Skip to main content
Log in

Electron scattering cross sections for the modelling of oxygen-containing plasmas*

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This work proposes a set of electron scattering cross sections for molecular and atomic oxygen, with interest for the modelling of oxygen-containing plasmas. These cross sections, compiled for kinetic energies up to 1 keV, are part of the IST-LISBON database with LXCat, being used as input data to the LoKI (LisbOn KInetics) numerical code. The cross sections for ground-state molecular oxygen describe elastic and inelastic collision mechanisms, the latter including rotational excitations/de-excitations (treated using either a discrete or a continuous approach), vibrational and electronic excitations (including dissociation), dissociative attachment and ionisation. This set yields calculated swarm parameters that reproduce measurements within 5–20% (transport parameters) and within a factor of 2 difference (Townsend coefficients), for reduced electric fields in the range 10-3–103 Td. The cross sections describing the kinetics of atomic oxygen by electron-impact comprise elastic mechanisms, electronic excitation and ionisation from O(3P) ground-state, dissociation of O2(X,a,b) (including dissociative ionisation and attachment) and of O3, and detachment. These cross sections are indirectly validated, together with other elementary data for oxygen, by comparing the densities of O((4S0)3p 5P) obtained from the self-consistent modelling and from calibrated optical emission spectroscopy diagnostics of microwave-sustained micro-plasmas in dry air (80% N2: 20% O2), produced using a surface-wave excitation (2.45 GHz frequency) within a small radius capillary (R = 345 μm) at low pressure (p = 300 Pa). The calculated densities are in good qualitative agreement with measurements, overestimating them by a factor ∼1.5.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Cvelbar, K. Ostrikov, M. Mozetic, Nanotechnology 19, 405605 (2008)

    Article  Google Scholar 

  2. D. Mariotti, R.M. Sankaran, J. Phys. D 43, 323001 (2010)

    Article  ADS  Google Scholar 

  3. K. Kutasi, C.D. Pintassilgo, J. Loureiro, J. Phys.: Conf. Ser. 162, 012008 (2009)

    ADS  Google Scholar 

  4. G.Y. Park, S.J. Park, M.Y. Choi, I.G. Koo, J.H. Byun, J.W. Hong, J.Y. Sim, G.J. Collins, J.K. Lee, Plasma Sources Sci. Technol. 21, 043001 (2012)

    Article  ADS  Google Scholar 

  5. J. Mizeraczyk, M. Dors, M. Jasiński, B. Hrycak, D. Czylkowski, Eur. Phys. J. Appl. Phys. 61, 24309 (2013)

    Article  ADS  Google Scholar 

  6. D. Graves, Phys. Plasmas 21, 080901 (2014)

    Article  ADS  Google Scholar 

  7. E. Tatarova, N. Bundaleska, J. Ph. Sarrette, C.M. Ferreira, Plasma Sources Sci. Technol. 23, 063002 (2014)

    Article  ADS  Google Scholar 

  8. L.L. Alves, J. Phys.: Conf. Ser. 565, 012007 (2014)

    ADS  Google Scholar 

  9. IST-LISBON database, www.lxcat.net, retrieved on April 2015

  10. V. Guerra, J. Loureiro, Plasma Sources Sci. Technol. 8, 110 (1999)

    Article  ADS  Google Scholar 

  11. Z.L. Petrović, S. Dujko, D. Marić, G. Malović, Ž. Nikitović, O. Šašić, J. Jovanović, V. Stojanović, M. Radmilović-Rađ enović, J. Phys. D 42, 194002 (2009)

    Article  ADS  Google Scholar 

  12. L.L. Alves, K. Bartschat, S.F. Biagi, M.C. Bordage, L.C. Pitchford, C.M. Ferreira, G.J.M. Hagelaar, W.L. Morgan, S. Pancheshnyi, A.V. Phelps, V. Puech, O. Zatsarinny, J. Phys. D 46, 334002 (2013)

    Article  Google Scholar 

  13. Y. Itikawa, J Phys. Chem. Ref. Data 38, 1 (2009)

    Article  ADS  Google Scholar 

  14. V. Laporta, R. Celiberto, J. Tennyson, Plasma Sources Sci. Technol. 22, 025001 (2013)

    Article  ADS  Google Scholar 

  15. V. Laporta, R. Celiberto, J. Tennyson, Phys. Rev. A 91, 012701 (2015)

    Article  ADS  Google Scholar 

  16. A.V. Phelps, Technical Report 28 (JILA Information Center Report, University of Colorado, Boulder, CO, USA, 1985)

  17. G. Gousset, C.M. Ferreira, M. Pinheiro, P.A. Sá, M. Touzeau, M. Vialle, J. Loureiro, J. Phys. D 24, 290 (1991)

    Article  ADS  Google Scholar 

  18. E. Gerjuoy, S. Stein, Phys. Rev. 97, 1671 (1955)

    Article  ADS  Google Scholar 

  19. Yu. D. Oksyuk, Sov. Phys. J. Exp. Theor. Phys. 22, 873 (1966)

    ADS  Google Scholar 

  20. J.B. Fisk, Phys. Rev. 49, 167 (1936)

    Article  ADS  Google Scholar 

  21. M.A. Ridenti, L.L. Alves, V. Guerra, J. Amorim, Plasma Sources Sci. Technol. 24, 035002 (2015)

    Article  ADS  Google Scholar 

  22. K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Springer, New York, 1979)

  23. DUTTON database, www.lxcat.net, retrieved on June 2014

  24. LAPLACE database, www.lxcat.net, retrieved on June 2014

  25. R.A. Nielsen, N.E. Bradbury, Phys. Rev. 51, 69 (1937)

    Article  ADS  Google Scholar 

  26. A. Doehring, Z. Naturforsch. 7A, 253 (1952)

    ADS  Google Scholar 

  27. P. Herreng, Cahiers Phys. 38, 1 (1952)

    Google Scholar 

  28. L. Frommhold, Fortschr. Phys. 1, 597 (1964)

    Article  Google Scholar 

  29. H. Schlumbohm, in Proc. Fourth International Conference on Ionization Phenomena in Gases, edited by N.R. Nilsson (North-Holland Publishing Company, Amsterdam, 1960), Vol. 1, 1B 127

  30. R.D. Hake, A.V. Phelps, Phys. Rev. 158, 70 (1967)

    Article  ADS  Google Scholar 

  31. M.S. Naidu, A.N. Prasad, J. Phys. D 3, 957 (1970)

    Article  ADS  Google Scholar 

  32. I. Fleming, D.R. Gray, J.A. Rees, J. Phys. D 5, 291 (1972)

    Article  ADS  Google Scholar 

  33. D.R. Nelson, F.J. Davis, J. Chem. Phys. 57, 4079 (1972)

    Article  ADS  Google Scholar 

  34. H.L. Brose, Philos. Mag. 1, 536 (1925)

    Article  Google Scholar 

  35. R.W. Crompton, M.T. Elford, Aust. J. Phys. 26, 771 (1973)

    Article  ADS  Google Scholar 

  36. I.D. Reid, R.W. Crompton, Aust. J. Phys. 33, 215 (1980)

    Article  ADS  Google Scholar 

  37. W. Roznerski, K. Leja, J. Phys. D 17, 279 (1984)

    Article  ADS  Google Scholar 

  38. B.-H. Jeon, Y. Nakamura, J. Phys. D 31, 2145 (1998)

    Article  ADS  Google Scholar 

  39. V. Lisovskiy, J.-P. Booth, K. Landry, D. Douai, V. Cassagne, V. Yegorenkov, J. Phys. D 39, 660 (2006)

    Article  ADS  Google Scholar 

  40. L.G.H. Huxley, R.W. Crompton, C.H. Bagot, Aust. J. Phys. 1, 303 (1959)

    Article  ADS  Google Scholar 

  41. J.A. Rees, Aust. J. Phys. 18, 41 (1965)

    Article  ADS  Google Scholar 

  42. M.A. Harrison, R. Geballe, Phys. Rev. 91, 1 (1953)

    Article  ADS  Google Scholar 

  43. L. Frommhold, Z. Phys. 160, 554 (1960)

    Article  ADS  Google Scholar 

  44. A.N. Prasad, J.D. Craggs, Proc. Phys. Soc. London 77, 385 (1961)

    Article  ADS  Google Scholar 

  45. J. Dutton, F. Llewellyn-Jones, G.B. Morgan, Nature 198, 680 (1963)

    Article  ADS  Google Scholar 

  46. J.B. Freely, L.H. Fisher, Phys. Rev. 133, A304 (1964)

    Article  ADS  Google Scholar 

  47. D.A. Price, J. Lucas, J.L. Moruzzi, J. Phys. D 5, 1249 (1972)

    Article  ADS  Google Scholar 

  48. B.C. O’Neill, J.D. Craggs, J. Phys. B 6, 2625 (1973)

    Article  ADS  Google Scholar 

  49. D.A. Price, J. Lucas, J.L. Moruzzi, J. Phys. D 6, 1514 (1973)

    Article  ADS  Google Scholar 

  50. R.J. Corbin, L. Frommhold, Phys. Rev. A 10, 2273 (1974)

    Article  ADS  Google Scholar 

  51. P.A. Chatterton, J.D. Craggs, J. Electron. Control 11, 425 (1971)

    Article  Google Scholar 

  52. R. Grünberg, Z. Naturforsch. 24a, 1039 (1969)

    ADS  Google Scholar 

  53. C.S. Lakshminarasimha, J. Lucas, R.A. Snelson, Proc. IEE 12, 10 (1975)

    Google Scholar 

  54. R.R. Laher, F.R. Gilmore, J. Phys. Chem. Ref. Data 19, 277 (1990)

    Article  ADS  Google Scholar 

  55. R.I. Hall, S. Trajmar, J. Phys. B 8, L293 (1975)

    Article  ADS  Google Scholar 

  56. P.D. Burrow, J. Chem. Phys. 59, 4922 (1973)

    Article  ADS  Google Scholar 

  57. L. Vejby-Christensen, D. Kella, D. Mathur, H.B. Pedersen, H.T. Schmidt, L.H. Andersen, Phys. Rev. A 53, 2371 (1996)

    Article  ADS  Google Scholar 

  58. G.D. Stancu, O. Leroy, P. Coche, K. Gadonna, V. Guerra, T. Minea, L.L. Alves, J. Phys. D (submitted 2016)

  59. P. Coche, L.L. Alves, V. Guerra, K. Gadonna, G.D. Stancu, O. Leroy, T. Minea, in 32nd International Conference on Phenomena in Ionized Gases, Iasi, Romania (2015), pp. P4–39

  60. L.L. Alves, L. Marques, C.D. Pintassilgo, G. Wattieaux, E. Es-sebbar, J. Berndt, E. Kovacević, N. Carrasco, L. Boufendi, G. Cernogora, Plasma Sources Sci. Technol. 21, 045008 (2012)

    Article  ADS  Google Scholar 

  61. M.L. da Silva, V. Guerra, J. Loureiro, P. Sá, J. Chem. Phys. 348, 187 (2008)

    Article  Google Scholar 

  62. V. Guerra, J. Loureiro, Plasma Sources Sci. Technol. 6, 373 (1997)

    Article  ADS  Google Scholar 

  63. P. Coche, V. Guerra, L.L. Alves, J. Phys. D (in press 2016)

  64. S.A. Self, H.N. Ewald, Phys. Fluids 9, 2486 (1966)

    Article  ADS  Google Scholar 

  65. C.M. Ferreira, A. Ricard, J. Appl. Phys. 54, 2261 (1983)

    Article  ADS  Google Scholar 

  66. S. Dap, O. Leroy, J. Andrieu, C. Boisse-Laporte, P. Leprince, G.D. Stancu, T. Minea, Plasma Sources Sci. Technol. 24, 065006 (2015)

    Article  ADS  Google Scholar 

  67. Specair, www.specair-radiation.net

  68. P.W. Erdman, E.C. Zipf, J. Chem. Phys. 87, 4540 (1987)

    Article  ADS  Google Scholar 

  69. H.M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, H.F. Dbele, J. Appl. Phys. 88, 6232 (2000)

    Article  ADS  Google Scholar 

  70. M. Tashiro, K. Morokuma, J. Tennyson, Phys. Rev. A 73, 052707 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Lemos Alves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, L., Coche, P., Ridenti, M. et al. Electron scattering cross sections for the modelling of oxygen-containing plasmas*. Eur. Phys. J. D 70, 124 (2016). https://doi.org/10.1140/epjd/e2016-70102-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70102-1

Navigation