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Abstract. R-matrix calculations on electron collisions with CO are reported whose aim is to identify
any higher-lying resonances above the well-reported and lowest 2Π resonance at about 1.6 eV. Extensive
tests with respect to basis sets, target models and scattering models are performed. The final results are
reported for the larger cc-pVTZ basis set using a 50 state close-coupling (CC) calculation. The Breit-
Wigner eigenphase sum and the time-delay methods are used to detect and fit any resonances. Both these
methods find a very narrow 2Σ+ symmetry Feshbach-type resonance very close to the target excitation
threshold of the b 3Σ+ state which lies at 12.9 eV in the calculations. This resonance is seen in the CC
calculation using cc-pVTZ basis set while a CC calculation using the cc-pVDZ basis set does not produce
this feature. The electronic structure of CO− is analysed in the asymptotic region; 45 molecular states
are found to correlate with states dissociating to an anion and an atom. Electronic structure calculations
are used to study the behaviour of these states at large internuclear separation. Quantitative results for
the total, elastic and electronic excitation cross sections are also presented. The significance of these results
for models of the observed dissociative electron attachment of CO in the 10 eV region is discussed.

1 Introduction

Low-energy electron collisions with the carbon monox-
ide molecules display a broad 2Π symmetry shape res-
onance at about 1.6 eV. This resonance has been well-
characterised experimentally [1–5] and is the subject of a
number of theoretical studies [3,6–9]. This resonance pro-
vides the main mechanism for electron impact vibrational
excitation [9,10] but lies too low in energy to lead to disso-
ciative electron attachment (DEA) unless the CO target
is also vibrationally excited [10].

There are a number of theoretical studies which con-
sider collision energies of above 5 eV; these have gen-
erally focused on electron impact electronic excitation
cross sections [11–16]. However, experimentally it has long
been known that CO can undergo dissociative electron
attachment (DEA) with two peaks at about 10.2 and
10.9 eV [17–23] and the main product of this is C+O−,
although C−+O has also been observed [18]. The precise
physics of the states contributing to the DEA process has
recently proved somewhat controversial [23–27].

DEA is assumed to occur via resonances. Several
works, both experimental and theoretical, exist on the res-
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onance features around 10 eV. In fact, a 2Σ+ resonance
at 10.04 eV was identified and known to contribute to
DEA as early as 1973 [28]. There are two R-matrix cal-
culations which showed resonance features above 20 eV.
In one, Salvini et al. [6] suggested that CO has a 2Σ+

shape resonance at about 20 eV; there is no other evidence
for this state. Similarly, in another calculation, Morgan
and Tennyson [12] found a rather broad, widths greater
than 1 eV, resonance for each of the doublet symmetries
they considered. Their resonance curves all looked rather
similar. It is at least possible that these features are a
consequence of employing a target wavefunction which ex-
tended outside the R-matrix sphere; this was found to pro-
duce artificial resonances in calculations on water [29,30].
Weatherford and Huo [11] performed a two-state calcu-
lation using Hartree-Fock wavefunctions and also found
4 resonances in the 10–20 eV region.

The available cross section data for electron collisions
with carbon monoxide have recently been collected and
reviewed by Itikawa [31]. These data are important for
understanding discharges, including the CO laser [32–34],
other CO plasmas [35] and a variety of astronomical ap-
plications [36–38] as CO is thought to be the second most
common molecule in the Universe after H2.

Given the significance of DEA of CO, it is important
to try and build a viable theoretical model for this pro-
cess. As a first step it is necessary to identify possible
resonances through which the DEA may occur. An aim
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of this paper is to identify resonances in the 10–12 eV
region. In this context we note that an 11.5 eV 2Σ+

g
resonance has been identified in the isoelectronic N2 from
both experiment and theory [39]. However this theoretical
work used bound state methodology to characterise the
resonance, a procedure that is not without dangers [40].
Similarly, Pearson and Lefebvre-Brion performed stabi-
lization calculations on the CO− systems and identified a
single, narrow 2Σ+ symmetry resonance at 10.2 eV [41].

2 Theory

The general theory of the R-matrix method and its
specific implementations in the UK molecular R-matrix
codes, to study various aspects in electron and positron
collision with molecules, has been described in detail in a
recent review by one of us [42]. Therefore, we limit ourself
to the essential parts that are necessary for the subsequent
discussions.

The R-matrix method involves separation of space
around the electron+target collision system depending
upon the kind of interaction between the target molecule
and the scattering electron. This separation is usually
done using an imaginary sphere, called the R-matrix
sphere, centred at the centre-of-mass of the molecule. The
radius of the sphere is chosen such that it contains the
entire wave function of the N -electron target states. In-
side the sphere, called the inner region, the collision com-
plex is described by fully taking care of the exchange and
correlation effects among all the N + 1 electrons. The in-
ner region wave function, ψN+1

k , is expressed as a close-
coupling (CC) expansion:

ψN+1
k = A

∑

ij

aijkΦ
N
i (x1 . . .xN)uij(xN+1)

+
∑

i

bikχ
N+1
i (x1 . . .xN+1) , (1)

where, in the first term, ΦN
i is the wave function of the ith

target state, uij are the continuum orbitals to represent
the scattering electron and A is the anti-symmetrization
operator. In the second term, the χN+1

i are the so-called
L2 configurations, which are constructed by occupation of
all N+1 electrons to the target molecular orbitals (MOs).

Different scattering models can be constructed by
choosing different types of expansions for the target wave
function (ΦN

i ) and the corresponding L2 configurations in
equation (1). Generally three different models are used,
namely, the static exchange (SE), SE plus polarization
(SEP) and the close-coupling (CC) models. The SE and
SEP models are among the simplest approximations to
the scattering problem and only use the ground state of
the target, represented by a Hartree-Fock (HF) self con-
sistent field (SCF) wave function. Using the SE, one can
describe only the shape resonances and compute the elas-
tic cross section. While SEP can represent Feshbach res-
onances, these are often not well represented without in-
clusion of their parent electronic state. CC models are

more sophisticated and involve inclusion of several tar-
get states which themselves can be represented by differ-
ent methods. Usually, the complete active space (CAS)
configuration interaction (CI) method is chosen for rep-
resentation of the target states [43]. The CC model can
describe Feshbach resonances and also compute electron
impact electronic excitation cross sections. Even more so-
phisticated is the molecular R-matrix with pseudo-states
(RMPS) method [44,45]. However this method rapidly
leads to huge calculations [46] and, given the number of
excited electronic states of the target that need to be ex-
plicitly considered here (see below), a full RMPS study
was deemed to be impractical. A recent attempt to treat
several target electronic states of the simpler, 10-electron
methane system shows how large such calculations rapidly
become [47].

At the boundary of the R-matrix sphere, the
R-matrix is built, for different scattering energies, from
the boundary amplitude of the inner region wave functions
and the R-matrix poles. Then, the R-matrix is propa-
gated to large distances in order to match to the analytical
asymptotic functions. The matching yields the K-matrix
as a function of scattering energy. The K-matrix is a key
quantity and other scattering observables can be obtained
from it.

Finding and characterizing resonances is a major as-
pect of any electron-molecule scattering study. In this
study our goal is to find any higher lying resonances above
the lowest and well-known 2Π shape resonance. In order
to do this we use two quantities, the eigenphase sum and
time-delay, to find and fit the resonances.

The eigenphase sum fitting method is the standard
method to detect resonances in many studies. When the
eigenphase sum is plotted against the scattering energy
resonances appear as sudden jumps by π over a small en-
ergy region [48]. Once located, the resonance parameters
can be found by fitting the eigenphase sum δ(E) to the
Breit-Wigner form

δ(E) = δ0(E) + tan−1 Γ

2(Er − E)
, (2)

where δ0(E) is the background eigenphase, Er is the reso-
nance position and Γ is the width. However, this method
struggles to fit closely-spaced and overlapping resonances
or ones near to a threshold. The fitting of eigenphase sum
to the Breit-Wigner form is automatically done by the
module RESON [49] in the UKRmol codes [50].

The above problems can be overcome in the time-delay
method and it is, therefore, the method of choice for de-
tecting resonances in electron collision with ionic targets,
where there are large number of closely spaced resonances.
The time-delay method was first proposed by Smith [51]
and was first implemented in the UKRmol codes by Stibbe
and Tennyson [52] through the module TIMEDEL [53].
Recently, it has been updated by Little et al. [54] and
used to study electron collision with N+

2 [55]. If the largest
(first) eigenvalue of the time-delay matrix (i.e., the longest
time-delay) is plotted against scattering energy then the
resonances appear as Lorentzians. The TIMEDEL module
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Table 1. The active space configurations used in the target CASSCF calculations. The molecular orbitals are labelled using
C2v point group.

CASSCF models Configurations

CAS(10,8) (1a1 − 2a1)
4 (3a1 − 6a1, 1b1 − 2b1, 1b2 − 2b2)

10

CAS(10,9) (1a1 − 2a1)
4 (3a1 − 7a1, 1b1 − 2b1, 1b2 − 2b2)

10

CAS(10,10) (1a1 − 2a1)
4 (3a1 − 6a1, 1b1 − 3b1, 1b2 − 3b2)

10

CAS(10,11) (1a1 − 2a1)
4 (3a1 − 7a1, 1b1 − 3b1, 1b2 − 3b2)

10

CAS(10,12) (1a1 − 2a1)
4 (3a1 − 8a1, 1b1 − 3b1, 1b2 − 3b2)

10

CAS(10,13) (1a1 − 2a1)
4 (3a1 − 9a1, 1b1 − 3b1, 1b2 − 3b2)

10

CAS(10,14) (1a1 − 2a1)
4 (3a1 − 8a1, 1b1 − 4b1, 1b2 − 4b2)

10

CAS(10,15) (1a1 − 2a1)
4 (3a1 − 9a1, 1b1 − 4b1, 1b2 − 4b2)

10

automatically fits up to the highest three eigenvalues as a
function of energy (q(E)) to a Lorentzian of the form:

q(E) =
Γ

(E − Er)2 + (Γ/2)2
+ bg(E), (3)

where bg(E) is the background.

3 Calculation and results

In this study we perform fixed-nuclei R-matrix calcula-
tions for CO at the equilibrium bond distance, Req =
2.1323 a0. The molecular orbitals necessary for the target
and scattering calculations are obtained from MOL-
PRO [56]. The scattering calculations are performed using
the UK molecular R-matrix codes [57,58]. These codes
have been recently modernized and upgraded to treat
many different processes in electron and positron scatter-
ing with molecules [50], and are called the UKRmol codes.
Since neither the polyatomic implementation of UKRmol
used here nor MOLPRO can treat CO in its natural sym-
metry of C∞v we use the Abelian point group of C2v.
Since the identification of the target and resonant scatter-
ing states in the C2v symmetry group to the C∞v analogue
is clear, we report these states using their natural symme-
try group. For the molecular orbitals (MOs) we use the
C2v point group designations.

We have performed extensive tests with respect to dif-
ferent target and scattering models. Our strategy had been
to do these tests with the smaller cc-pVDZ basis set in or-
der to find a good and yet computationally manageable
model for the scattering calculations. Then, we performed
the final calculations using the bigger cc-pVTZ basis set
with the chosen model.

3.1 Target calculations

As described above, different scattering models involve
use of different types of target wave functions in the
expansion in equation (1). In the SE and SEP model
only the target ground state represented at the SCF level
is used. The SCF ground state energy and dipole mo-
ment of CO is found to be −112.74928Eh and −0.23 De-
bye, respectively, for the cc-pVDZ basis set. The HF
electronic ground state configuration of CO is given as

[(1a1−5a1)10, (1b1)2, (1b2)2] in C2v symmetry or as [(1σ−
5σ)10, (1π)4] in C∞v symmetry.

For the use in scattering calculations with the CC
model, we performed systematic CASSCF studies on the
target using various active spaces for the cc-pVDZ basis
set. These active spaces are defined in Table 1. The small-
est and commonly used active space is the full valence CAS
(FVCAS), where all 10 valence electrons are distributed
among all 8 valence MOs, keeping the 4 core electrons
frozen. We call this as CAS(10,8) and the electron config-
uration is given as: (1a1−2a1)4 (3a1−6a1, 1b1−2b1, 1b2−
2b2)10. The largest CASSCF calculation we performed is
the CAS(10,15) which, in addition to the valence MOs,
also included the lower σ and π molecular orbitals, formed
from the 3s and 3p atomic orbitals of C and O, in the ac-
tive space. This calculation took more than 30 hours for a
sequential MOLPRO run on a 64-bit machine. In order to
do our final scattering calculations we choose, however, the
computationally more modest CAS(10,10) model. This is
because the scattering calculation with any larger active
space would become unmanageably large with the larger
cc-pVTZ basis set despite the use of a specially-designed
algorithm for Hamiltonian generation [59].

A selected set of results from these CASSCF calcula-
tions for the cc-pVDZ basis set is given in Table 2. These
calculations are performed for 40 target states, which in-
cludes the lowest 5 states from each space-spin symmetry.
Therefore, the MOs used in the CC scattering calculations
are the state-averaged CASSCF (SA-CASSCF) orbitals
having equal weights from each state. The table compares
the ground state energy (in Eh), vertical excitation ener-
gies (in eV) to the lowest 9 states and ground state dipole
moments (in Debye) among different CASSCF models. As
can be seen the relative vertical excitation energies are
fairly close to each other in these CASSCF models. The
table also includes the results from CAS(10,10) calculation
using the cc-pVTZ basis set. For the cc-pVTZ basis set we
made a 50 states SA-CASSCF calculation, where in addi-
tion to the above said 40 target states we included 5 more
states from each of the 1A1 and 3A1 symmetries. This was
done in order to include a greater number of Σ+ target
states in the CC scattering calculation, as the A1 state
in C2v symmetry contains both Σ+ and Δ states. Hav-
ing done this, we can see in Table 2 that the second 3Σ+

target state becomes the ninth lowest excited state. Avail-
able experimental (adiabatic) excitation energies are also
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Table 2. The ground state energy (in Eh), the lowest 9 vertical excitation energies (in eV) and ground state dipole moments
(μ in D) of CO calculated using varying active spaces with cc-pVDZ and using CAS(10,10) with cc-pVTZ basis sets. See text
for details. Experimental values derived by Nielsen et al. [60] from the spectroscopic constants of Huber and Herzberg [61] are
given for comparison.

State
cc-pVDZ cc-pVTZ

Exp.
CAS(10,8) CAS(10,9) CAS(10,10) CAS(10,11) CAS(10,12) CAS(10,13) CAS(10,14) CAS(10,15) CAS(10,10)

X 1Σ+ –112.85537 –112.86388 –112.89473 –112.92428 –112.92723 –112.93840 –112.95161 –112.95146 –112.85655

1 3Π 6.49 6.52 6.40 6.39 6.38 6.56 6.38 6.41 6.31 6.32 (a 3Π)

1 3Σ+ 8.69 8.69 8.79 8.83 8.80 8.78 8.80 8.72 8.39 8.51 (a′ 3Σ+)

1 1Π 9.12 9.12 9.19 9.22 9.16 9.33 9.15 9.02 8.83 8.51 (A 1Π)

1 3Δ 9.62 9.64 9.76 9.81 9.80 9.80 9.80 9.74 9.23 9.36 (d 3Δ)

1 3Σ− 10.00 10.02 10.15 10.20 10.18 10.19 10.16 10.12 9.60 9.88 (e 3Σ−)

1 1Σ− 10.37 10.42 10.54 10.59 10.59 10.60 10.58 10.54 9.97 9.88 (I 1Σ−)

1 1Δ 10.41 10.46 10.57 10.62 10.61 10.64 10.59 10.57 10.00 10.23 (D 1Δ)

2 3Π 12.84 12.91 12.65 12.89 12.89 12.88 12.78 12.75 12.29

2 1Π 14.36 14.40 14.24 14.45 14.41 14.48 14.30 14.24

2 3Σ+ 12.90

μ 0.514 0.452 0.234 0.071 0.045 0.158 0.043 0.240 0.291 0.122

Table 3. Molecular curves correlating with the bound asymptotic states of CO−; given are both the number of molecular states
correlating with each dissociation product, N , and their symmetries. 2 2Σ− means two states of 2Σ− symmetry and so forth.
Binding energies of the products, Eb, are given relative to C(3P) + O(3P).

Product Eb/eV N Symmetries

C(3P) + O−(2P) 1.461 12 2Σ+, 2 2Σ−, 2 2Π , 2Δ, 4Σ+, 2 4Σ−, 2 4Π , 4Δ
C−(4S) + O(3P) 1.262 6 2Σ+, 2Π , 4Σ+, 4Π , 6Σ+, 6Π
C(1D) + O−(2P) 0.197 9 2 2Σ+, 2Σ−, 3 2Π , 2 2Δ, 2Φ
C−(2D) + O(3P) 0.033 18 2 2Σ+,2Σ+, 3 2Π , 2 2Δ, 2Φ, 2 4Σ+, 4Σ−, 3 4Π , 2 4Δ, 4Φ

included in the table for comparison. These values are de-
rived by Nielsen et al. [60] from the spectroscopic con-
stants of Huber and Herzberg [61]. Their spectroscopic
assignments are given in the parenthesis. As can be seen
the experimental values are quite consistent with our ver-
tical excitation energies from the cc-pVTZ basis set.

3.2 Asymptotic states

As discussed below there are significant number of states
of the CO− system which lie below the dissociation limit
of CO into C(3P) and O(3P). Note that here and elsewhere
we neglect spin-orbit effects which lead to the splitting of
these and other atomic terms values.

To help understand the high energy resonance struc-
ture in CO− we performed an analysis of these states. Ta-
ble 3 shows the number and symmetry of the states which
dissociate to the four bound asymptotes, C(3P) + O−(2P),
C−(4S) + O(3P), C(1D) + O−(2P) and C−(2D) + O(3P).
Based on the electron affinities for O [62] and C, [63] these
dissociation products are bound by 1.461, 1.262, 0.197 and
0.033 eV, respectively.

As detailed in Table 3, there are 45 separate molecular
curves which lead asymptotically to states of CO− and
asymptotically lie below the C + O ground state. In prin-
ciple any of these curves could be involved in dissociative
attachment and have an associated resonance signature at
short internuclear separations,R. To understand this situ-
ation better it was decided to perform a series of electronic

structure calculations to characterise these states. In do-
ing this we concentrate on the large R region where the
electronic states are bound with respect to the CO ground
state so as to avoid spurious effects which can arise from
performing bound electronic structure calculation in the
continuum [40].

Calculations were performed using MOLPRO, which
provides a range of quantum chemical methods normally
used for computing bound electronic states. Such calcu-
lations can be used to describe resonant anionic states in
the asymptotic region when it crosses and lies below that
of the neutral ground state. In the resonant region it will
require scattering methods (like the R-matrix theory), or
possibly stabilization procedures, to correctly describe the
potential energy curves (PECs).

In computing the PECs we use the aug-cc-pVTZ basis
set for C and O. The diffuse functions in the augmented
basis set are necessary to describe the anionic states.
The PECs are computed at the multi-reference configu-
ration interaction (MRCI) level of theory with Davidson
correction. This method is generally refered to as the
MRCI+Q method. The Davidson correction is an ex-
trapolation method to the full-CI limit. The necessary
molecular orbitals are calculated from a state-averaged
CASSCF(11,10) calculation at the specified bond length.
The active space for the chosen CASSCF calculation is
defined as: (1a1 − 2a1)4 (3a1 − 6a1, 1b1 − 3b1, 1b2 − 3b2)11.
The role of choice of CAS in the calculation of excited elec-
tronic states has recently come under scrutiny [64,65] but
was not explored here. Figure 1 summarises our results.
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Fig. 1. CO− potential energy curves grouped by symmetry.
The dashed black curve is the X 1Σ+ CO ground state. The
number of curves are chosen using the numbers expected for
each symmetry (see Tab. 3).

The energies reported are from MRCI+Q calculations and
plotted with respect to the dissociation energy of the neu-
tral ground state CO molecule and converted to eV.

Figure 1 suggests that the sextet states (6Σ+ and 6Π)
as well as the 4Δ states are all repulsive at short R. For
the other symmetries the calculations at least suggest that
there are states which could result in resonance features
in the 10–15 eV region. The only other exception to this is
the 2Π symmetry which, of course, shows the clear signa-

ture of the well-known 2Π shape resonance but the next
curve appears to become a quasi-continuum state at short
bond lengths as its shape simply mirrors that of the CO+

ground state curve. Our calculations show that the lowest
2Π shape resonance correlates asymptotically with C(3P)
+ O−(2P) and that the lowest 2Σ+ curves goes asymp-
totically to C−(4S) + O(3P).

3.3 Scattering calculations

All the reported scattering calculations use an R-matrix
sphere of radius a = 10a0. The continuum orbitals, which
represent the scattering electron, are expanded in a ba-
sis of Gaussian-type functions centred on the centre-of-
mass of the target [66]. The continuum orbitals with par-
tial waves � ≤ 4 are included in these calculation. These
orbitals are Schmidt orthogonalized to the target MOs
and then all MOs are symmetrically orthogonalized to
each other. As noted above, in the SE model the tar-
get MOs are SCF orbitals while in CC model these are
SA-CASSCF orbitals. Only those MOs that have eigenval-
ues, from the symmetrical orthogonalization, larger than a
deletion threshold of 10−7 are retained in the calculation.

The results of the scattering calculations using various
models and the cc-pVDZ basis set are shown in Table 4.
The SE model, unsurprisingly, finds only the 2Π shape
resonance whose position and width are too large in com-
parison to the larger models. All our CC calculations using
the cc-pVDZ basis set also find only one resonance, that
is the lowest 2Π shape resonance. Even the 40 states CC
calculation using a larger active space of CAS(10,11) find
only this resonance.We note that the inner region calcu-
lation for A1 symmetry with the larger CAS(10,11) took
5.5 days to finish in comparison to using the CAS(10,10)
which took only 5 h.

In this study we do not report the results of SEP
model. Our previous experience [67] with SEP calcula-
tions showed that the resonance parameters do not con-
verge as the virtual MOs included increases. This is be-
cause of the deteriorating balance between the target and
scattering calculation. The scattering calculation improves
upon addition of more number MOs while the target en-
ergy remains fixed in its ground state SCF representation.
However, in an older SEP calculation on carbon monox-
ide, Morgan [7] reported convergence of the lowest 2Π
resonance position and width with respect to increase in
number of virtual MOs. That calculation, however, was
only for the energy region below the first electronic excita-
tion threshold. In SEP there is also another problem due to
the occurrence of the non-physical pseudo-resonances [42].
This problem arises because of the fact that while this
model includes polarization effect it does not, however,
include the excited target states in the expansion in equa-
tion (1).

Our ‘best’ results are from the CC calculation which
included 50 target states represented by CAS(10,10) us-
ing the cc-pVTZ basis set. Since the R-matrix method is
based on the variational principle, a lower value for reso-
nance position also means we have a better approximation
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Table 4. Positions (and widths) of the detected 2Π and 2Σ+ resonances computed using different scattering models. The
label CAS(10,8)/cc40 represents a close-coupling calculation with 40 target states represented by CAS(10,8) model. None of
our calculations using cc-pVDZ basis set detected the 2Σ+ resonance. All quantities are in eV.

Basis sets Models 2Π resonance 2Σ+ resonance

cc-pVDZ SCF/SE 3.50 (1.96)

CAS(10,8)/cc40 2.01 (0.83)

CAS(10,10)/cc40 2.12 (0.91)

CAS(10,10)/cc50 1.95 (0.81)

CAS(10,11)/cc40 2.20 (0.95)

cc-pVTZ CAS(10,10)/cc50 1.73 (0.84) 12.899988 (0.000525)

to the exact scattering wave function. In this model the
2Π resonance position is found to be at 1.73 eV, which
is lower in comparison with all the models tested using
the cc-pVDZ basis set. We also find a new resonance in
this model for the 2A1 symmetry. Since it does not appear
in the calculation for 2A2 symmetry, we can assign it the
2Σ+ symmetry in C∞v point group.

The 2Σ+ resonance is clearly seen in the eigenphase
sum plot for the 2A1 symmetry in Figure 2. The posi-
tion of this resonance is found to be 12.899988 eV with
a width of 0.000525 eV as fitted by RESON. The reso-
nance position is extremely close to the b 3Σ+ threshold at
12.900787 eV. In the region of a threshold, the time-delay
becomes infinite because the scattering electron associated
with the newly opening channel moves with zero kinetic
energy. This can be seen in the plot of time-delay in Fig-
ure 2 where the time-delay diverges at 12.9 eV. Therefore,
we could not get the fitted resonance parameters from the
TIMEDEL module. Since this resonance has a very nar-
row width of 0.52 meV and appears extremely close to the
2 3Σ+ target state at 12.9 eV, we therefore characterize it
as a core-excited Feshbach resonance with the 2 3Σ+ tar-
get state as its parent, to which it is bound only by about
0.0008 eV. The effect of the resonance on the cross sections
can be seen Figure 3.

We present the eigenphase sum and time-delay for 2A2

symmetry from our best model in Figure 4. The plot for
total, elastic and the dominant electron impact excitation
cross section of CO is given in Figure 5. The cross section
plot shows a broad peak at 9 eV. However, the eigen-
phase sum and time-delay plots do not show any feature
associated with a resonance. Neither the eigenphase sum
and time-delay fitting modules (RESON and TIMEDEL)
find or fit any resonance for this symmetry. We, however,
suspect that the peak structure at 9 eV will become a res-
onance at larger bond distances. We have started doing
R-matrix calculations as a function of bond distance with
a view to investigating this and other aspects.

The eigenphase sum and time-delay plots, from our
best model, for the 2B1 symmetry are presented in Fig-
ure 6; these are identical to those obtained for the degen-
erate 2B2 symmetry calculation. The resonance feature
around 2 eV is fitted by both RESON and TIMEDEL
to the same values of position of 1.73 eV and width of
0.84 eV. The elastic and total cross section due the 2Π
(2B1 +2 B1) symmetry is given in Figure 7
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Fig. 2. 2A1 resonance: the upper panel shows the eigenphase
sum as a function of scattering energy from our best model
(see text for details). The inset shows the narrow Feshbach
resonance at 12.9 eV, lying extremely close to the 2 3Σ+ tar-
get state. The lower panel shows the time-delay plot in the
resonance region.

4 Discussion

The DEA experiments suggest that there are two 2Σ+

resonances between 10 eV and 11 eV [17–23]. Our calcu-
lations detected only a single 2Σ+ resonance at 12.9 eV.
It is therefore worth discussing this difference.

There has long been experimental evidence that ex-
cited electronic states of small molecules in the 10 to 15 eV
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Fig. 3. Total and elastic cross section for 2A1 symmetry. The
inset shows the effect of the Feshbach resonance to the cross
sections.
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Fig. 4. Eigenphase sum plot (upper) and time-delay plot
(lower) for 2A2 symmetry. The broken vertical lines indicate
the electronic excitation thresholds.

region often support a complicated set of Feshbach res-
onances [28]. So far, theory has only made a modest
contribution to modelling and interpreting these reso-
nances. It is useful to consider the case of electron –
H2 collisions where resonances in the 10 to 15 eV have
been well-studied. R-matrix calculations on this sys-
tem [68–70] mapped out resonances as a function of in-
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Fig. 5. Total, elastic and the dominant electron impact exci-
tation cross section of CO in the 2A2 symmetry.
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Fig. 6. Eigenphase sum plot (upper) and time-delay plot
(lower) for 2B1 symmetry.

ternuclear separation to give resonance curves. However,
these calculations also found many “features” where the
eigenphase sums showed structures in form of resonance-
like jumps, but that these jumps were significantly smaller
than one would expect from a fully-formed resonance [69].
Some of these features became resonances as the in-
ternuclear separation was changed. Furthermore, even
for H2, where with a two-electron target it is was possible
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to perform full CI calculations, it was necessary to shift
the resonance positions to fully reproduce the observed
behaviour [71]. This was done by identifying the par-
ent associated with each Feshbach resonance and then
mapping this to highly accurate ab initio curves which
are, of course, available for H2. Even here there is a
complication, as studies have shown, that Feshbach res-
onances could often not be associated with a single parent
state [72]. These H−

2 resonance curves have recently been
used for theoretical studies of DEA and vibrational exci-
tation of H2 via these high-lying resonances [73,74]. We
note that there was a concerted attempt to map out such
higher-lying Feshbach resonance in water. Here system-
atic studies of H2O− resonances [75–78] gave useful com-
parisons with experiment but obtaining complete agree-
ment with the observations remains more difficult [79,80].
A similar methodology has been applied to CO2 [81] and
methane [82] in the 10 eV region.

For CO, the 10.04 eV 2Σ+ resonance and its effect
on the DEA was reported by Schulz [28]. More recently,
experimental DEA studies were undertaken by Nag and
Nandy [23] and Tian et al. [24]. These studies proved
somewhat controversial regarding the nature of the res-
onances involved. Whereas Nag and Nandy indicated
the involvement of 2Σ+ and 2Π resonances in the DEA
around 10-12 eV, Tian et al proposed that the DEA in the
range 10-12 eV occurs through a coherent superposition
of 2Π , 2Δ and 2Φ states at lower end of the energy range
while at higher energies above 12.1 eV the resonant states
in the superposition are changed to 2Σ+, 2Δ and 2Φ.

Such higher lying resonances were reported in exper-
imental studies of integral cross sections in vibrationally
elastic transitions in CO [83,84]. These studies suggest
that there were several 2Σ+ Feshbach resonances in the re-
gion above 10.04 eV associated with the b 3Σ+ and higher
lying parent states.

Returning to the present results we find a 2Σ+ sym-
metry resonance 0.0008 eV below the second 3Σ+ target
state. This state, which is known from experiment and la-
belled the b 3Σ+ state, has been the subject of R-matrix
studies which used electron collisions with CO+ to charac-

terize high-lying excited states of CO [43,85]. These stud-
ies suggest that the vertical excitation energy of the b 3Σ+

state is in the region of 10.2 to 10.4 eV, in good agreement
with the observed result which places this at 10.4 eV [86].
It would therefore seem likely the 2Σ+ Feshbach reso-
nance we detect lies somewhere in this region. Once nu-
clear motion effects due to zero point energy, which is
about 0.27 eV for CO, and other effects are taken into
account it would seem likely that this resonance is re-
sponsible for the 10.2 eV DEA feature. This would be in
agreement with the stabilization calculations of Pearson
and Lefebvre-Brion [41] who also only identified a single
resonance in the 10 eV region, and also in line with Nag
and Nandy’s [23] assertion that a 2Σ+ resonance is in-
volved in DEA in this region.

A recent, detailed ab initio study by Vázquez et al. [87]
of electronically excited states of CO demonstrate just how
complicated the curves are as function of internuclear sep-
aration in this region. Unfortunately Vázquez et al. did
not consider states of 3Σ+ symmetry so cannot be used
to inform our study.

So if we have successfully identified the lower of the two
resonance features, what about the resonance responsible
for DEA at 10.9 eV? There would appear to be two possi-
bilities here. We see a number of features which could not
be fully characterized as resonances in our calculations. It
is possible that as the bond length increases one of these
becomes a proper resonance which correlate with one of
the many CO− asymptotic states we identify and hence
can lead to DEA. However, it is more likely that this res-
onance is associated with a target state which lies even
higher than the b 3Σ+ state. Table 2 only considers the
9 lowest electronically excited states of CO. In fact our cal-
culation uses 50 states of CO but the higher states give in-
creasing unrealistic representations of the physical target
states; indeed many of them lie above the CO ionization
threshold. It would appear that to make progress it would
be necessary to design a model with an increased num-
ber of actual target states (as opposed to pseudo-states)
explicitly included in the model.

5 Conclusion

We have performed an initial R-matrix study to try and
identify the resonance states responsible for dissociative
electron attachment (DEA) in the electron – CO system.
We identify a very narrow 2Σ+ Feshbach resonance which
would appear to be the feature which causes DEA at about
10.2 eV. In future work we will study this resonance as
function of internuclear separation, which should allow a
full model of the DEA process to be built. The narrowness
of this resonance will make the nuclear motion part of this
model rather straightforward since non-adiabatic effects
can almost certainly be neglected.

Our calculations failed to identify further higher-lying
resonances. It is likely that such resonances are associ-
ated with parent target states that is not well-represented
in our model. The higher-lying electronic states in CO
are increasingly Rydberg-like [43,87] and therefore difficult
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to represent using standard target models. Furthermore,
including such Rydberg states in a scattering calculation
remains very challenging [47] and will probably require
further work on the methodology we use for such scatter-
ing calculations, for example the routine use of extended
R-matrix spheres. Such work is currently being under-
taken as part of the development of the B-spline-based
UKRMol+ codes [88]; initial results on the much sim-
pler electron – BeH collision system have demonstrated
the methods ability to deal with very diffuse target states
and include a comprehensive treatment of target electron
correlation [89].
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