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Abstract. In this paper it is shown that the small flare-like patches known as ‘blinkers’ may be explained
as the result of an instability in transition layer magnetic flux tubes, which are represented by a set of
isolated, high-aspect ratio vertical cylinders as the legs of coronal plasma loops. An essential prerequisite
for the instability is that the heating, which is assumed to be only due to ohmic dissipation, closely balances
the radiation losses. The instability occurs in the plasma pressure and could be triggered by a random
shock wave; it rapidly increases the local pressure and results in a minor ‘explosion’. By dissipating energy
away from the region, this reduces the local pressure and restores stability on a timescale of a few minutes,
which is in agreement with observations of blinkers. The theory is an extension of Ashbourn and Woods’
previous treatment of the transition layer differential emission measure.

1 Introduction

Harrison [1] identified small flare-like patches that sud-
denly brighten at transition region temperatures, which
he called “blinkers”. The precise nature of blinkers in the
solar transition region is of longstanding interest in the
scientific community and has garnered significant atten-
tion in the literature. However, despite a number of stud-
ies on this observed phenomenon, there are still many
unanswered questions on blinkers and the mechanisms
which drive them. In this paper we present a mathemati-
cal model of the transition layer magnetic flux tubes and
use this to show that blinkers may be explained as the
result of an instability in these magnetic flux tubes.

The variable nature of UV and EUV emission from the
solar transition region is well known with the line emission
continually changing at every point in the network (i.e. the
emission lines vary continually at each point in the obser-
vational grid). Nishikawa [2] observed flux enhancements
in emission lines at the network boundaries and attributed
these to thermal instabilities resulting from the draining of
transition material, which Pneuman and Kopp [3] took to
be the dominant heat source for the transition region; they
found average downward velocities of about 10 km s−1 as
an estimate for blinker velocities. More recently, Bewsher
et al. [4] found the velocities of blinkers to be specifically
in the range of 15−25 km s−1. It was shown by Harrison [1]
that the brightenings increase the intensity of radiation by
a factor of about 2.5 over an area ∼6000× 6000 km2 and
persist for an average time of 13 min. Since then a num-
ber of careful observations have been made, e.g. by Tarbell
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et al. [5], Subramanian et al. [6], Harrison et al. [1] and
Chae et al. [7]. These authors all studied the lifetime of
blinkers using a variety of models and observational data
and all report similar findings on the lifetime of blinkers. A
study by Parnell et al. [8] investigated the lifetime of active
region blinkers and showed that these events also persist
for an average lifetime of 16–19 min and have many similar
properties to quiet region blinkers. In [7] it was found that
the patches comprise many small-scale, short-lived sepa-
rate events, each with a lifetime of between two to three
minutes, which were termed “unit brightening events”.

The main cause of brightenings is an increase in the
emission measure (Krucker et al. [9]) with the observed
temperature changing only slightly. One interpretation of
this is that the plasma density in the transition layer and
lower corona is momentarily enhanced by chromospheric
evaporation. Another is that shock waves propagating up-
wards from the chromosphere increase the local density
sufficiently to generate the small-scale events noted above.

The magnetic structure of the transition layer remains
uncertain due to resolution limitations, but it seems likely
to consist largely of the vertical legs of coronal loops, each
of which is fragmented into many threads too fine to be
resolved. This idea of blinkers as magnetic flux loops has
also been investigated using a magnetic topological model
by Submaranian et al. [10] who found that blinker groups
are largely associated with the formation of loops after
magnetic flux emergence. There are two features of coro-
nal loops that we shall assume also apply to their transi-
tion layer legs or rather to the threads comprising them,
namely that they have almost uniform thickness (Bray
et al. [11]), being on average only 13% thicker at their
midpoints than their footpoints (Klimchuck [12]) and that
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they are circular in cross-section. Klimchuck attributes
these properties to the possibility that the magnetic flux
tubes are twisted with the tubes conducting electric cur-
rent around their coronal loops.

The heating of coronal loops is a subject that
has attracted considerable attention. Bray et al. [11],
Wentzel [13] and Zirker [14] reviewed the principal mech-
anisms proposed to explain the heating, such as the dis-
sipation of magnetohydrodynamical (MHD) waves, elec-
tric currents and magnetic reconnection processes. Our
present concern with this coronal problem is incidental,
but convection of hot plasma down the loops from the
corona is a mechanism that could deliver a considerable
amount of energy to the transition region. In fact accord-
ing to Pneuman and Kopp [3], the downward enthalpy flux
exceeds the conductive flux by a considerable amount and
is the dominant energy source for the transition region.
However it is not certain whether the velocities of sev-
eral kilometres per second that have been deduced from
Doppler measurements (Brekke [15]) are of plasma within
the threads comprising the loops or simply of plasma
falling under gravity in the less dense region external to
the threads.

The outline of this study is as follows: in Section 2 we
present our mathematical model which uses the assump-
tions above to describe the magnetic flux tubes forming
the legs of the coronal loops. By applying the principle
of conservation of energy (Woods [16]) to this model, we
derive equations describing how the pressure inside these
flux tubes varies as a function of the transition region tem-
perature. We also show that the model results obtained
here agree with the modelled and experimental results
discussed in the literature. In Section 3 we consider small
perturbations to the flux tube pressure in order to exam-
ine the linear stability of the system. Finally, in Section 4
we use this linear stability analysis to explore the nature
of blinkers.

2 Energy equation

The equation governing the conservation of energy in a
magnetoplasma is (e.g. see Woods [16])

∂(�u)
∂t

+∇·(�vu) = −p·∇v−∇ ·q + j· (E + v×B)−L,

(1)
where � is the plasma energy, u is the specific internal
energy of the plasma, v is the plasma (fluid) velocity, p
is the plasma (fluid) pressure, j is the current density,
E is the electric field, B is the magnetic field vector and
L is the loss rate per unit volume due to radiation. Here
q is the flux of heat.

We shall apply this energy equation to a vertical flux
tube or “thread” at a distance z above the photosphere
(see Fig. 1). In this figure, w represents the velocity of
plasma outside the loop falling under gravity. If we let
′ = ∂/∂z and assuming that the thread has a circular
cross-section of radius R and ignoring radial velocities and

z

Fig. 1. A schematic showing magnetic threads in the transi-
tion layer. The right-hand figure shows how the different com-
ponents of the magnetic field vary with the radius of the mag-
netic thread. In the left-hand figure h is the distance above the
photosphere and z is the vertical distance inside the magnetic
threads.

radial magnetic fields, we obtain from equation (1)

∂(�u)
∂t

+ (�vu)′ = −q′ + H−L, (2)

where H is the heating rate per unit volume of thread.
Here we use our assumption that the only non-zero com-
ponent of v is in the z-direction and we denote this com-
ponent v. It follows that the derivatives of v only exist in
the z-direction.

From equation (1) and Ohm’s Law, ηj = E + v × B,
it follows that H = ηj2, where η is the resistivity. The
tendency for magnetic fields to steepen rather than diffuse
(see Woods [16]) allows us to place the electric current
on the edge of the thread as shown in Figure 1, which
follows since the components of the magnetic field vary
rapidly in this region and hence the current density, which
is proportional to these gradients, is much larger here. If
this current layer has a thickness δB much less than the
radius R of the thread, we can adopt the approximation
μ0j ≈ B/δB. Since the ohmic heating rate ηj2 occurs in
a volume 2πRLδB, where R is the radius of the flux loop
and L is its length, then the equivalent ohmic heating per
unit volume of the thread is

H = 2ηj2δB/R = 2ξjB/R, (3)

where in standard notation

ξ = η/μ0 =
0.51me

μ0e2neτe
=

5.24 × 107 ln Λ

T 3/2
, (4)

is the magnetic diffusivity. Here we have used the stan-
dard notation μ0 to denote the permeability of free space,
and e, me and ne represent the charge, mass and number
density of an electron respectively. τe denotes the colli-
sion timescale. The Coulomb logarithm, lnΛ = 16.33 +
1.5 lnT − 0.5 lnne, is about 15 in the transition region
and since it varies quite slowly, we shall adopt this value
in the following.

The maximum possible value for the current density,
denoted jm, will occur when the electrons stream past
the ions at the ion sound speed with the speed of the
longitudinal waves resulting from the mass of the ions
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Fig. 2. The temperature gradient dT
dh

(K m−1) plotted for dif-
ferent temperature values throughout the transition region.
The solid lines are the values predicted by the model described
in this paper and are calculated using equation (9) with vari-
ous values of the parameter g. The dotted-solid line shows the
curve obtained by Mariska [19] using a cell-centred empirical
model.

and the pressure of the electrons. When this speed is
reached, the ion-acoustic instability sets in (e.g. see Krall
and Trivelpiece [17]). Since ohmic heating directly involves
the electrons and the rate at which the ions and electrons
reach thermal equilibrium is relatively slow, we expect
the instability to switch on when j reaches its maximum
value of

jm = ene(kBT/mi)
1
2 ≈ 1.46 × 10−17P/T

1
2 (P ≡ neT ),

(5)
where mi denotes the ion mass and kB is the Boltzmann
constant. This instability acts to increase the resistivity,
which in turn reduces j and hence causes the instability to
switch off. This allows j to again increase up to its maxi-
mum and the cycle is repeated. In this way the marginal
stability curve is followed, which allows us to adopt equa-
tion (5) throughout. Thus from equations (3) to (5) we
find

H = 2.3 × 1013℘B/(T 2R) (℘ ≡ P/1021), (6)

where observations show that on average ℘ is a number of
the order of unity.

In Ashbourn and Woods [18] it was shown that an
application of the instability described above leads to ex-
cellent agreement between observations of the differential
emission measure and our theory for this quantity, which
relates to the spectrum of frequencies of electromagnetic
waves propagating out of the transition region. The agree-
ment was good over the whole of the transition region
temperature range, 104−106 K with the expression for the
heat flux given by

q = −κT ′ (
κ = 1.2 × 101.5

(
T 2.5

5 + gT−2.5
5

))
, (7)

where T5 = T/105 and g ≈ 1 is a constant whose precise
value is not given by the theory.

To a first approximation we may assume that q is a
constant, −q0 say, and then

T ′ =
q0

1.2 × 101.5
(
T 2.5

5 + gT−2.5
5

) . (8)

Our theory does not yield a value for q0, however
Mariska [19] applied spectroscopic data to a cell-centred
empirical model of the transition region to deduce T ′ as
a function log T. He found that the maximum value of
the derivative occurs at T = 105 K and has a value of
33 K m−1. Adopting this value in equation (8) we obtain
q0 = 1.25 × 103(1 + g) ≈ 2.5 × 103 W m2 and

T ′ =
33(1 + g)

T 2.5
5 + gT−2.5

5

. (9)

In Figure 2 our theory for T ′ is compared with Mariska’s
empirical model for two values of g; the distribution is not
sensitive to the value of this parameter and the agreement
is good enough to allow us to assume that in equation (2)
q′ ≈ 0. (The dashed line in Fig. 2 has been calculated from
the full energy equation, as will be described in Sect. 3.)

For the radiation term in equation (2) we shall assume
that the transition region plasma (mainly hydrogen and
helium) is singly and fully ionised. Thus if np is the number
density of the radiating elements, a radiation loss function
Q(T ) is defined by

L = nenpQ(T ) = P 2Q(T )/T 2 = 1042℘2Q(T )/T 2

(℘ ≡ 10−21neT ). (10)

For Q(T ) we shall adopt the function developed for solar
coronal loop plasmas by Kankelborg and Longcope [20],
a convenient approximation to which is given by the con-
tinuous curve with the polynomial form:

Q(T ) = 10−d (z ≡ log T5 = log T − 5), (11)

where

d = 0.626z7 − 2.457z6 + 1.110z5 + 4.375z4

− 3.610z3 − 1.397z2 + 0.633z + 34.379.

For comparison we have also shown McClymont and Can-
field’s [21] piece-wise linear approximation

Q(T ) = 10−34T 3
5 if T5 < 1, Q(T ) = 10−34/T5 if T5 > 1.

From equation (10) we have

L = ℘21037−d/TT5. (12)

There remains the convective term (�uv)′ in equation (2).
Now using the equation of state we may write �u = 3

2p =
3kBneT = ε℘, where ε = 4.14 × 10−2 is a dimensionless
quantity. Hence this energy equation can be written

ε
∂℘

∂t
+ ε(℘v)′ = −q′ + H−L, (13)

which is now susceptible to stability analysis.
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3 Application of the energy equation

Equation (13) governs the evolution of the pressure ℘.
This equation is highly nonlinear with the pressure ℘
appearing as a factor in each term except the thermal
conductivity q′, which depends only on the temperature.
In order to investigate the stability of the magnetic flux
tubes, we perturb the system about the steady state ℘0 by
writing ℘(t) = ℘0 + ℘1(t), where ℘1(t) is a small change
in ℘ at constant temperature. We shall ignore both the
product ℘1(t)2 and the gradient ℘′, which is a very small
number depending on �g, where g is the gravitational ac-
celeration. It follows from equations (6), (12) and (13)
that

∂℘1

∂t
=
{
−v′ +

5.55 × 10−4Bg

T 2
5 r

− 2
2.42 × 10−4℘01037−d

T 2
5

}
℘1

(14)

where Bg is the magnetic field expressed in gauss
and r = 10−4R. It is convenient to consider this equation
in the form

∂℘1

∂t
= (A − B℘0)℘1, (15)

where the values of A and B follow from equation (14).
We can then draw the following conclusions about the
behaviour of the model solutions:

(a) For any temperature A > B℘0, the system is locally
unstable since any small perturbations to the pressure
will grow exponentially in time.

(b) Since A and B have different temperature dependen-
cies, stability over the whole of the transition layer
does not exist; the best we can achieve is an average
stability

〈A〉 ≤ 〈B〉℘0 (16)

where 〈. . . 〉 denotes the average taken over the tran-
sition layer. Under these conditions the solutions are
constant or small perturbations will decay in time,
restoring stability to the system.

(c) Assuming that equation (16) applies, it follows from
Figure 3 that there will exist unstable regions out-
side the temperature range 104.5−106.2 K, where the
heating rate will exceed the radiation rate, i.e. where
〈A〉 > 〈B〉℘0 and a pressure instability is generated.

(d) Finally, the instability cannot persist for long periods
of time since a local increase in ℘ increases the ra-
diation rate which will momentarily restore stability.
However we cannot expect the pressure to adjust to its
equilibrium value at each point in the transition layer
as this would require large and persistent variations
in the pressure with height, which would be quickly
eliminated by sound waves.

This instability is the mechanism which we believe to be
the cause of blinkers. In Figure 4 we have reproduced
the downward velocity distribution obtained by Bewsher
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Fig. 3. The radiative loss function Q(T ) (erg cm3 s−1) plotted
for different temperature values throughout the transition re-
gion. The solid line shows the value of this function predicted
by the model described in this paper and calculated using equa-
tion (11). The dashed line shows the values obtained by the
piece-wise linear approximation used by McClymont and Can-
field [21]. The horizontal line shows the first intersection of
these two functions.
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Fig. 4. Plots of observed Doppler velocities (km s−1) in the
solar transition region. This plot is a reproduction of the data
obtained by Bewsher et al. [4] who applied fourth-order poly-
nomial fits to datasets from other studies.

et al. [4] from observational data. From this figure we no-
tice that the gradient v′ is negative for 104 K < T <
105.4 K and is therefore destabilizing in this temperature
regime. With the help of equation (9) in this range we
obtain the estimate −v′ = 2.9/

(
T 2.5

5 + T−2.5
5

)
, which is to

be compared with the value ∼0.5℘0/T 2
5 of the radiation

term. Since ℘0 ∼ 1, we can conclude that at T = 105 K
the transition layer is unstable, as the destabilizing veloc-
ity term is much greater than the radiation term, and that
the large pressure increase required to stabilise this point
is unlikely to be achieved.

This conclusion could be incorrect for the following
reason – specifically it may not be the case that the be-
haviour is dominated by the velocity term, since we have
not allowed for the existence of a small volume filling fac-
tor, F say. The pressure in the threads would then be
proportional to ℘/F and the radiation losses would be in-
creased to L/F2 per unit volume of thread or L/F per unit
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volume of plasma loop. If this volume filling factor were
present, then this same term would appear as a multiplica-
tive factor in the second right-hand term in equation (14)
and if F ≈ 0.005, say, we could certainly ignore the v′
term in equation (14) as this term would then be negli-
gible in comparison to the other terms. There is also the
possibility that the observed Doppler velocities only apply
to the plasma between the threads.

Pursuing this case, instead of equation (14) we obtain
the equation

∂℘1

∂t
=

{
5.55 × 10−4Bg/r − 4.84 × 10−4℘01037−d

}
℘1/T 2

5 .

(17)

From equation (11) we find that the average of 1037−d

over the transition region temperature range 104−106 K
is 5.25 × 102 and therefore equilibrium with this average
rate of energy loss requires that Bg/r = 458 G K m−1 or
Bg = 4.58 × 10−2Rth, where Rth is the radius of the
thread and Bg is the magnetic field inside an individ-
ual thread. In the active region, Bg lies within the range
1000−2000 G (Mariska [19]). For example, if we suppose
that Bg = 1500 G, then the average equilibrium condition
yields Rth = 33 km. It is our hypothesis that the thread
assumes a radius such that the ohmic heating is more or
less balanced by the radiation losses. Blinkers have been
observed in both the quiet region as reported by Bewsher
et al. [22] and in the active region as noted by Parnell
et al. [8]. Here we have chosen to use parameters taken
from the active region, although using parameters from
the quiet region is also feasible and leads to the same
conclusions.

This hypothesised balancing process is stable. For ex-
ample, from equation (17) we see that if the radius is too
large for this balance, the right-hand side of the equation
will be negative and the pressure will be reduced until
the radiation losses come into balance with the heating
rate or more likely, the tendency of the pressure to de-
crease will result in the compression of the thread until
its small radius results in an average balance. It is clear
from Figure 3 that a constant radius throughout the tran-
sition layer is unattainable due to the varying losses. We
can describe how the radius should vary with tempera-
ture in the steady state by solving the steady state form
of equation (17), namely

Bg/r = 0.872℘01037−d (18)

subject to the condition that the magnetic flux through
the base of the thread is constant, i.e. that πR2B = Φ =
constant. Taking Φ to have the average values determined
by the values of B and R obtained in the previous para-
graph and recalling that ℘ = O(1), we find that the solu-
tion of this equation is

r = 104Rth = 26.5 × 10(d−37)/3.

We have plotted this radius in Figure 5, indicating the
average equilibrium radius at r = 3.3×104 m by a dashed
line.
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Fig. 5. The equilibrium radius in the magnetic thread r
(104 m), which has been plotted using equation (3). The
dashed line shows a typical average equilibrium radius (r =
3.3 × 104 m).
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Fig. 6. The equilibrium magnetic field in the magnetic thread
Bg (G), which has been plotted using equation (18). The
dashed line shows a typical average equilibrium magnetic field
(Bg = 1500 G).

In Figure 6 we have plotted the variation in the equi-
librium magnetic field through the transition region. We
do not expect this to be valid except in the region where
the radiation losses are significant, but the main conclu-
sion is that the magnetic field is relatively strong in this
region. The large magnetic field in the transition region
results in a large magnetic pressure in the flux thread.

From the argument above we have shown that the bal-
ance between the radiation term and the heating term,
which is due solely to ohmic heating, is a stable process.
That is, if a small perturbation is made to the thread in
the transition region, then the pressure and radius of the
thread will change to restore stability to the system. When
this radiative balance is attained, the heating and radia-
tion terms in equation (14) will approximately cancel and
then the sign of the v′ term will dominate the stability of
the system. In particular, as described above the transition
layer will be unstable in the range 104 K < T < 105.4 K.
Hence the balance between the heating terms and radia-
tion losses is a necessary condition for the transition region
instabilities which we believe to be the cause of blinkers.

We propose that the mechanism which causes these
instabilities is shock waves in the transition region.
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Observational data have revealed the presence of shocks
in the solar transition region associated with photospheric
magnetic flux reduction, e.g. Ryutova and Tarbell [23]
were able to observe the signatures of shocks and their evo-
lution from SUMER spectral data. These shocks are pro-
duced by colliding and reconnecting magnetic flux tubes,
which release large amounts of energy in the form of
MHD waves (e.g. see Harrison et al. [24]). Due to the
strong stratification of the photosphere, those waves that
propagate upwards in the direction of decreasing density
quickly become shocks. When these propagating shocks
pass through the magnetic flux tubes in the solar tran-
sition region, the local temperature is increased which in
turn increases the magnitude of the plasma velocity, caus-
ing the instability to set in. The instability causes a rapid
increase in the local pressure leading to a minor explosion
and these explosions are observed as the small flare-like
patches known as blinkers. The explosion dissipates en-
ergy back into the transition region, thus reducing the
local pressure and eventually restoring stability.

4 Model robustness

It should be noted that the conclusions drawn above could
simply be a manifestation of the specific transfer function
chosen. We therefore investigate this possibility by using
an alternative radiative transfer function and noting that
the instability still exists.

Suppose that instead of the radiative transfer function
in equation (11) used above, we instead adopt the usual
power law relationship

Q(t) = αT γ (19)

where we choose the constants α and γ such that L =
2 × 10−2 W m−3 at T = 105 K and L = 2 × 10−5 W m−3

at T = 5 × 106 K, which are the values for the canonical
hot loop model (see Bray et al. [11]). We then find (see
Ashbourn et al. [25]) that the appropriate radiation loss
function is

L = aP 2T γ−2 = 1042℘2aT γ−2. (20)

(a = 1.43 × 10−33, γ ≈ −0.306) (21)

Substituting into the energy equation we thus obtain

∂℘1

∂t
=

{
−v′ +

5.55 × 10−4Bg

T 2
5 r

− 8.44 × 10−3℘0T
γ
5

T 2
5

}
℘1.

(22)

This is, as expected, of the same form as equation (14)
and it thus follows immediately that the same conclu-
sions about the stability of the transition layer (a)–(d) can
be drawn by redefining our functions A and B as above.
In this way, the same conclusions and hypotheses can be
drawn for any model radiative loss function, which gives
robustness to the results derived here.

5 Conclusion

In this paper we have presented a mathematical model
of magnetic flux loops in the solar transition region in
order to explain the phenomenon of blinkers. Modelling
the dynamics of the transition region in this way allows
far more detail about the physical processes in this region
to be obtained than is possible with current observational
instruments and techniques.

We have used an energy conservation equation applied
to our model in order to obtain equations which govern
the temperature gradients within the transition region.
Our theory is shown to agree with experimental and em-
pirical results in the literature. We have been able to find
expressions for each of the terms in the energy equation
and hence have used the model in order to obtain a par-
tial differential equation governing the temporal evolution
of the pressure within the transition layer magnetic flux
tubes. Whilst this equation cannot be solved analytically,
we have been able to perform a linear stability analysis to
examine the stability of the transition layer for a range of
different temperatures.

Based on the results of the model analysis we have
been able to devise two hypotheses: namely that the
major mechanism driving the formation of blinkers is the
pressure instability inherent in the governing equations
and that the magnetic threads assume a radius such
that ohmic heating is balanced by the radiation losses.
This radiative balance is an essential prerequisite for the
pressure instability which we believe to be the cause of
blinkers. We argue that this balancing process is stable
and that whenever the pressure instability is switched on,
the local pressure is reduced to bring the radiation losses
into balance with the heating rate. This restores stability
to the system on a timescale of a few minutes which is
consistent with the reported observations of blinkers.

J.M.A.A. was supported by a Royal Commission for the Exhi-
bition of 1851 Research Fellowship for part of this research.
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