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Abstract We analyse traversable wormholes defined by
the dynamic line elements that asymptotically approach
Friedmann–Robertson–Walker (FRW) universe. These
dynamical wormholes is supported by the galactic dark mat-
ter as well as perfect isotropic fluid. We will discuss several
evolving Lorentzian wormholes comprising with different
perfect isotropic fluids in addition to various scale factors.
We will speculate the various significance, features and throat
energy conditions for these evolving traversable Lorentzian
wormholes.

1 Introduction

According to Einstein’s theory [1], the spacetime fabric and
geometry due to the presence of matter is not inflexible but
is adaptable and deformable. Heavier condensed object pro-
duces strong the curvature of space [2], which fundamentally
leads to the concept of black holes [3,4] containing the cur-
vature singularity. Due to the presence of singularity, one
can not travel through it, however, in some way, if a structure
could be constructed that consists of a throat then it might be
possible to travel through the structure. Fortunately, Einstein
field equations [5] may have such solutions under certain
conditions where the spacetime geometry is distorted such a
manner that creates a tunnel like structure in the galactic fab-
ric. These theoretical solutions, initially proposed by Albert
Einstein and Nathan Rosen, in the year 1935, are known as
Einstein–Rosen bridges or Wormholes [6,7]. This structure
connects two different points in the spacetime fabric in a way
that is analogous to a shortcut that can ultimately minimize
travel time and make it seem like the travel speed is even
greater than that of light. But to be able to travel through
a wormhole, certain conditions for the wormhole must be
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satisfied, for example the throat of the wormhole structure
should be stable enough for enabling one to travel through
it [8], also the wormhole must have a structure that allows
the size of the traveler’s body to pass through it. Wormholes
that satisfy such conditions are called traversable wormholes
[9,10]. We understand that the throat of the wormhole is one
essential thing for the structure and a necessary condition for
construction of throat is presence of exotic matter which vio-
lates the Null-Energy condition [11]. Now a big concern is
whether such matter exists. In answer to that we would like
to point to the recent finding of the accelerated expansion
of the universe [12]. In various attempts to explain this phe-
nomenon, the arguments have led to the possible existence of
matter with a large negative pressure. These are referred to as
dark matter or dark energy [13,14]. The dark matter or dark
energy, which are basically exotic matter, play a pivotal role
in the formation of wormhole structure [15]. Now, since the
universe is expanding and wormholes are structures inside
the geometry of the 4-dimensional spacetime manifold, so
the idea is that with the expansion of universe, there is a cor-
responding effect on the geometry of the manifold as the uni-
verse is expanding from every point and hence it must have
an effect on the wormhole structure as well. The wormholes
that exhibit this property are called evolving wormholes [16–
19] i.e. the wormholes are evolving with time. We know that
the scale factor is a function of time. So we have attempted to
determine corresponding changes in the wormhole structures
as the time varies.

In this paper we have discussed several aspects of the
evolving wormholes. In the former sections, we briefly
describe the metric and Einstein field equations regarding
wormhole in FRW universe. Then we dive into solutions
regarding wormholes as well as scale factors and density
functions for different cases. After that we study the energy
conditions and embedding space regarding the wormhole and
next, we calculate the condition for traversability through the
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wormhole and finally we calculate the proper length between
two distances.

2 Basic equations of wormhole embedded in FRW
universe

Let us consider the spacetime metric of a dynamic traversable
wormhole in a Friedmann-Robertson-Walker universe as

ds2 = −e2φ(r)dt2 + a2(t)

[
dr2

1 − kr2 − b(r)
r

+ r2dθ2 + r2 sin2 θdφ2
]
. (1)

Here b(r) and φ(r) are known as shape function (describes the
nature of the wormhole throat which indicates the surface of
minimum radius) and redshift function (which is finite every-
where to ensure without event horizon) respectively and a(t)
is the scale factor of the universe describing the size of the
universe. k represents the sign of the curvature of spacetime
with values: +1, 0,−1. Note that the metric (1) becomes
static Morris–Thorne wormhole when a(t) → constant
and k → 0. When b(r) and φ(r) → 0, the spacetime met-
ric (1) coincides with the FRW metric.

In this study, we assume an inhomogeneous and
anisotropic fluid matter source comprising the wormhole
with a diagonal energy-momentum tensor as (ρ(r, t), pr (r, t),
pt (r, t), pt (r, t)). The quantitiesρ(r, t), pr (r, t), pt (r, t) stand
for the mass energy density, radial pressure and transverse
pressure as measured by observers sited at constant r, u, φ.

With these considerations, the non trivial Einstein’s equa-
tions are obtained as (8πG = 1)

ρ(r, t) = 3ȧ2

a2 e−2φ + 3k

a2 + b′

a2r2 , (2)

pr (r, t) = −2ä

a
e−2φ − ȧ2

a2 e
−2φ − k

a2 − b

a2r3

+ 2

a2r
φ′

(
1 − kr2 − b

r

)
, (3)

pt (r, t) = −2ä

a
e−2φ − ȧ2

a2 e
−2φ − k

a2 + b − rb′

2a2r3

+ 1

a2r
φ′

(
1 − kr2 − b

r

)

+ 1

a2

[
φ′2

(
1 − kr2 − b

r

)

+φ′′
(

1 − kr2 − b

r

)
− 1

2
φ′

(
2kr + rb′ − b

r2

)]
,

(4)

Ttr = ȧ

a2 e
−φφ′

(
1 − kr2 − b

r

)1/2

. (5)

Here, a prime and an overdot denote differentiation with
respect to r and t, respectively. Ttr stands for the outward
energy flow.

Conservation of energy equation, T ν
μ;ν = 0, yields

∂ρ

∂t
+ ȧ

a
(3ρ + pr + 2pt ) = 0, (6)

p′
r − (pt − pr )

2

r
= 0. (7)

3 Evolving wormhole solutions

We have assumed no outward energy flow, i.e. Ttr = 0.
Equation (5) implies either φ′ = 0 or ȧ = 0. If ȧ = 0,

then dynamic nature of the wormholes will be lost. So, we
reject this case. Now, φ′ = 0 implies φ = constant = 0.

Now the field equations (2)–(4) will be modified as

ρ(r, t) = 3(ȧ2 + k)

a2 + b′

a2r2 , (8)

pr (r, t) = −2ä

a
− ȧ2

a2 − k

a2 − b

a2r3 , (9)

pt (r, t) = −2ä

a
− ȧ2

a2 − k

a2 + b − rb′

2a2r3 . (10)

Following Sung-Won Kim [10], we use the method of
separation of variables to solve these equations, and assume

a2(t)ρ(r, t) = a2(t)ρc(t) + ρw(r),

a2(t)pr (r, t) = a2(t)pc(t) + pw
r (r),

a2(t)pt (r, t) = a2(t)pc(t) + pw
t (r).

(11)

The energy density, radial and transverse pressures are taken
as separable forms with superscripts c and w indicating the
cosmological part (function of t only) and the wormhole part
(function of r only) respectively. The cosmological part is
characterized by an isotropic pressure pc.

Now, the field equations (8)–(10) will be separated as

a2
[
ρc − 3(ȧ2 + k)

a2

]
= b′

r2 − ρw = L , (12)

a2
[
pc + 2ä

a
+ ȧ2

a2 + k

a2

]
= − b

r3 − pw
r = M, (13)

a2
[
pc + 2ä

a
+ ȧ2

a2 + k

a2

]
= −b − rb′

2r3 − pw
t = M, (14)

where L and M are separation constants. In Eqs. (13) and
(14), the cosmological parts are equal and that’s why the
separation constants are the same. Here both the separation
constants should not be zero simultaneously as it play the role
of connection between the cosmological part and wormhole
part.
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Cosmological part, Eqs. (13) and (14) yield

ρ̇c + 3ȧ

a
(ρc + pc) = (L + 3M)

ȧ

a3 . (15)

[One can also obtain the above equation from conservation
of energy equation, T ν

μ;ν = 0]
From Eq. (12), we can get the cosmological part as

ρc = L

a2 + 3(ȧ2 + k)

a2 . (16)

For cosmological part i.e. evolution part, Eqs. (15) and
(16) are two master equations with three unknowns namely
a, pc, ρc.

For wormhole part, we have three master equations with
four unknowns as

b′

r2 − ρw = L , (17)

b − b′r
2r3 − pw

t = M, (18)

− b

r3 − pw
r = M. (19)

3.1 Wormhole solutions supported by dark matter

In recent past, Yoshiaki SOFUE [20] proposed a new density
profile of the dark matter distribution in the spiral galaxy
known as the exponential density profile and is given by

ρw = ρse
− r

rs , (20)

where rs is the scale radius and ρs is the central density.
In the context of evolving wormhole studies, we assume

that the wormhole part is supported by above exponential
density profile (20).

Now from Eq. (17)

b′ = Lr2 + ρse
− r

rs r2,

we obtain

b = L

3
r3 − ρse

− r
rs [rsr2 + 2r2

s r + 2r3
s ] + C, (21)

where C is an integration constant. At the throat radius r = r0,
b(r0) = r0 which implies

C = r0 − L

3
r3

0 + ρs .e
− r0

rs [rsr2
0 + 2r2

s r0 + 2r3
s ].

Now, one can find flaring out condition at the throat as
b′(r0) < 1, which yields

Lr2
0 + r2

0 ρse
− r0

rs < 1

i.e.,

L <
1

r2
0

− ρse
− r0

rs . (22)

The condition for the asymptotic flatness of the wormhole is
limr→∞ b(r)

r → 0. Therefore, to satisfy the asymptotically
flatness condition, one needs to take L = 0. However, for
asymptotically non flat wormhole, one will have to match
the wormhole spacetinme at some junction interface with the
Schwarzschild spherically symmetric static vacuum solution
according to Birkhoff theorem.

Putting the value of b in (18) and (19), we can obtain the
expressions of pw

t , pw
r as

pw
t = − L

3
− ρse

− r
rs

[
1

2
+ rs

2r
+ r2

s

r2 + r3
s

r3

]
+ C

2r3 − M,

(23)

pw
r = − L

3
+ ρse

− r
rs

[
rs
r

+ 2r2
s

r2 + 2r3
s

r3

]
− C

r3 − M. (24)

3.2 Solutions for scale factor

Now we will explore the cosmological part with different
criteria as follows:

Case 1: Assume power law form of scale factor

a(t) = tn, n is an arbitrary constant. (25)

Here, we assume the evolution of cosmological wormhole
is described by the expansion of the scale factor given in Eq.
(24).

For this scale factor, Eqs. (15) and (16) yield energy den-
sity and pressure (both cosmological part) as

ρc = Lt−2n + 3t−2n(n2t2n−2 + k), (26)

pc = t−2n(M − k) + t−2(2n − 3n2). (27)

The total energy density and pressures are given by

ρ = Lt−2n + 3t−2n(n2t2n−2 + k) + t−2n
[
ρse

− r
rs

]
, (28)

pr = t−2n(M − k) + t−2(2n − 3n2) + t−2n
[

− L

3
+ ρse

− r
rs

×
(
rs
r

+ 2r2
s

r2 + 2r3
s

r3

)
− C

r3 − M

]
, (29)

pt = t−2n(M − k) + t−2(2n − 3n2) + t−2n
[

− L

3
− ρse

− r
rs

×
(

1

2
+ rs

2r
+ r2

s

r2 + r3
s

r3

)
+ C

2r3 − M

]
. (30)

Case 2: Assume exponential form of scale factor

a(t) = eωt , ω is an arbitrary constant. (31)

This is known as the de-Sitter universe which indicates a non
singular continuously expanding model of the universe.

For this choice, we obtain the energy density and pressure
component as

ρc = 3ω2 + (L + 3k)e−2ωt , (32)
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pc = e−2ωt (M − k) − 3ω2. (33)

In this case, the total energy density and pressures are given
by

ρ = 3ω2 + (L + 3k)e−2ωt + e−2ωt
[
ρse

− r
rs

]
, (34)

pr = e−2ωt (M − k) − 3ω2 + e−2ωt
[

− L

3

+ρse
− r

rs

(
rs
r

+ 2r2
s

r2 + 2r3
s

r3

)
− C

r3 − M

]
, (35)

pt = e−2ωt (M − k) − 3ω2 + e−2ωt
[

− L

3

−ρse
− r

rs

(
1

2
+ rs

2r
+ r2

s

r2 + r3
s

r3

)
+ C

2r3 − M

]
. (36)

Case 3: ρc = βa−n1(t), β, n1 are constants.
Here we have assume cosmological density is inversely

proportional to polynomial function of the scale factor. With
this form of ρc, Eq. (16) yields

βa2−n1 = (L + 3k) + 3ȧ2.

This implies
∫

da√
a2−n1 − ( L+3k

β
)

= t

√
β

3
+ C1, (37)

where, C1 is an integration constant.
Subcase-3.1: n1 = 1:

a = 1

4

(
t

√
β

3
+ C1

)2

+ L + 3k

β
(38)

For this choice, we obtain the energy density and pressure
component as

ρc = β

⎡
⎣1

4

(
t

√
β

3
+ C1

)2

+ L + 3k

β

⎤
⎦

−1

, (39)

pc = (L + 3M)

⎡
⎣1

4

(
t

√
β

3
+ C1

)2

+ L + 3k

β

⎤
⎦

−2

−2β

3

⎡
⎣1

4

(
t

√
β

3
+ C1

)2

+ L + 3k

β

⎤
⎦

−1

. (40)

In this case, the total energy density and pressures are given
by

ρ = β

⎡
⎣1

4

(
t

√
β

3
+ C1

)2

+ L + 3k

β

⎤
⎦

−1

+
⎡
⎣1

4

(
t

√
β

3
+ C1

)2

+ L + 3k

β

⎤
⎦

−2 [
ρse

− r
rs

]
, (41)

pr = (L + 3M)

⎡
⎣1

4

(
t

√
β

3
+ C1

)2

+ L + 3k

β

⎤
⎦

−2

−2β

3

⎡
⎣1

4

(
t

√
β

3
+ C1

)2

+ L + 3k

β

⎤
⎦

−1

+
⎡
⎣1

4

(
t

√
β

3
+ C1

)2

+ L + 3k

β

⎤
⎦

−2

×
[
− L

3
+ ρse

− r
rs

(
rs
r

+ 2r2
s

r2 + 2r3
s

r3

)
− C

r3 − M

]
, (42)

pt = (L + 3M)

⎡
⎣1

4

(
t

√
β

3
+ C1

)2

+ L + 3k

β

⎤
⎦

−2

−2β

3

⎡
⎣1

4

(
t

√
β

3
+ C1

)2

+ L + 3k

β

⎤
⎦

−1

+
⎡
⎣1

4

(
t

√
β

3
+ C1

)2

+ L + 3k

β

⎤
⎦

−2

×
[
− L

3
− ρse

− r
rs

(
1

2
+ rs

2r
+ r2

s

r2 + r3
s

r3

)
+ C

2r3 − M

]
.

(43)

Subcase-3.2: n1 = 2:

a = t

√
1

3
(β − L − 3k) + C1 (44)

For this choice, we obtain the energy density and pressure
component as

ρc = β

[
t

√
1

3
(β − L − 3k) + C1

]−2

, (45)

pc =
(
l + 3M − β

3

)[
t

√
1

3
(β − L − 3k) + C1

]−2

. (46)

In this case, the total energy density and pressures are given
by

ρ = β

[
t

√
1

3
(β − L − 3k) + C1

]−2

+
[
t

√
1

3
(β − L − 3k) + C1

]−2 [
ρse

− r
rs

]
, (47)

pr =
(
l + 3M − β

3

) [
t

√
1

3
(β − L − 3k) + C1

]−2

+
[
t

√
1

3
(β − L − 3k) + C1

]−2

×
[
− L

3
+ ρse

− r
rs

(
rs
r

+ 2r2
s

r2 + 2r3
s

r3

)
− C

r3 − M

]
, (48)
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pt =
(
l + 3M − β

3

)[
t

√
1

3
(β − L − 3k) + C1

]−2

+
[
t

√
1

3
(β − L − 3k) + C1

]−2

[
− L

3
− ρse

− r
rs

(
1

2
+ rs

2r
+ r2

s

r2 + r3
s

r3

)
+ C

2r3 − M

]
.

(49)

Case 4: a(t) = tαexp(γ t), γ and α are constants:
This is known as hybrid model of the universe comprising

with power law form as well as the exponential form of the
scale factor.

For this choice, we obtain the energy density and pressure
component as

ρc = (L + 3k)t−2αe−2γ t + 3
(α

t
+ γ

)2
, (50)

pc = (m − k)t−2αe−2γ t + 2αt−2 − 3
(α

t
+ γ

)2
). (51)

In this case, the total energy density and pressures are given
by

ρ = (L + 3k)t−2αe−2γ t + 3
(α

t
+ γ

)2 + t−2αe−2γ t

×
[
ρse

− r
rs

]
, (52)

pr = (m − k)t−2αe−2γ t + 2αt−2 − 3
(α

t
+ γ

)2
)

+t−2αe−2γ t
[

− L

3
+ ρse

− r
rs

(
rs
r

+ 2r2
s

r2 + 2r3
s

r3

)

−C

r3 − M

]
, (53)

pt = (m − k)t−2αe−2γ t + 2αt−2 − 3
(α

t
+ γ

)2
)

+t−2αe−2γ t
[

− L

3
− ρse

− r
rs

(
1

2
+ rs

2r
+ r2

s

r2 + r3
s

r3

)

+ C

2r3 − M

]
. (54)

The choice of scale factors corresponds to certain case
studies. Note that finding solutions to arbitrary scale fac-
tors is quite cumbersome. During our case studies we also
encountered certain scale factors which we couldn’t solve
by existing methods of calculations. Also the choice of the
scale factor for the case studies are very standard forms such
as exponential form, power law form etc. For these scale
factors, we have obtained consistent solutions of the other
physical parameters.

4 Embedding space

The radial coordinate ’r’ extends from its minimum value at
r0, representing the wormhole throat, to infinity, increasing in
range. We possess an asymptotically flat evolving wormhole
characterized by a positive energy density. From the metric
(1) one can see that wormholes at spatial infinity (r → ∞)

assume the following asymptotic metric:

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2 + r2dθ2 + r2 sin2 θdφ2

]
(1a)

The metric exhibits slices where t remains constant, constitut-
ing spaces of constant curvature. Consequently, the asymp-
totic metric (1a) is organized into foliations of spaces with
constant curvature. Since the wormhole described by Eq. (1)
evolves over time, each slice at a fixed instant will vary for
different time values.

The shape function actually determines the profile pic-
ture of a wormhole. Consider a slice of the wormhole at a
fixed instant of time, t = constant = t0 and θ = π

2 . Here
location of t0 within the interval during which the wormhole
exists. Present wormhole is non-static i.e. it evolves with
time, therefore, one can get different slices with different
values of time. As a result, scale factor a(t) regulates the
shape of the wormhole. Nevertheless, it can be demonstrated
that the wormhole’s structure remains unaltered over time
through the utilization of an embedding procedure.

The three dimensional spatial hyper surface given by t =
t0 of our spherically symmetric space-time takes the form

dσ 2 = grrdr
2 + r2a2(t0)(dθ2 + sin2 θdφ2).

It can be embedded in a four dimensional space as

dσ 2 = dz̄2 + dr̄2 + r̄2(dθ2 + sin2 θdφ2) (55)

Let us assume, r̄ = a(t0)r , dr̄2 = a2(t0)dr2.
In the equatorial place, θ = π

2 , we have

dσ 2 = a2(t0)(t)dr2

1 − kr2 − b(r)
r

+ r2a2(t0)(t)dθ2,

= dz̄2 + dr̄2 + r̄2dφ2,

= dr̄2

1 − b̄
r̄

+ r̄2dφ2.

(56)

This yields

dz̄

dr̄
= ±

(
r̄

b̄
− 1

)− 1
2 = ±

(
a(t0)r

a(t0)b + ka(t0)r3 − 1

)− 1
2

= dz

dr
, (57)

where b̄ = a(t0)b + ka(t0)r
3. (58)
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Note that here z̄ = ±a(t0)z. (59)

The flare-out condition for consisting of wormhole i.e. to
maintain the shape of the traversable wormhole, the flare-out
condition d2r̄

d z̄2 > 0 should be satisfied.

Now,
d2r̄

d z̄2 = b̄ − b̄′r̄
2b̄2

= 1

a(t0)

b − b′r − 2kr3

2(b + kr3)2

= 1

a(t0)

d2r

dz2 > 0. (60)

[
Here, b̄′ = db̄

dr̄

]
.

Note that for k = 0, a(t0) = 1, this flare-out condition
reduces to flare-out condition of static wormhole. Also one
can notice that the evolving wormhole will continue the iden-
tical size in the z̄, r̄ , φ coordinates. We can draw the graph
of the embedded curve z = z(r) as well as the entire imagin-
ing of the surface generated by the rotation of the embedded
curve about the vertical z axis (Fig. 1).

5 Energy conditions

We have already mentioned that the flaring-out condition has
been satisfied (b′(r0) < 1). Now at the same time we will
try to check whether null energy condition (NEC) is obeyed
or not for constructing the dynamical wormhole. In static
wormhole configuration, one of the fundamental criterion is
that the null energy condition should be violated. However in
dynamical wormhole configuration the situation may change
due to extra terms (time dependent scale factor) in the field
equations. In general one can execute the condition ρ+ pr >

0 for normal matter comprising the wormhole. In the event
of dynamical wormholes it is argued that that there exist
wormhole solutions which obey NEC. So, we will search
some Lorentzian dynamical wormhole geometries with no
requirement of the matters that violate the NEC. Now, we
calculate null energy condition expression as

ρ + pr = 3
ȧ2

a2 + 3
k

a2 − 2
ä

a
− ȧ2

a2 − k

a2 − b

a2r3 + b′

a2r2

= 2
ȧ2

a2 − 2
ä

a
− (−2kr3 − rb′ + b)

a2r3

= A −
[
(b + kr3)2

ar3

]
d2r̄

d z̄2 , (61)

where, A = 2
ȧ2

a2 − 2
ä

a
.

(62)

Since d2r̄
d z̄2 > 0, so sign of ρ + pr depends on A.

For static case A = 0, so one gets ρ + pr always negative
i.e. matter distribution should be exotic in nature.

In usual FRW cosmological model of the universe, one
can get different scale factor a(t) which depends on k and
some parameters.

If A > 0, then there exists a possibility to have non exotic
matter (pr + ρ > 0) comprising the wormhole.

Here, we calculate A for all cases with subcases.

Case 1: A = 2n

t2 , (63)

Case 2: A = 0, (64)

Case 3.1: A =
β
12

(√
β
3 t + C1

)2

− L+3k
3[

1
4

(√
β
3 t + C1

)2

+ L+3k
β

]2 , (65)

Case 3.2: A = 2β − 2L − 6k(
t
√

3β − 3L − 9k + √
3C1

)2 , (66)

Case 4: A = 2α

t2 . (67)

Note that A > 0 for positive values of the parameters n, α

and β > L + 3k.
Now we check whether the NEC is violated or not at the

throat r = r0 for all t.

(ρ + pr )r=r0 = 2
ȧ2

a2 − 2
ä

a
− (−2kr3

0 − r0b′(r0) + b(r0))

a2r3
0

.

For (ρ + pr )r=r0 > 0, we have (using b(r0) = r0),

ȧ2 − aä >
δ − kr2

0

r2
0

, (68)

where 2δ = [1 − b′(r0)] > 0, since b′(r0) < 1.
For case 1, Eq. (68) implies

t >

[
δ − kr2

0

nr2
0

] 1
2n−2

≡ t0,

for which (ρ + pr )r=r0 > 0. Thus at the evolution of the
universe, when t > t0, the NEC is obeyed (see left panel of
Fig. 2). But up to time t < t0, we get wormhole supported
by the matter violating NEC i.e. by exotic matter. Here, one
can note that evolution of the universe plays a crucial role for
the formation of wormhole.

For case 2, the wormhole is always supported by exotic
matter. Here evolution of the universe does not affect on
wormhole configuration (see middle panel of Fig. 2).

For case 3.1, NEC obeys for all time after

t >

[
72(δ − kr2

0 )

β2r2
0

+ 12(L + 3k)

β2

] 1
2

− C1

√
3

β
= t0. (69)

But up to time t < t0, the wormhole is supported by exotic
matter (see right panel of Fig. 2).
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Fig. 1 (Left panel) The embedding diagram for the wormhole spacetime given in Eq. (12). (Right panel) The entire imagining of the surface
generated by the rotation of the embedded curve about the vertical z axis

Fig. 2 (Left panel) In case 1, during the evolution of the universe, when t > t0, the NEC is obeyed. (Middle panel) For case 2, the wormhole is
always supported by exotic matter. (Right panel) In case 3.1, during the evolution of the universe, when t > t0, again the NEC is obeyed

For case 3.2, NEC obeys if

1

3
(β − L − 3k) >

δ − kr2
0

r2
0

. (70)

Thus through out the evolution of the universe, one gets
wormhole without violating NEC for the above condition
(70) (see left panel of Fig. 3).

For case 4, NEC obeys if

tα−2e2γ t >
δ − kr2

0

αr2
0

. (71)

Hence, during the evolution of the universe, when t > T ,
where T is satisfying the equation

T α−2e2γ T − δ − kr2
0

αr2
0

= 0,

the NEC is obeyed. But up to time t < T , the wormhole is
supported by exotic matter (see right panel of Fig. 3).

The present spacetime metric is describing a dynamical
wormhole in FRW expanding universe. Here, a(t) → ∞ as
t → ∞. Also, all A for different proposed models except
case 3.1 approach to zero as t → ∞ and NEC is violated.
So, NEC violations could be desisted only for finite non zero
values of A. Thus we restrict finite interval of times in which
a(t) is finite. The time interval may arbitrary small or large
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Fig. 3 (Left panel) in case 3.2,
through out the evolution of the
universe, one gets wormhole
without violating NEC. (Right
panel) in case 4, again the NEC
is obeyed after certain time

where a(t) is non zero finite in that interval. However, in the
case 3.1, after the time t = t0 given in Eq. (69) one can get
a wormhole supported by non exotic matter for ever. This
is possible because, as t → ∞, A assumes non zero finite
value.

6 Traversability conditions

According to Morris–Thorne, for a convenient journey
through the wormhole, certain conditions should be imposed
at the space stations (initial and final destinations) as well
as on velocity of the traveler. The traveler feels the acceler-
ation must not exceed the Earth’s gravitational acceleration,
g⊕. One can calculate the traveler’s four-acceleration in his
proper reference frame as follows: The orthonormal basis
(e′̂

0
, e′̂

1
, e′̂

2
, e′̂

3
) of the traveler’s proper reference is obtained

via Lorentz transformation in terms of the orthonormal basis
vectors (êt , êr , eθ̂ , eϕ̂ ) of the static observers as

e′̂
0

= σ êt ∓ σ
v

c
êr , e′̂

1
= ∓σ êr + σ

v

c
êt , e′̂

2
= eθ̂ , e′̂

3
= eϕ̂ ,

where σ = (1− v2

c2 )− 1
2 , and v(r) be the velocity of the traveler

when he passes r as observed by a static observer positioned
there.

To travel through a wormhole, the tidal gravitational forces
experienced by a traveler must be reasonably small. Accord-
ing to Morris and Thorne, the acceleration felt by the traveler
should not exceed Earth’s gravity. Thus the tidal accelerations
between two parts of the traveler’s body, separated by sev-
eral meters, must be less than the gravitational acceleration
at Earth’s surface g⊕. One can calculate the tidal acceleration
felt by the traveler as follows:

The tidal acceleration is given by the formula

�aμ̂′ = −Rμ̂′
ν̂′α̂′β̂ ′U

ν̂′
ηα̂′

U β̂ ′
,

where U μ̂′ = δ
μ̂′
0̂′ is the traveler’s four velocity and ηα̂′

is the separation between two arbitrary parts of his body
which is purely spatial in the traveler’s reference frame. The
nonzero components of Riemann tensor R2̂′0̂′2̂′0̂′ in the trav-
eler’s frame from the static observer’s frame can be obtained
by using a Lorentz transformation.

Now the radial tidal constraint is given by

R1̂′0̂′1̂′0̂′ = Rr̂ t̂r̂ t̂ =
∣∣∣∣ äa

∣∣∣∣ ≤ g⊕
c2|η| . (72)

Note that, for the evolving wormhole, the tidal acceler-
ation depends on time. More specifically, in this expand-
ing wormhole, the gravitational forces experienced by an
observer at a constant throat radius decreases over time. In
fact, the radial tidal constraint (72) is directly restraining the
expansion of the wormhole. If one considers the size of the
traveler’s body is |η| = 2 m, then

g⊕
c2|η| ≈ 1

(108m)2 .

Now, we calculate the radial tidal acceleration constraint
of the evolving wormholes obtained in this paper with the
different scale factors and have found the restriction on time
as follows:

Case 1:

t ≥ c
√
n(n − 1) (73)

For, a particular value of n, say n = 2, c = 108 m/s, we
have

t ≥ 1.414 × 108 s.

Case 2:
In this case of exponentially expanding wormhole uni-

verse, the radial tidal forces experienced by a traveler is
independent of the time evolution. It has a restriction on the
parameter α as

ω ≥ 1√
c
. (74)
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Case 3.1:

t ≥
⎡
⎣(

2c2β

3
− 4(L + 3k)

β

) 1
2

− C1

⎤
⎦

√
3

β
. (75)

Here for the following values of the parameters, say β =
1, k = 0, L = 0,C1 = 0, c = 108 m/s, we have

t ≥ 1.414 × 108 s.

Case 3.2:
In this case, ä = 0, i.e. the radial tidal acceleration is

identically zero and hence satisfies the constraint (72) auto-
matically.

Case 4:

t ≥ 2αγ c2 + √
4α2γ 2c4 + 4c2(α2 − α)(1 − γ 2c2)

2(1 − γ 2c2)
. (76)

For a particular choice of parameters, say γ c = 0.2, α = 3
and c = 108 m/s, we have the following restriction on time
t ,

t ≥ 8.571 × 107 s.

Therefore, it is speculated that after a fixed time of the evolu-
tion, one may have a traversable wormhole. However, there
is some lateral tidal constraint also.

The lateral tidal constraint is given by

R2̂′0̂′ 2̂′0̂′ = R3̂′0̂′ 3̂′0̂′ = σ 2R
θ̂ t̂ θ̂ t̂ + σ 2 v2

c2 R
θ̂ r̂ θ̂ r̂ + 2σ 2 v

c
R

θ̂ t̂ θ̂ r̂

=
∣∣∣∣∣∣σ

2 ä

a
− σ 2 v2

c2

2a2r3

[
2ȧ2r3 − b − kr3 + r(b′ + 3kr2)

]
∣∣∣∣∣∣

≤ g⊕
c2|η| . (77)

Lateral tidal constraint gives a restriction on velocity of the
traveler as well as matter distribution comprising the worm-
hole. We have derived the limitation for the lateral tidal accel-
eration and get the restriction of non-relativistic velocity at
the throat (i.e. v << c, σ ≈ 1) as follows:

Case 1:

v ≤ √
2tn

[
c2n(n − 1)t−2 + 1

] 1
2
[

2n2t2n−2

+L + 2K + ρse
− r0

rs − r−2
0

]− 1
2

. (78)

Case 2:

v ≤ √
2eωt

(
ω2c2 + 1

) 1
2
[

2ω2e2ωt

+2K + L + ρse
− r0

rs − r−2
0

]− 1
2

. (79)

Case 3.1:

v ≤ √
2

⎡
⎣1

4

(
t

√
β

3
+ C1

)2

+ L + 3K

β

⎤
⎦

1
2

.

(
β

6
c2 + 1

) 1
2

.

[
β

6

(
t

√
β

3
+ C1

)2

+L + 2K + ρse
− r0

rs − r−2
0

]− 1
2

. (80)

Case 3.2:

v ≤ √
2

[
t
√

β − (L + 3K ) + √
3C1

] 1
2

.
[
2β + L + 3ρse

− r0
rs − 3r−2

0

]− 1
2
.3

1
4 . (81)

Case 4:

v ≤ √
2

(
tαeβt) 1

2 .

[
c2{(α2 − α)tα−2 + 2αβtα−1

+β2tα}eβt + 1

] 1
2

.

[
2

(
αt−1 + β

)2
e2βt t2α

+L + 2K + ρse
− r0

rs − r−2
0

]− 1
2

. (82)

a = 1, k = 0 gives the case for static wormhole.

7 Proper length between two distances r1, r2

It’s equally intriguing to investigate how changes in the scale
factor over time impact the nature of the proper length or
proper circumference of the throat of the wormhole.

Let us first consider the case of proper circumference of
the throat of wormhole. Consider a slice of the wormhole
at a fixed instant of time and θ = π/2. Let r0 be the throat
radius of the wormhole so that r = b(r0) = r0. The proper
circumference (C0) of the wormhole throat is

C0 =
∫ 2π

0
a(t)r0 dφ = a(t)(2πr0). (83)

This is merely the scale factor times the static wormhole
circumference.

Now we calculate the radial proper length (l(t)) between
any two points r1 > r0 and r2 as

l(t) = ±a(t)
∫ r2

r1

dr

(1 − kr2 − b
r )1/2

, (84)

which is just scale factor times of the radial proper separation
of the static wormhole counterpart (see Figs. 2, 4).

However, a temporal singularity may occur at t = t0 where
a(t0) = 0.
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Fig. 4 The radial proper separation of the static wormhole counterpart

8 Concluding remarks

Within this manuscript, we explore the viability of worm-
holes containing dark matter within the framework of clas-
sical general relativity against a backdrop of Friedmann-
Robertson-Walker (FRW) cosmology. Our investigation
extends to dynamic wormholes situated in various cosmo-
logical contexts, each defined by distinct criteria such as
specific choices of scale factors and cosmological density.
The temporal existence of these geometries, subject to the
null energy condition (NEC) for the involved matter, intro-
duces an intriguing aspect. Despite the potential perturba-
tions associated with their transient nature, this dynamical
perspective presents an advancement over static geometries.
Notably, wormholes supported by non-exotic matter can be
established within a finite interval of time when the scale
factor a(t) assumes a non-zero finite value. The duration of
this evolution can span from arbitrarily small to large inter-
vals. Section 3.1 highlights a scenario where the evolution
period can be infinitely large. After the time t = t0 (as given
in Eq. 69), a wormhole supported by non-exotic matter can
endure indefinitely. Our findings reveal instances where the
proper circumference of the wormhole throat expands due to
the temporal evolution of the geometry. Turning our attention
to traversability criteria related to the tidal forces experienced
by a traveler, we adopt a systematic approach. This involves
transitioning from the static observer’s frame in the case of
a static wormhole to the comoving frame for the evolving
geometry. Subsequently, we apply a simple Lorentz trans-
formation to switch to the traveler’s frame. Riemann tensor
components are then derived in this traveler’s frame, estab-

lishing constraints on tidal forces. These constraints neces-
sitate determining the time at which the inequalities impose
the most stringent conditions through extremization. Sub-
sequent extremization of the traveler’s velocity is required
to obtain the ultimate condition. Satisfying these conditions
renders the wormhole traversable. To quantify traversability,
we determine the maximum speeds at which a traveler could
traverse the wormhole, considering specific values of param-
eters and the throat radius r0. This ensures compliance with
the given constraint.
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