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Abstract. Ion-acoustic envelope solitary waves in a very dense plasma comprised of the electrons, positrons
and ions are investigated. For this purpose, the quantum hydrodynamic model and the Poisson equation
are used. A modified nonlinear Schrödinger equation is derived by employing the reductive perturbation
method. The effects of the quantum correction and of the positron density on the propagation and stability
of the envelope solitary waves are examined. The nonplanar (cylindrical/spherical) geometry gives rise to
an instability period. The latter cannot exist for planar case and it affected by the quantum parameters,
as well as the positron density. The present investigation is relevant to white dwarfs.

PACS. 52.27.Cm Multicomponent and negative-ion plasmas – 52.35.Fp Electrostatic waves and oscilla-
tions (e.g., ion-acoustic waves) – 52.35.Mw Nonlinear phenomena: waves, wave propagation, and other
interactions

1 introduction

Electron-positron (e-p) pairs exist in the plasma emanat-
ing both from the pulsars and from the inner region of
the accretion disks surrounding the central black holes
in the active galactic nuclei [1]. Such pairs can also ex-
ist in the Van Allen radiation belts and near the polar
cap of fast rotating neutron stars [2–5], in semiconductor
plasmas [6], in intense laser fields [7], in tokamaks [8], as
well as in the solar atmosphere [9]. An electron-positron
plasma usually behaves as a fully ionized gas consist-
ing of the electrons and positrons. Since many of the
astrophysical plasmas contain ions besides the electrons
and positrons, it is important to study the behavior of
nonlinear wave motions in an electron-positron-ion (e-p-
i) plasma. During the last three decades, e-p and e-p-i
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plasmas have attracted significant attention among re-
searchers [10–18]. Linear and nonlinear wave propagation
in e-p and e-p-i plasmas have been studied by using differ-
ent models. For example, Popel et al. [13] investigated ion-
acoustic solitons in three-component plasmas, whose con-
stituents are the electrons, positrons, and singly charged
ions. It is found that the presence of the positron compo-
nent can result in the reduction of the ion-acoustic ampli-
tude. Nejoh [15] studied the effect of the ion temperature
on large-amplitude ion-acoustic waves in an e-p-i plasma.
It was found that the ion temperature increases the max-
imum Mach number and decreases the amplitude of the
ion-acoustic solitary wave. Also, the region of the exis-
tence of the ion-acoustic solitary waves spreads as the ion
temperature decreases. For dense e-p-i plasmas, such as
in neutron stars or in white dwarfs, the quantum effects
are important because the de Broglie wavelength of the
charged carriers (usually e and p due to their small mass)
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is comparable to the dimensions of the plasma system.
Therefore, the quantum mechanical effects (e.g. tunnel-
ing effect and the holes formation) can play an important
role and, of course, the collective behavior of the quantum
plasma differs from the traditional plasma [19]. Recently,
there has been a growing interest in the investigation of
collective processes in quantum plasmas [20–33]. For ex-
ample, double layers [24], solitons [20,22,23,27], and mod-
ulation instability of envelope pulses [29–33] have been
investigated in different dense plasma situations.

Motivated by the existence of an e-p-i plasma in as-
trophysical and space environments, we shall investigate
planar and nonplanar (cylindrical and spherical) quan-
tum ion-acoustic (QIA) envelope solitary waves in a three
species unmagnetized, collisionless quantum plasma that
is composed of the electrons, positrons and ions. The
present paper is organized as follows: in Section 2 the
basic equations governing the nonlinear dynamics of the
QIA envelope solitary waves are presented and a cylindri-
cal/spherical nonlinear Schrödinger equation (NLSE) is
derived. In Section 3, the stability analysis and the prop-
agation properties of the QIA envelope solitary waves in
planar and nonplanar geometries are discussed. Finally,
the results are summarized in Section 4.

2 Derivation of the modified nlse

We consider a three species quantum plasma system com-
posed of the electrons, positrons, and ions. The nonlinear
dynamics of the QIA waves are governed by the following
normalized ion fluid equations
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Equations (1)–(4) are coupled with the Poisson equation

1
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∂
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(
rν ∂ϕ
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)
= (1 + μp)ne − μpnp − n, (5)

where ν = 0, 1 and 2 stands for the planar, cylin-
drical and spherical geometries, respectively. n and u
are the ion fluid density and velocity, respectively. Here,
H = � ωpe/2kBTFe is the quantum diffraction parameter

and ωpe =
(
4πn0e

2/me

)1/2 is the electron plasma fre-
quency. Furthermore, n0, me, e, kB and � are the equilib-
rium ion density, the electron mass, the magnitude of the
electron charge, the Boltzmann constant and the Planck
constant divided by 2π, respectively. μp = np0/n0 is the
ratio of positron equilibrium density np0 to the ion equi-
librium density n0, and σ = TFp/TFe is the ratio of the
positron Fermi temperature TFp to the electron Fermi
temperature TFe.

In order to investigate the amplitude modulation of
QIA envelope solitary waves in a (dense) quantum plasma,
we shall employ the standard reductive perturbation mul-
tiple scales technique [34]. The independent variables are
stretched as ξ = ε(r − vg t) and τ = ε2t, where ε is a
small (real) parameter and vg is the envelope group veloc-
ity to be determined later. The dependent variables are
expanded as
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k and ω are real variables representing the fundamental
(carrier) wavenumber and frequency, respectively. All ele-
ments of Γ(m)

L satisfy the reality condition Γ(m)
−L = Γ∗(m)

L ,
where the asterisk denotes the complex conjugate. Substi-
tuting (6) into the basic equations (1)–(5) and collecting
terms of the same powers of ε, the first-order (m = 1)
equations with L = 1, give
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and the linear dispersion relation

ω2 =

k2
(
H2k2 + 4

) (
H2k2 + 4σ

)
(H2k4 + 4k2 + 4) (H2k2 + 4σ) + 8 (H2k2 + 2σ + 2)μp

.

(8)

The second-order (m = 2) reduced equations, with L = 1,
are given by
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Solving the system of equations (9) with the help of (7)
yields the second-order quantities with L = 1 as
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with the compatibility condition
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Recalling that the compatibility condition (11) is the
group velocity of the envelope soliton, which is now de-
pendent on the quantum diffraction effect H , as well as
the ratio of the positron Fermi temperature-to-the elec-
tron Fermi temperature σ.

The second harmonic modes (m = L = 2) arising from
the nonlinear self-interaction of the carrier waves are ob-
tained in terms
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where Δ1 is given in the Appendix.
The nonlinear self-interaction of the carrier wave also

leads to the creation of a zeroth-order harmonic. Its
strength is analytically determined by taking L = 0 com-
ponent of the third-order reduced equations, which can be
expressed as
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where Δ2 is given in the Appendix.
Finally, the third harmonic modes (m = 3 and L = 1)

give a system of equations, which reduces to, with the aid
of (11), the modified NLSE

i
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+ Q |φ|2 φ + i
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2τ
φ = 0, (14)

where φ ≡ ϕ
(1)
1 for simplicity. The dispersion coefficient P

and the nonlinear coefficient Q are given in the Appendix.
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Fig. 1. (Color online) Variation of (a) P and (b) Q against k for different values of μp and σ. Curve A for μp = 0.1, curve
B for μp = 0.3 and curve C for μp = 0.8. Recall that σ is related to μp through the relation TF p/TF e = [μp/(1 + μp)]2/3.
Here H = 0.02.

3 Stability analysis and discussion

3.1 Derivation of the nonlinear dispersion relation

To investigate the stability/instability of the planar and
nonplanar excitations, we investigate the development of
the small modulation δφ according to

φ =
[
φ0 + δφ (ξ, τ)

]
exp

[
−i

∫ τ

τ0

Δ (τ ′) dτ ′ − ν

2
ln τ

]
,

(15)
where φ0 is the constant (real) amplitude of the pump
carrier wave and Δ is a nonlinear frequency shift, and
taking the perturbation δφ as

δφ = δφ0 exp
[
i
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Kξ −
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Ω (τ ′) dτ ′
)]

+ c.c., (16)

where Kξ − ∫ τ

τ0
Ω dτ ′ is the modulation phase with K

and Ω are the perturbation wave number and frequency of
the modulation, respectively (see details in Refs. [35,36]).
Using (15) and (16) into equation (14), one obtains the
nonlinear dispersion relation [35]
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2
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τν

1
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)
, (17)

which exactly reduces to the dispersion relation for the
planar geometry when ν = 0.

3.2 Stability/instability of planar envelope pulse

To investigate the stability/instability of the planar enve-
lope pulses, one sets ν = 0 into the nonlinear dispersion
relation (17). It is clear that for PQ > 0 the envelope

is unstable for K < Kc =
√

2Q/P
∣∣φ0

∣∣, i.e. for pertur-
bation wavelengths larger than a critical value 2π/Kc. If
PQ < 0, the amplitude will be stable to external per-
turbations. This modulation instability mechanism is tan-
tamount to the well-known Benjamin-Feir instability in
hydrodynamics. Furthermore, the modulation instability
is related to the occurrence of localized envelope struc-
tures (solitons) of various kinds [37–39]. For the unstable
wave packet (PQ > 0), it can be shown that the QIA
solitary waves propagate as an envelope soliton. On the
other hand, for stable wave packet (PQ < 0), the wave
can propagate in the form of an envelope hole called a
dark soliton. When PQ > 0, for example, one can obtain

φ (ξ, τ) =

√∣∣∣∣2Θ

Q

∣∣∣∣ sech

(√∣∣∣∣2Θ

P

∣∣∣∣ξ
)

exp (i Θτ), (18)

where Θ is a real constant. It is obvious from equation (18)
that the amplitude and the width of the soliton vary with
Q and P . The wave amplitude is inversely proportional
to |Q|, and the wave width is proportional to |P |. For an
extensive list of a number of envelope soliton solutions
of the NLSE of the bright or dark (black/grey) type, the
reader may consult references [38,39].

We have chosen our physical parameters to be applica-
ble for white dwarfs. Figure 1 shows the variation of P and
Q against k for H = 0.02 and different values of μp and
σ. Firstly, we have to confirm the inequality PQ > 0. Fig-
ure 1 should be used on the same footing with Figure 2a;
for H = 0.02, by increasing the positron concentration
μp and the temperature ratio σ, one encounter a decrease
of the soliton width and amplitude. It is clear also that
the effect of μp on the soliton amplitude and width is sig-
nificant for longer wavelengths. Figure 2a shows a contour
plot of PQ against k and H for μp = 0.1 and σ = 0.20218.
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Fig. 2. (Color online) (a) Variation of PQ in the parameter space (k, H), where bright regions correspond to PQ > 0 (instability
regions) and dark regions corresponds to PQ < 0 (stability regions). (b) Variation of PQ against k with the same parameters
as in Figure 2.

It is obvious that the quantum diffraction effect H has lit-
tle effect on the instability/stability region and the QIA
waves will be unstable for k > 2.8. Also, increasing the
positron concentration increases (decreases) the stability
(instability) regions, as depicted in Figure 2b.

3.3 Stability/instability of spherical
and cylindrical pulses

For ν �= 0 the nonlinear dispersion relation (17)
provides us the instability period for the cylindrical
geometry (ν = 1)

τ ≥ τmax =
2

∣∣φ0

∣∣2
K2

Q

P
, (19)

and for the spherical geometry (ν = 2)

τ ≥ τmax =

∣∣φ0

∣∣
K

√
2Q

P
. (20)

It is clear that there is a modulation instability period (τ)
for the cylindrical and spherical wave modulation, which
does not exist in the one-dimensional case.

To examine the cylindrical and spherical geometry ef-
fects on the propagation of QIA envelope solitary waves,
equation (14) can be simplified to

i
∂φ

∂τ
+

∂2φ

∂ξ2
+ 2 |φ|2 φ + i

ν

2τ
φ = 0, (21)

where we have set φ →
√

2
Qφ and ξ → √

Pξ with the
conditions that P > 0 and Q > 0. The stationary propa-
gation of the envelope soliton governed by equation (21)
with ν = 0 (i.e. the one-dimensional geometry), has the
following general form

φ(ξ, τ) = A sech (Aξ − 2ABτ + c0)

× exp
[
iBξ + i

(
A2 − B2

)
τ + ic1

]
, (22)

where A, B, c0, and c1 are arbitrary real constants. Solving
equation (21) numerically for the cylindrical and spheri-
cal geometries; where the initial solution was taken to be
of the form (22) with A = 0.11 and B = 0. It is found
that the amplitude of the QIA envelope solitary waves in
the spherical geometry is larger than that in the cylindri-
cal geometry for fixed time, as shown in Figure 3a. Fig-
ures 3b–3d display the envelope electrostatic potential ex-
citations in three-dimensional plots versus the radial and
time coordinates for ν = 0, 1 and 2, respectively. It is
clear that the envelope soliton pulse for the cylindrical
geometry is smaller than the spherical geometry case.

4 Summary

We have investigated the amplitude modulation of the pla-
nar, cylindrical, and spherical quantum ion-acoustic enve-
lope solitary waves in an unmagnetized quantum plasma
consisting of the electrons, positrons, and ions. The stan-
dard reductive perturbation method is used to derive
a modified NLSE from the quantum hydrodynamic and
Poisson equations. It is found that the nature of the mod-
ulation instabilities would be significantly modified due
to the positron density concentration. Also, there exist
a modulation instability period for the cylindrical and
spherical envelope excitations, which does not exist in
the one-dimensional case. The instability period depends
on the positron density concentrations and the quantum
diffraction effect. Numerical investigation reveals that the
amplitude of the spherical envelope is larger than that of
the cylindrical one for fixed time, and the growing ampli-
tude of the spherical envelope is larger than that of the
cylindrical envelope.
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(a) (b)

(c) (d)
Fig. 3. (Color online) (a) Cylindrical and spherical waves amplitude against τ (represented by the numerical solution of the
NLSE (21)). (b)–(d) Three dimensional plots of the planar, cylindrical, and spherical envelope pulses, respectively (represented
by the numerical solution of the NLSE (21)).

Appendix: Dispersion and nonlinear
coefficients
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with βj (i.e., j = 1, 2, ...)
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(1+H2k2) (4+H2k2)2

− 4μp

(−4σ + H2k2
)

(σ + H2k2) (4σ + H2k2)2
,

β2 =
2k2

ω2

(
1 − 4ω2

) − 2μp

[
1

H2k2 + σ
+

μp + 1

μp (H2k2 + 1)

]
,

β3 = (σ − 1)
[
H6k6 + 8 (1 + σ)

(−8σ + H4k4) +16H2k2(1 + σ(σ − 1))
]
,

β4 =
k2

ω2 (H2k2 + 4)2

[
1 +

24ω2

k2 (H2k2 + 4)2
− 2H2ω2

(H2k2 + 4)2

]
− k2

σω2 (H2k2 + 4σ)2

[
1 − 24σω2

k2 (H2k2 + 4σ)2
+

2ω2

k2 (H2k2 + 4σ)2

]

+
28σ

(H2k2 + σ) (H2k2 + 4σ)4

(
1 − 5H2k2

28σ

)
− 36

(H2k2 + 1) (H2k2 + 4)4

(
1 +

5H2k2

36

)
,

β5 = − 4k2

(H2k2 + 4)2 ω2

[
1 +

24ω2

k2 (H2k2 + 1) (H2k2 + 4)2

]
+

4k2

ω2 (4σ + H2k2)2
×

[
1 − σω2

4k2 (4σ + H2k2)2
− σ2ω2

8k2 (4σ + H2k2)3

]
,

β6 =

[
53(σ − 1)H6k6 + 120

(
σ2 − 1

)
H4k4 − 16

(
5 + 12σ (σ − 1) − 5σ3

)
H2k2 − 128σ

(
σ2 − 1

)]
Δ1

(1 + H2k2) (σ + H2k2) (4 + H2k2)2 (4σ + H2k2)2
,

β7 = 2β5 − β6 + 2H2k2β4,

β8 =
2σ

(
k2 − ω2vgΔ2

) [
β9 − β10 + ω

(
β11 + β12 + β13 + 256σ(σ + 1)

(
σk2 + (σ − 1)ω2

))]
(1 + σ) (4 + H2k2)2 (4σ + H2k2)2

[
σv2

g + (σ + 1)μpv2
g − σ

]
ω5vg

,

β9 = 2vgk3(σ + 1)
[(

4 + H2k2) (
4σ + H2k2)]2 ,

β10 = 4v2
gω3

[
H6k6−64σ(1 + σ)+8H2k2

(
1−8σ + σ2

)]
,

β11 = (1+σ)H8k10+2
[
4k2(1 + σ)2+ω2(1−σ)

]
H6k6,

β12 = 16(1 + σ)
[
k2

(
1 + 4σ + σ2

)
+ ω2(1 − σ)

]
H4k4,

β13 = 32
[
4σk2(σ+1)2 + ω2 (

1−4σ+4σ2−σ3)] H2k2.
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