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Abstract. Hyperfine-resolved collisions between OH radicals and He atoms are investigated using quantum
scattering calculations and the most recent ab initio potential energy surface, which explicitly takes into
account the OH vibrational motion. Such collisions play an important role in astrophysics, in particular
in the modelling of OH masers. The hyperfine-resolved collision cross sections are calculated for collision
energies up to 2500 cm−1 from the nuclear spin free scattering S-matrices using a recoupling technique.
The collisional hyperfine propensities observed are discussed. As expected, the results from our work
suggest that there is a propensity for collisions with ΔF = Δj. The new OH−He hyperfine cross sections
are expected to significantly help in the modelling of OH masers from current and future astronomical
observations.

1 Introduction

The most abundant nuclear constituents of interstellar
molecules are H, C, O and N. Among these are the 14N
and 1H nuclei which both have a non-zero nuclear spin
with I = 1 and I = 1/2, respectively. Due to the non-
zero nuclear spin, nuclear hyperfine splitting occurs in the
rotational spectrum of molecules containing these nuclei,
such as CN, HCN, NH3 or OH. The hyperfine splitting is
generally very small but it is well resolved in various emis-
sion spectra from molecular clouds, in particular from cold
dense molecular clouds [1].

Resolving the hyperfine structure of a rotational tran-
sition is extremely useful. By assuming that all compo-
nents have the same line width and excitation temper-
ature1, a simultaneous fit of all hyperfine components
can be performed. The abundance of the molecule can
be directly derived from the fit (e.g. [2]).

However, the simultaneous fit fails in several circum-
stances, suggesting different line widths or excitation
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1 The excitation temperature is defined between two levels

such that the Boltzmann factor, at the excitation temperature,
times the ratio of the statistical weights yields the observed
ratio of the population.

temperatures for each component. In such cases, the hy-
perfine spectrum can only be interpreted through detailed
radiative transfer calculations, which requires the knowl-
edge of the hyperfine selective collisional rate coefficients,
as well as hyperfine radiative rates. Radiative transfer is
also necessary in the presence of hyperfine “anomalies”,
usually attributed to line overlap effects ([3], and refer-
ences therein). Therefore a comprehensive understanding
of radiative and collisional effects is crucial to interpreting
molecular hyperfine spectra.

Among the interstellar molecules that possess a hy-
perfine structure, the OH radical is of particular sig-
nificance. This is due to its high abundance in in-
terstellar gas clouds. Since it was first discovered in
the interstellar medium (ISM) by means of its radio
spectrum by Weinreb et al. [4], OH has been widely
observed in interstellar medium through its rotational
and Λ-doublet transitions. Most recently, the Herschel
Space Observatory has managed to collect many new
OH emission data from young stellar objects [5], proto-
planetary disks [6] and from low- and intermediate-mass
protostars [7].

In addition, comprehensive models of the gas phase
chemistry of diffuse interstellar clouds have revealed the
importance of the OH radical in the network of reactions
leading to the formation of oxygen-bearing molecules [8].
Finally, the OH radical are key species in the water chem-
istry network of star-forming regions, as its presence has
a strong connection to the formation and destruction of
water [9].
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It is therefore crucial to have an accurate knowledge
of the OH excitation conditions due to collisions with the
most abundant species in interstellar clouds. In the cold
ISM, the predominant collisional partner are the He atom
and the molecular hydrogen [10].

Calculations of the inelastic rate coefficients for OH
molecules are a complex task because OH is an open-
shell species in its 2Π ground electronic state. Despite this
difficulty, the OH−H2 system has been thoroughly stud-
ied [11,12]. Rotational, fine and hyperfine structure excita-
tion rate coefficients in collisions with para and ortho-H2

were provided some time ago. These values are still consid-
ered as state of the art and can be compared satisfactorily
to experimental studies.

The OH(X)-He collisional system has been the ob-
ject of detailed and extensive theoretical and experimental
work. We refer the reader to reference [13] for a short re-
view of previous work. OH−He fine structure-resolved rate
coefficients were computed some time ago [14]. The calcu-
lations were performed using the Close Coupling approach
and were based on potential energy surfaces (PES) com-
puted by Lee et al. [15]. The OH−He calculations were
validated by a detailed comparison with the crossed beam
experiments of references [16,17]. More recently, a new
set of three-dimensional PES for the OH(X2Π)−He van
der Waals system was computed [13] (hereafter Paper I),
which explicitly takes into account the OH vibrational mo-
tion. Fine structure resolved cross sections and rate coef-
ficients were provided. The rotational cross sections and
rate coefficients, which were presented in Paper I, offered
an excellent agreement with experimental data ever col-
lected, showing the high quality of the PES and of the
scattering approach. This PES is also the only one used
so far to reproduce OH(X2Π, v = 1) + He experimental
results successfully. However, the hyperfine structure of
the OH target was neglected.

Hence, we present in this paper, an extension of the
calculations of Paper I to the hyperfine levels of OH at var-
ious collision energies. The paper is organized as follows:
after an outline of the computational details in Section 2,
the collisional cross sections are presented in Section 3.
Conclusions of this work are drawn in Section 4.

2 Computational methodology

2.1 OH−He potential energy surface

For low-energy rotational excitation, we employ a new set
of three-dimensional potential energy surfaces (PES) for
the OH(X2Π)−He van der Waals system, which explicitly
takes into account the OH vibrational motion. Ab initio
calculations of the OH−He PES were carried out using
the open-shell single- and double-excitation coupled clus-
ter approach with non-iterative perturbational treatment
of triple excitations [RCCSD(T)] [18,19]. The augmented
correlation-consistent aug-cc-pVXZ (X = Q, 5, 6) basis
sets [20] were employed, and the energies obtained were
then extrapolated to the complete basis set (CBS) limit.
Details of computations and plots of the PES are given
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Fig. 1. Schematic representation of the lowest 56 hyperfine
levels of 16O1H. The zero reference energy is defined for the
lowest OH rotational level (Ω = 1.5, j = 1.5). The rotational
levels are drawn to scale but the Λ-doubling and the hyperfine
splitting are not shown to scale for clarity reasons. Note the
change in ordering of the hyperfine levels for j > 2.5 in the
2Π3/2 state, and of the Λ-doublets for j > 3.5 in the 2Π1/2

state [22].

in Paper I. Integral and differential cross sections (ICS
and DCS), as well as thermal rate constants for the ro-
tational excitation in OH−He collisions were calculated
using the new PES, and compared with available experi-
mental results. Experimental and theoretical results were
found to be in a very good agreement. The newly con-
structed PES reproduces the available experimental re-
sults for OH(X2Π, v = 0, 1)−He collisions better than the
previously available two-dimensional PESs, which were
constructed using a fixed OH bond distance.

2.2 Scattering calculations

The main goal of this work is the use of the new OH−He
PES to determine hyperfine state-resolved excitation and
de-excitation integral cross sections of OH molecules
by He.

The open-shell OH molecule in its ground X 2Π elec-
tronic state is split into a lower (labelled F1) and upper
(F2) spin-orbit manifold [21]. In Hund’s case (a), these
correspond for a molecule with a negative spin-orbit con-
stant − as OH − to projection quantum numbers of the
sum of the electronic orbital and spin angular momenta
Ω = 3/2 and Ω = 1/2, respectively. Each rotational level j
is further split into two, close-lying Λ-doublet levels, which
are labelled e and f . In addition, the hydrogen atom also
possesses a non-zero nuclear spin (I = 1/2). The coupling
between I and j results in a splitting of each level into
two hyperfine levels (Fig. 1). Each hyperfine level is des-
ignated by a quantum number F (F = I + j) varying
between |I − j| and I + j.

http://www.epj.org
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In Paper I, we used Alexander’s description [23] of
the inelastic scattering between an atom and a diatomic
molecule in a 2Π electronic state and a fully-quantum
close-coupling approach in order to obtain the nuclear
spin free SJ(Fijεl; F ′

i j
′ε′l′) scattering matrices between

fine structure levels of OH. J and l denote the total
angular momentum (J = j + l) and the orbital angu-
lar momentum quantum numbers, respectively, and ε, ε′
can be either e or f . In the calculation, the OH ro-
tation, spin-orbit coupling and Λ-doublet splitting were
taken into account, using for v = 0 the OH rotation con-
stant B = 18.5487 cm−1, the spin-orbit coupling con-
stant A = −139.21 cm−1, and Λ-doubling parameters
p = 0.235 cm−1 and q = −0.0391 cm−1 [24]. The newly
constructed PES, which takes into account the stretch-
ing of the OH molecule, was averaged using the following
formula:

Vv(R, θ) = 〈v(r)|V (R, θ, r)|v(r)〉 (1)

where the OH vibrational wave function |v(r)〉 was evalu-
ated using discrete variable representation (DVR) method
from ab initio calculations of the OH potential function
(see Paper I). All the 2D scattering calculations were
performed with the HIBRIDON package [25].

The hyperfine splitting of the OH levels is extremely
small. In the scattering calculations, we assume that the
hyperfine levels are degenerate. Hence, it is possible to
simplify considerably the hyperfine scattering problem.
The integral cross sections corresponding to transitions
between hyperfine levels of the OH molecule can then be
obtained from scattering S-matrices between fine struc-
ture levels using the recoupling method of reference [23].
The inelastic cross sections associated with a transi-
tion from an initial hyperfine level FijεF to a hyper-
fine level F ′

i j
′ε′F ′ can be obtained using the following

methodology:
The total angular momentum JT of the colliding

system including nuclear spin is given by:

JT = J + I. (2)

In the recoupling scheme [26], inelastic cross sections were
obtained as follows:

σFijεF→F ′
i j′ε′F ′ =

π

k2
FijεF

(2F ′ + 1)
∑

JT

(2JT + 1)

×
∑

ll′
|δFiF ′

i
δjj′δll′δFF ′

− SJT (FijεF l; F ′
i j

′ε′F ′l′)|2 (3)

where

SJT (FijεF l; F ′
i j

′ε′F ′l′)

denotes the S-matrix for a total angular momentum JT

and k2
FijεF is the initial wavevector.

The transformation between the SJT -matrix elements
and the nuclear spin-free SJ -matrix is given by:

SJT (FijεF l; F ′
i j

′ε′F ′l′)

=
∑

J

[(2F + 1)(2F ′ + 1)]1/2 (2J + 1)

× (−1)F+F ′+l+l′−2JT

{
l j J
I JT F

}

×
{

l′ j′ J
I JT F ′

}
SJ (Fijεl; F ′

i j
′ε′l′) . (4)

Full-quantum, close-coupling calculations were carried out
on a grid of energies up to a total energy of 2500 cm−1.
The energy steps were 1 cm−1 below 1000 cm−1, 5 cm−1

between 1000 and 1100 cm−1, 10 cm−1 between 1100 and
1300 cm−1, 25 cm−1 between 1300 cm−1 and 1800 cm−1,
and 50 cm−1 between 1800 and 2500 cm−1. Calculations
details to generate the nuclear spin free SJ(Fijεl; F ′

i j
′ε′l′)

scattering matrices can be found in Paper I.

3 Results and discussions

State-to-state hyperfine cross sections for collisions of
OH(2Π3/2, v = 0, j = 1.5e, F = 1) and He are shown
in Figures 2 and 3. At low collision energies numerous
sharp spikes appear. These are a consequence of the at-
tractive potential well in the PES. Quasi-bound states
may arise from tunneling through the centrifugal en-
ergy barrier (shape resonances) or from excitation of the
He−OH complex to a bend-stretch level which is ener-
getically accessible because of the attractive well but is
asymptotically closed (Feshbach resonances). The anal-
ysis of resonances is beyond the scope of this work.
The cross sections for spin-orbit conserving transitions
are significantly larger than those for spin-orbit chang-
ing collisions. This is in agreement with numerous pre-
vious studies of rotational cross sections in OH(X) +
He [14,27–29]. This spin-orbit propensity is not as impor-
tant as in other systems such as NO(X) + He [30,31]. One
can clearly see that there is a strong propensity in favor
of Δj = ΔF transitions for spin-orbit conserving transi-
tions. This trend is the usual trend observed in hyperfine
resolved collisions [23,32,33].

Hyperfine-resolved cross sections for transitions be-
tween the two lowest Λ-doublets in the lowest spin-orbit
state are shown in Figure 4. All these four hyperfine tran-
sitions show maser action [34]. If one assumes a statistical
model [35], then the hyperfine cross sections would be pro-
portional to the degeneracy final state (2F ′ + 1). This is
not what we observe from our calculations. Indeed, the
magnitude of the collisional cross sections is governed by
both the degeneracy of the final state and the coupling of
the two levels. Having said that, all things being equal,
the cross sections increase somewhat with an increase in
F . For example, the F = 2 → F ′ = 2 exhibits higher cross
section than the F = 1 → F ′ = 1. The most important
factor, however, is the ΔF . Indeed, on the average the
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Fig. 2. State-to-state hyperfine cross sections for collisions of
OH(X 2Π3/2, v = 0, j = 1.5e, F = 1) and He. The results for
final levels in the j = 2.5 for spin-orbit conserving collisions
are shown. The final j, ε, F are shown in the graph.
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Fig. 3. State-to-state hyperfine cross sections for collisions of
OH(X 2Π3/2, v = 0, j = 1.5e, F = 1) and He. The results for
final levels in the j = 2.5 for spin-orbit changing collisions are
shown. The final j, ε, F are shown in the graph.

hyperfine cross sections for ΔF = 0 are around 6 times
higher than those for |ΔF | = 1.

Similar observations are made in examining hyperfine-
resolved transitions among higher Λ-doublet levels. As
shown in Figure 5, for the hyperfine transitions between
the higher, j = 2.5, Λ-doublet levels, the ratio between
ΔF = 0 and |ΔF | = 1 cross sections is around 5 de-
pending on the collision energy. As Corey and Alexander
mentioned in their study on OH-H2 collisions [26], the
propensity for ΔF = 0 is coming again from the more
general collisional propensity for ΔF = Δj and from the
tendency for preservation of the j vector. We remind that
because the interaction potential is purely electrostatic in
origin, and because of the absence of magnetic effects, a
collision cannot affect the orientation of the I vector [26].
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Fig. 4. State-to-state hyperfine cross sections for spin-orbit
conserving collisions of OH(X 2Π3/2, v = 0) and He. The initial
and final levels are j = 1.5f and j = 1.5e, respectively. The
initial and final F quantum numbers are shown in the graph.
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Fig. 5. State-to-state hyperfine cross sections for spin-orbit
conserving collisions of OH(X 2Π3/2, v = 0) and He. The initial
and final levels are j = 2.5f and j = 2.5e, respectively. The
initial and final F quantum numbers are shown in the graph.

Therefore, the relative orientation of j and I, and thus
the magnitude of the resultant F vector will be preserved.
Our findings are in agreement with Offer et al. [12] in their
study of collisions of OH with H2.

Similar observations are also made in the spin-orbit
conserving transitions in the upper spin-orbit manifold.
Cross sections for transitions between the j = 0.5
(note that the transition F = 0 → F = 0 is for-
bidden) and j = 1.5 Λ-doublet levels are shown in
Figures 6 and 7.

We are now in position to examine the rotational
dependence of propensities in hyperfine cross sections
for transitions within a Λ-doublet. Let us assume that
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Fig. 6. State-to-state hyperfine cross sections for spin-orbit
conserving collisions of OH(X 2Π1/2, v = 0) and He. The initial
and final levels are j = 0.5f and j = 0.5e, respectively. The
initial and final F quantum numbers are shown in the graph.
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Å

2

Ecol/cm
−1

Fig. 7. State-to-state hyperfine cross sections for spin-orbit
conserving collisions of OH(X 2Π1/2, v = 0) and He. The initial
and final levels are j = 1.5f and j = 1.5e, respectively. The
initial and final F quantum numbers are shown in the graph.

the hyperfine quantum numbers for each Λ-doublet level
are Fmax and Fmin, with Fmax > Fmin. The energy or-
der will not matter in our discussion because the energy
difference between these two hyperfine levels is negligi-
ble. We have four possible transitions: Fmax → Fmax,
Fmax → Fmin, Fmin → Fmax and Fmin → Fmin. The
largest hyperfine cross sections will be for the transi-
tions that ΔF = 0, which are the Fmax → Fmax and
Fmin → Fmin. Among these two, the Fmax → Fmax will
have larger cross sections because the final hyperfine quan-
tum number is larger. Using the same argument for the
ΔF = 1 transitions, the smallest cross section will be for
the Fmax → Fmin transition. Therefore, the cross sections
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Fig. 8. Comparison of the ratios of average cross sections of
Fmax → Fmax (filled red circles), Fmin → Fmin (empty blue
circles), and Fmin → Fmax (black squares) over those of Fmax →
Fmin as a function of j in 2Π3/2.

will be larger in the following order: Fmax → Fmax ≥
Fmin → Fmin > Fmin → Fmax ≥ Fmax → Fmin. In or-
der to directly compare these cross sections, we calculated
the averages of the cross sections over the collision en-
ergy for Fmax → Fmax, Fmin → Fmin, Fmin → Fmax

and Fmax → Fmin transitions. These averages are calcu-
lated over all the available collision energies and are non-
thermal, that means that no assumption for a Boltzmann
distribution was made.

In Figure 8, we plot the ratios of the average values
of cross sections of Fmax → Fmax, Fmin → Fmin, Fmin →
Fmax over the least probable transition Fmax → Fmin in
the 2Π3/2 spin-orbit state. We see that the ΔF = 0 cross
sections are significantly larger than of the Fmin → Fmax.
This propensity has a significant j-dependence, and takes
the minimum value (around 6) at j = 2.5. The ratio of
the Fmin → Fmax cross sections over those of Fmax →
Fmin is around 1.667 at j = 1.5. The ratio tends to 1 for
increasing j values. The same behavior is observed for the
corresponding ratios in the 2Π1/2 state, which are shown
in Figure 9. The main difference is that the ratios of cross
sections for ΔF = 0 transitions over those of the least
probable transition are monotonously increasing with j
and thus do not pass through a minimum as in 2Π3/2.

4 Conclusions

Quantum scattering calculations have been employed
to obtain the hyperfine-resolved cross sections in
OH(X2Π)−He collisions. The calculations are based on
the most recent ab initio OH(X)-He PES, which treats
explicitly the OH vibration. Using a recoupling method,
hyperfine-resolved cross sections were obtained for colli-
sion energies up to 2500 cm−1. For both spin-orbit con-
serving and spin-orbit changing collisions, a propensity

http://www.epj.org
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Fig. 9. Comparison of the ratios of average cross sections of
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circles), and Fmin → Fmax (black squares) over those of Fmax →
Fmin as a function of j in 2Π1/2.

for ΔF = Δj was observed. This propensity depends on
the initial and final hyperfine levels and on the collision
energy. Thus, a previously employed statistical model that
assumed that the hyperfine cross sections are proportional
to 2F ′+1, where F ′ is the final grand angular momentum
number, should not be used. Our results, along with future
calculations on OH−H2, will shed light on the detailed
mechanisms in OH masers.

Current models for the OH masers predict that radia-
tion pumping and collisional deexcitation are responsible
for 2Π3/2 masers, and collisional excitation is responsible
for 2Π1/2 masers [34]. Collisions of OH radicals with
molecular hydrogen are expected to play an important
role in OH masers. In order to derive cross sections for
collisions of various systems with H2, cross sections with
He are multiplied by 1.4 [36]. This approximation is a
first-order estimate but cannot lead to highly accurate
data. Ma et al. [37] recently obtained an ab initio PES
for OH(X)−H2. They found that OH(X)-H2 looks more
like OH(X)−Ne than OH(X)−He, and the OH−H2 min-
imum is around 3 times deeper than in the OH(X)−He.
This new PES was successfully tested for the study of
OH(X)−H2 rotationally-resolved collisions [38]. The ex-
tension of that work to OH(X)−H2 hyperfine-resolved
collisions will provide an important test for the current
models for OH masers. Such theoretical treatment can be
applied to other 2Π radicals that have hyperfine structure
such as CH and NO for which collisional data are crucially
needed to analyse astronomical spectra.
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