Comment on: Two-qutrit entanglement witnesses and Gell-Mann matrices

Eur. Phys. J. D 47, 283-293 (2008), DOI: 10.1140/epjd/e2008-00041-3

Da-Wei Chang ${ }^{\text {a }}$

Faculty of Mathematics and Information Science Shaanxi Normal University, Xi'an 710062, P.R. China
Received 29 May 2013
Published online 1st November 2013 - © EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2013

Abstract

Recently, Jafarizadeh et al. [Eur. Phys. J. D 47, 283 (2008)] has constructed several two-qutrit entanglement witnesses based on the Gell-Mann matrices by using the linear programming method, moreover they claimed that all W_{2} given by equation (16) are entanglement witnesses. In this comment, we would like to point out that there exit some W_{2} given by equation (16) are not entanglement witnesses in general.

In 2008, based on the Gell-Mann matrices by using the linear programming method, Jafarizadeh et al. [1] has constructed the following entanglement witnesses

$$
\begin{align*}
W_{2}= & 2 I_{3} \otimes I_{3}-\frac{3}{2}\left[(-1)^{i_{1}} \lambda_{1} \otimes \lambda_{1}+(-1)^{i_{2}} \lambda_{2} \otimes \lambda_{2}\right. \\
& \left.-\lambda_{3} \otimes \lambda_{3}+(-1)^{i_{4}} \lambda_{4} \otimes \lambda_{4}\right] \tag{1}\\
& +(-1)^{i_{5}} \lambda_{5} \otimes \lambda_{5}+(-1)^{i_{6}} \lambda_{6} \otimes \lambda_{6} \\
& \left.+(-1)^{i_{7}} \lambda_{7} \otimes \lambda_{7}-\lambda_{8} \otimes \lambda_{8}\right] \tag{2}
\end{align*}
$$

(cf. Eq. (16) in Ref. [1], p. 286). Where $i_{1}, i_{2}, i_{4}, \ldots$, $i_{7} \in\{0,1\}$, and

$$
\begin{gather*}
\lambda_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \lambda_{2}=\left[\begin{array}{lll}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
\lambda_{4}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad \lambda_{5}=\left[\begin{array}{lll}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right], \tag{3}\\
\lambda_{6}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \lambda_{7}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right], \\
\lambda_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right] . \tag{4}
\end{gather*}
$$

Jafarizadeh et al. [1] claimed that the following key fact to hold:
Fact. All W_{2} given by equations (1) and (2) are entanglement witnesses (cf. Eq. (16) in Ref. [1], pp. 286-287).

[^0]Unfortunately, above Fact is incorrect in general, it can be illustrated in the following:

Now choose

$$
i_{1}=i_{4}=i_{6}=1, \quad i_{2}=i_{5}=i_{7}=0
$$

From equations (1) and (2), through direct calculations, we can obtain

$$
\begin{aligned}
W_{2} & =2 I_{3} \otimes I_{3}+\frac{3}{2}\left[\lambda_{1} \otimes \lambda_{1}-\lambda_{2} \otimes \lambda_{2}+\lambda_{3} \otimes \lambda_{3}+\lambda_{8} \otimes \lambda_{8}\right. \\
& \left.\lambda_{4} \otimes \lambda_{4}-\lambda_{5} \otimes \lambda_{5}+\lambda_{6} \otimes \lambda_{6}-\lambda_{7} \otimes \lambda_{7}\right] .
\end{aligned}
$$

That is

$$
W_{2}=\left[\begin{array}{lllllllll}
4 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 3 \tag{5}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
3 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 4
\end{array}\right] .
$$

In this case, it is easy to verify that W_{2} given by equation (5) be Hermitian positive definite operator, obviously, W_{2} given by equation (5) is not entanglement witnesses.

In conclusion, above analysis shows that there exit some W_{2} given by equations (1) and (2) are not entanglement witnesses, therefore, above Fact given by Jafarizadeh et al. [1] is incorrect in general.

References

1. M.A. Jafarizadeh, Y. Akbari, N. Behzadi, Eur. Phys. J. D 47, 283 (2008)

[^0]: a e-mail: dwch6169@sina.com

