrections to the elastic
two-photon exchange

Ttems #h15, #h16, and #h17 are radiative corrections to
the elastic two-photon exchange in the 2S hyperfine struc-
ture and represented in Figure 16. They are partially given
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in Martynenko’s reference [47], but have been updated
[76] and result to be —0.0101 meV (#h15), 0.0333 meV
(#h16), and 0.0074 meV (#h17). These numbers include
recoil corrections and are based on equations (24)—(27)
from the Martynenko group [48] and use a dipole param-
eterization of the helion form factor, as well as r, =
1.966 fm. For the moment, we will adapt these preliminary
numbers including recoil considerations into our choice.

4.3.4 h22 inelastic two-photon exchange in the hyperfine
structure

In contrast to the Lamb shift, no calculations are avail-
able for the inelastic two-photon exchange (polarizability
contribution) in the 2S HFS. We give an estimate of this
value by calculating the ratio between the polarizability
contribution and the Zemach term in the 1S ground state
of (electronic) 3Het and assume the ratio to be similar for
the 2S state in p3He™.

The 1S Zemach term for electronic 3Het is found by
using equation (23), but with the muon mass replaced by
the electron mass and n = 1. Using the Zemach radius
rz from Friar and Payne [90] a value of 1717kHz is
obtained. In order to obtain the total sum (polarizabil-
ity + Zemach) of 1442kHz [90], a polarizability term
of order —300kHz is missing. The ratio is then roughly
—1/6. The Zemach term for muonic helium-3 ions (our
item h20), obtained above, yields AEzq, ~ 6.5meV. The
estimate for the polarizability contribution consequently
follows with AEECES ~ —1.0 £ 1.0meV, which includes a

conservative 100% uncertainty.

4.3.5 h25 and h26 finite size correction to electron VP

Borie gives the electron VP contributions #h8 and #h5b
(eVP processes in OPE, see Section 4.2) which are based
on a point nucleus. Additionally, she provides modified
contributions which include the finite size effect on elec-
tron VP. These are €}, p; = 0.00295 and €}, p5 = 0.00486,
respectively. The difference between those values and
#h8 and #h5 constitute finite size corrections. Multi-
plied with the Fermi energy (including the AMM), these
yield 0.0343(9) meV each and we attribute them to #h25
and #h26, analogous to the previous CREMA summaries.
The uncertainty originates from the precision in Borie’s
coefficients. Note that these are OPE processes.

4.3.6 h27 and h27b nuclear structure correction in leading
order and SOPT

This correction is only given by Martynenko. The two
terms are found in Figure 5a,b of reference[47], for
leading and second order, respectively. This correction is
also an OPE process. Care has to be taken here because
this contribution is given as 0.272meV in [47], but as
0.245meV in a 2010 follow up paper [46] (however, this
is the only term that changed between [47] and [46]). As
compared to muonic deuterium, Martynenko only gives
the sum (h27 4+ h27b) and not the single contributions.
In [47] the formulas he uses to calculate h27 and h27b
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are explicitly given as

HFS 4 2.2 92 1—n?
AE1~/7str = —g(ZOé) meT 'EFermi . W (27)
AE{{Sopr(29)

= %(Za)mer% « Epermi(29) - (In(Za) — In 2), [—5pt]
(28)

where m,. is the reduced mass of the muon, m; is the
muon mass, and g and r,; are the charge and magnetic
radii, respectively. Martynenko states to use rg = r); =
1.844 + 0.045 fm which is known to be outdated.

However, inserting Martynenko’s Fermi energy, the
radius he used, and fundamental constants into equa-
tions (27) and (28) yields a sum of 0.22514+0.0001 meV
which is neither congruent with [47] nor [46].

Using Sick’s 2014 values [36] for the charge and mag-
netic radii yields 0.2577 + 0.0001 meV.

In the course of some private communications with
Martynenko, he provided us his most current value of
0.2421 meV for the sum of h27+h27b, and we use this
preliminarily as our choice.

4.4 h19 weak interaction

The contribution of the weak interaction to the 2S5 HFS
of helium-3 is only given by Borie. She cites Eides [91]
and provides eyeax = 1.5 - 107°= — 0.0026 meV, which we
adopt as our choice.

4.5 Total 2S HFS contribution

In total, the 2S HF'S contributions are given by

ABEMFS (281751 — 28170) = —172.7457(89) meV
+2.5836 meV /fm ry; + AEHES

pol.

= —166.2145(423) — 1.0(1.0) meV

= —167.2(1.0) meV. (29)
Here, in the first line, we separated out the Zemach contri-
bution and the estimate of the polarizability contribution.
In the second line, the Zemach radius rz = 2.528 16% fm
36] is inserted and the estimated value of AE[JS is
shown. The polarizability is the dominant source of uncer-
tainty in the hyperfine structure and prevents a precise
determination of the helion Zemach radius from the mea-
sured transitions in the muonic helium-3 ion [92]. A calcu-
lation of the polarizability contribution is therefore highly
desirable. Until then a precise measurement of the 1S or
2S HF'S in muonic helium-3 ions can be used to experimen-
tally determine a value of the polarizability contribution
AEEOIT?. In essence, the measurement of the 2S HF'S by the
CREMA collaboration can be used to give the total TPE
contribution to the HFS, AEYES = 2.5836 meV /fm rz +

AEEOITS with an expected uncertainty of 0.1 meV.
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5 2P levels

5.1 2P fine structure

Fine structure (FS) contributions have been calculated by
Borie [44] (Tab.7), the Martynenko group [49] (Tab. 1),
and the Karshenboim group [53] (Tab. 4) and [52] (Tab.9).
All of these contributions are listed in Tab. 4 and labeled
with #fi.

The leading fine structure contribution of order (Za)*
has been calculated by Borie using the Dirac wavefunc-
tions (same as in Lamb shift). Her result (our item #f1)
has to be corrected by a recoil term (item #1{2) in order to
be compared with the result from the Martynenko group.
They use a nonrelativistic approach (our item #f£3) and
then add relativistic corrections (our item #f4a+b). Their
total results differ by 0.02 meV. We take the average as our
choice and remain with an uncertainty of 0.01 meV. This
is by far the dominant uncertainty in the 2P fine structure.

Item #fba and #f5b are the one-loop eVP of order
a(Za)* in leading order and SOPT. Item #f13* is the
one-loop eVP contribution of order a?(Za)* in SOPT.
All three items are given individually by the Martynenko
group [49] in lines 5, 7, and 9 of their Tab. 1. In Tab. 7 of
[44], Borie’s term “Uehling(VP)” presumably contains all
these three items. Karshenboim et al. [53] (Tab. 4) also cal-
culate the sum of these items. All agree within 0.0009 meV
and we take the average as our choice which coincides with
Borie’s value.

Item #f{6a and #f6b are the two-loop eVP (Killén-
Sabry) contribution of order a?(Za)? in leading order and
SOPT. These terms have been calculated by Martynenko
et al. [49] (Tab.1, line 10+11 and 12413, respectively).
Borie [44] and the Karshenboim group [52] (Tab.IX) only
calculated our item #f6b. We therefore adopt the value
provided by the Martynenko group for item #f6a and the
Karshenboim group’s value of #f{6b as they included some
higher order terms as well.

Items #f7a, #£7d, and #f7e are of order a?(Za)* and
have been calculated with high accuracy by the Karshen-
boim group [52] (Tab.IX). They correspond to the same
Feynman diagrams as the Lamb shift items #11, #12, and
#30, shown in Figures 8, 9, and 10, respectively. We adopt
the values from the Karshenboim group as our choice.

Item #f11* is a contribution of order a(Za)® which has
been calculated by Martynenko et al. [49] (Tab. 1, line 8).
Item #f12* is the one-loop uVP of order a(Za)* which
has been calculated by the Martynenko group as well [49]
(Tab.1, line 6). We adopt both of these values as our
choice.

The sum of items #f8 and #{9 is the muon anomalous
magnetic moment (AMM) contribution of order (Za)?.
These items are labeled by Borie [44] as “second order”
and “higher orders”, respectively. Martynenko et al. [49]
(Tab. 1, line 2) provide the sum of these. Both groups
agree very well. As our choice we adopt the average.

Item #f10 is the finite size correction to the 2P/, level
of order (Za)% which has only been calculated by Borie
[44]. Tt is the same correction which appears in the radius
dependent part of the Lamb shift as #r8, with oppo-
site sign and evaluated with a helion charge radius of
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1.966(10) fm [44]. We adopt Borie’s value as our choice
and add the uncertainty which we obtain from the given
charge radius.

The total sum of the FS contributions is summarized in
Table 4 and amounts to

AFEpg = 144.7993 meV £ 0.0101 meV. (30)
It will enter the calculation of the 2P hyperfine structure
in the following section. Note, that the uncertainty origi-

nates only from differences in the treatment of Dirac term
(sum of items #{1 to #f4).

5.2 2P hyperfine structure

The 2P hyperfine splitting is described by the Breit
Hamiltonian. Off-diagonal terms appear in the matrix rep-

resentation of this Hamiltonian in the basis of 2Pf/:21,

2Pf/:20, 2P§/:22, and QPE/:;. These terms lead to a mixing
of energy levels with same quantum number F' (see Fig. 2).
This has first been calculated by Brodsky and Parsons [42]
for hydrogen and later has also been evaluated for muonic
hydrogen by Pachucki [56]. In previous publications [3,5],
we also discussed the mixing of hyperfine states.

The traditional way [42,56] is to calculate the F'S (with-
out perturbations from the HFS F' state mixing) and then
include the so obtained FS in the evaluation of the Breit
matrix. The centroids of the diagonal elements are now
the virtual levels 2P, /o and 2P3 /5. Afterwards the mixing
is included (via diagonalization) which means that the
actual centroid is not at the position of the virtual levels
anymore.

The 2P hyperfine structure has been calculated by Borie
[44] (Tab.9) and Martynenko et al. [49] (Tab. 2). We also
calculated the splittings following Pachucki [56], who did
the evaluation for pp. The values which are listed in our
Table 5 are not the published values, but the values which
result when including our FS value from Section 5.1.

Borie in her Table9 lists the energies of the four 2P
hyperfine levels relative to the 2P,/ fine structure state
where she already included the F' state mixing. We repro-
duced her results using equations given in her Table 9 and
then inserted our AEpg from our equation (30). The result
is listed in the second column of Table 5. Borie mentions,
she used the shielded helion magnetic moment, whereas
the (unshielded) magnetic moment should be used. The
change, however, appears only on the seventh digit and is
therefore negligible.

In their Table2, Martynenko et al. provide the total
splittings of the hyperfine structure levels, and at the end
of their Section 3, they list the term A = 0.173 meV orig-
inating from the mentioned F' state mixing. In order to
include this term, the numbers in their Table 2 first have
to be divided according to the weight given by the num-
ber of mp states. A has then to be added to the two
F =1 states. Furthermore, for the 2P3/, states, we add
our AEgRg . The result is listed in the third column of our
Table 5.

Additionally, following Pachucki [56], we repeat his cal-
culations in up for p>He™. The off-diagonal elements are
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2P levels from fine- and hyperfine splitting. All values are in meV relative to the 2P/, level.

The columns labeled with Borie and Martynenko include their HFS calculations, but our value of the fine structure
(2P3/,—2Py 5 energy splitting) AEpg = 144.7993(101) meV from equation (30). The column ‘following [56]" is cal-
culated in this work following the treatment of Pachucki for u3He™, also including our value of the fine structure.
Uncertainties arise from differences between the published values and from the uncertainty in the fine structure value

AErs .

Borie [44] Martynenko [49]  Following [56]  Our choice
2P}1?/:21 —14.7877 —14.8080 —14.7990 —14.7979(102)
P1/2 43.8458 43.9049 43.8797 43.8754(296)
P3/2 135.7580 135.7552 135.7527 135.7554(27)(101)ws
2P5%0 160.0410 160.0459 160.0494 160.0452(42)(101)ps
. . 1 3
given by equation (85) of [56] 0 Bups(2P32) == (Za)'— (1 + k) - 0.00008.  (35)
3 mymp
(2P15' | V2P )
They have to be added to equations (32) and (33), respec-
3 I
- 1 a_ My mul+2k _Q tively. Diagonalizing the matrix given in equation (91) of
(Za) (I+k)(1+ ,
3 MMy mp 1+k 48 reference [56] with entries determined by the above equa-

(31

~—

where we included the correct Z scaling. m,. is the reduced
mass of the muonic helium-3 ion, m, (ms) is the mass
of the muon (helion), and x = —4.18415! is the helion
anomalous magnetic moment. The diagonal terms are
given by equation (86) therein

Enrs(2P12)
1 m?> 1 a 1 m, 142k
_ - Z 4 T 1 - 13 e
A i +”)<3+6 12 m, 1+ﬁ>
(32)
Ernrs(2P3)2)
1 m3 2 a 1 m,1+2k
_ - Z 4 T 1 = e e
3(%9) mumh( +'€)<15 30 T 12m, 1+/~£>

(33)

with the anomalous magnetic moment of the muon a, =
1.16592089(63) x 103 [6].

Furthermore, Pachucki adds corrections due to vacuum
polarization in his equations (89) and (90). With correct
Z scaling these are

3

1
0 Enrs(2P1/2) =§(Za)4 (14 k)-0.00022 (34)

mymp

1 The helion anomalous magnetic moment is obtained using the
respective equation on p.17 of Borie’s reference [44], where this
magnitude is denoted as k2.

tions yields the values given as our choice in Table 5. The
diagonalization yields an F' mixing of A = 0.1724meV.
In the same manner as for the sections above, our choice
in Table5 takes into account the spread of values from
the different authors and additionally the uncertainty of
our value of the fine structure which we obtained in Sec-
tion5.1. It is astonishing that the splitting of the 2P/,
states differs by as much as 0.04 meV between Borie and
Martynenko. These states do not overlap with the nucleus,
so it should be possible to determine them to much bet-
ter precision. A precise calculation of these splittings is
therefore highly welcome.

6 Summary

We have compiled all available contributions necessary to
extract a charge radius of the helion from the Lamb shift
measurement in muonic helium-3 ions, performed by the
CREMA collaboration.

The total of the Lamb shift contributions are summa-
rized in equation (18).

The nuclear structure-independent contributions of the
Lamb shift, given in Table 1, show good agreement within
the four (groups of) authors. The uncertainty is dom-
inated by the hadronic VP (#14) and higher order
radiative recoil corrections (#24). The total uncertainty in
Table 1, however, is in the order of 0.01 meV and therefore
sufficiently good (see also Eq. (5)).

The nuclear structure-dependent part of the Lamb shift
completely dominates the theoretical uncertainties. The
one-photon exchange (finite size) contributions, where
the coefficients are given in Table 2, have an uncertainty
which corresponds to 0.04 meV, which already is above
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the “ideal” precision, mentioned in the introduction. This
uncertainty is dominated by a disagreement in the terms
#r4 and #r6. The much larger uncertainty, however,
stems from the two-photon exchange contributions (TPE),
given in equation (17). Recently, two groups have pub-
lished new calculations on the TPE with a precision of
about 3% (~0.5meV). In terms of the helion charge radius
this uncertainty corresponds to about

Ttheory (Th) 2 £0.0013 fm. (36)

The expected experimental uncertainty will be about an
order of magnitude smaller. Thus, improving the theoret-
ical uncertainty directly improves the extraction of the
charge radius.

Isotope shift measurements generally benefit from can-
cellations of theory contributions that limit the absolute
charge radii [11,24]. For the present case of the muonic
helium isotope shift it will be useful to exploit possible
correlations between the nuclear and nucleon structure
contributions, which dominate the total uncertainty of the
muonic radii. The correlations could lead to a reduction
of the uncertainty of the muonic isotope shift deter-
mination and shed light on the 4¢ discrepancy in the
electronic isotope shift measurements, see Figurel. A
further investigation of these correlations is therefore
desired.

The total of the 2S HFS contributions are given in
Table 3 and summarized in equation (29). The uncertainty
in the 2S HFS is completely dominated by the polariz-
ability contribution, where no calculation exists. We have
given a very rough estimate. The second largest uncer-
tainty in the 2S5 HFS originates from the Zemach radius
term (Bohr-Weisskopf effect). The upcoming results of the
CREMA experiment will be able to extract a value for
the TPE in the 2S hyperfine splitting (sum of polariz-
ability and Zemach radius contribution) from measured
data. In this case the uncertainty will be limited by the
experimental uncertainty.

For the 2P levels, we collect all fine structure terms
from the various authors (Tab.4) which are then used to
calculate the hyperfine structure by means of the Breit
matrix. The results are compared with two other groups
(Tab. 5). Here, the largest uncertainty originates from the
leading order contributions (#f1 to #f4) in the fine struc-
ture (which is still sufficiently good) and from differing
published values of the 2P3 /5 splitting. A clarification of
this difference would be very welcome.

Note added in proof: After this manuscript was accepted
for publication, a paper by Karshenboim et al. [93] about
the Lamb shift theory in muonic helium and tritium was
published. They discuss the 2S-2P Lamb shift and the
2P fine- and hyperfine structure. The 2S hyperfine struc-
ture is not treated therein. The comparison of their values
with ours has to be done carefully because Karshenboim
et al. treat the mixing of the hyperfine levels (Brodsky
Parsons contribution) differently. In their work the mix-
ing is added as a perturbation to the fine structure. The
traditional way, however, is to use the unperturbed fine
structure and add the mixing as a perturbation to the
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hyperfine levels, which is what we do. Comparing the
values one therefore has to subtract/add the Brodsky
Parsons term printed in bold italic in [93]. Furthermore
Karshenboim et al. neglect some known higher order terms
and increase the uncertainty due to estimates of non-listed
higher order contributions. The comparison with the val-
ues in Ref. [93] yields the following (the numbers shown
here are adapted to the traditional treatment of the Brod-
sky Parsons contribution): For the radius-independent
QED Lamb shift without TPE, Karshenboim et al. obtain
a value of 1644.35(2) meV which is in very good agreement
with ours (Eq.(9)). In order to compare the radius-
dependent (finite size) part we use a helion charge radius
of 1.966 fm [44]. The value of Karshenboim et al. is then
—399.69(23)*h¢° meV which differs by 0.33(23) meV (1.40)
from our value of —400.02(4)*"*° meV. This difference is
the largest between our values and the ones from Karshen-
boim et al. For the 2P fine structure, Karshenboim et
al. obtain a value of 144.800(5) meV — 0.004r3 / fm? meV
which differs by 0.0142meV (1.30) from ours. Regarding
the 2P, /5 hyperfine structure, the value from Karshen-
boim et al. of —58.7150(7) meV differs by 0.0417meV
(1.30) and has by far the smaller uncertainty. In our
case the uncertainty arises from the huge difference
between Borie and Martynenko. The 2Pj3,, splitting of
—24.2925(7) meV agrees very well with our value.

However, all these differences are considerably smaller
than the uncertainty of the two-photon contribution which
we assumed to be 0.52meV while Karshenboim et al.
increase it to 0.86meV. The final result for the charge
radius will therefore not be changed significantly.
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