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Abstract Following arXiv:2210.12963 [hep-th], we inves-
tigate aspects of the time evolution operator regarded as
a density operator and associated entanglement-like struc-
tures in various quantum systems. These involve timelike
separations and generically lead to complex-valued entropy,
although there are interesting real subfamilies. There are
many parallels and close relations with reduced transition
matrices and pseudo-entropy, which we discuss and clarify.
For instance, a related quantity involves the time evolution
operator along with a projection onto some initial state, which
amounts to analysing pseudo-entropy for the initial state and
its time-evolved final state.
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1 Introduction

Generalizations of the Ryu–Takayanagi formulation of holo-
graphic entanglement [1–3] in AdS/CFT [4–6] to de Sitter
space reveal new fascinating structures. These are based on
taking the future boundary I+ of de Sitter space as the anchor-
ing surface for extremal surfaces, along the lines of dS/CFT
[7–10]. Most recently these appear in [11,12], refining pre-
vious investigations of extremal surfaces and holographic
entanglement in de Sitter space [13–20] (see also [21,22]).

In the present work, we explore aspects of “time-
entanglement”, or timelike entanglement, in various quantum
mechanical systems, towards understanding entanglement-
like structures involving timelike-separations, following
[12]. There are close parallels with pseudo-entropy [23] (and
[11]), as we will describe. Related investigations appear in
e.g. [24–34] (also [35]).

To summarize the de Sitter studies (from [12]), extremal
surfaces anchored at I+ turn out to not return to I+ (unlike
those in AdS where the surfaces possess turning points).
Since such surfaces do not return, they require extra data
or boundary conditions in the past (interior). In entirely
Lorentzian de Sitter spacetime, this leads to future-past time-
like surfaces stretching between I±. Apart from an overall −i
factor (relative to spacelike surfaces in AdS) their areas are
real and positive. With a no-boundary type boundary con-
dition, the top half of these timelike surfaces joins with a
spacelike part on the hemisphere giving a complex-valued
area. Since these surfaces necessarily have a timelike com-
ponent (or run along a complex time contour), they have
complex areas. Two aspects of “time-entanglement” in sim-
ple toy models in quantum mechanics were described in [12].
One is based on a future-past thermofield double type state
entangling timelike separated states, which leads to entirely
positive structures. Another is based on the time evolution
operator and reduced transition amplitudes, which leads to
complex-valued entropy.
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In the present paper we discuss various aspects of the
time evolution operator regarded as a density operator and its
entanglement structures which involve timelike separations.
There are many parallels and close relations with pseudo-
entropy [23]: we summarize some central points on time
evolution and pseudo-entropy in Sect. 2, including a general
map in Sect. 2.1. We then study various classes of finite quan-
tum mechanical examples in Sect. 3, including qubit systems
and harmonic oscillators (some detailed in Appendices A, B
and C). In Sect. 4 we study entanglement structures for the
time evolution operator along with a projection operator onto
some state towards isolating components of the time evo-
lution operator. This ends up amounting to pseudo-entropy
for this state and its time-evolution: in Sect. 4.1 we study
thermofield-double type states and find that some general
features emerge. In Sect. 5 we study the time evolution oper-
ator normalized at t = 0 (rather than at general time t): this
gives rise to various detailed differences in the entanglement
structures that emerge. In Sect. 6 we describe some aspects
of entanglement entropy in 2-dim CFT for timelike inter-
vals, elaborating on that in [12]. Some of the discussions here
have partial overlap with [11,32]. In these time-independent
situations so far, the structure of time-entanglement shows
parallels with ordinary finite temperature entanglement, but
with analytic continuation to imaginary temperature β = i t .
In Sect. 7, we study time-dependent interactions focussing
on simple 2-qubit systems with δ-function potentials, and the
resulting time entanglement.

Overall, pseudo-entropy [23] is a generalization of entan-
glement entropy involving two arbitrary states (without nec-
essarily specifying dynamical information): this does not
need to pertain to timelike separations per se. The notions of
time entanglement are designed to deal with timelike sepa-
rations, involving entanglement structures based on the time
evolution operator, as well as projection onto specific ini-
tial states: so in particular we require specifying a Hamil-
tonian that dictates time evolution. However the calcula-
tions involved in studying time entanglement entropy are
closely related to those in evaluating pseudo-entropy [23].
Our goal in these notes is more an exploration of time entan-
glement and how it dovetails with pseudo-entropy, rather than
a detailed classification (which already appears for pseudo-
entropy of various quantum systems in [23] and subsequent
work).

2 Summary: time evolution and pseudo-entropy

Our investigations, following [12], are based on regarding
the time evolution operator as a density operator, perform-
ing partial traces over subsystems and evaluating the corre-
sponding von Neumann entropy. The time evolution opera-
tor U(t) = e−i Ht for a system with Hamiltonian H can be

written in terms of (time-independent) Hamiltonian eigen-
states |i〉 (which are defined on some past time slice P).
Then the time evolution operator normalized at an arbitrary
time t gives

U(t) = e−i Ht =
∑

i

e−i Ei t |i〉〈i |

=
∑

i

|i〉t 〈i |P , |i(t)〉 ≡ |i〉t = e−i Ei t |i〉P ;

ρt (t) ≡ U(t)

Tr U(t)
⇒

ρt (t) =
∑

i

pi |i〉P 〈i |P , pi = e−i Ei t

∑
j e

−i E j t

→ ρA
t = TrBρt

=
∑

i

p′
i |i ′〉P 〈i ′|P → SA = −

∑

i

p′
i log p′

i . (2.1)

As is clear, there are sharp parallels with ordinary finite
temperature entanglement structures, except with imaginary
temperature β = i t : this will be seen explicitly as a recurring
theme throughout much of what follows.

A related quantity involves the time evolution operator
with projection onto some state |i〉,

ρ
|i〉
t = ρt |i〉〈i |

Tr(ρt |i〉〈i |)
= | f [i](t)〉〈i |

Tr(| f [i](t)〉〈i |) , | f [i](t)〉 = e−i Ht |i〉;

ρ
|i〉,A
t = TrB ρ

|i〉
t . (2.2)

The state | f [i]〉 is the final state obtained by time-evolving
the initial state |i〉. We obtain

|i〉 =
∑

cn|n〉
ρ

|i〉
t = 1∑

k e
−i Ek t |ck |2

∑

k,m

e−i Ek t ckc
∗
m |k〉〈m| (2.3)

for a general (non-eigen)state |i〉. At t = 0, the time evolution
operator is just the identity operator, a sum over all the eigen-
state projection operators, while the time evolution operator
with projection becomes simply the density matrix for the
initial state |i〉. For any nonzero time t , there is timelike sep-
aration between the initial states |ψ〉P and the eventual states
|ψ〉t . These entanglement structures involving timelike sep-
arations and time evolution have close parallels with pseudo-
entropy [23] obtained from the reduced transition matrix for
two arbitrary states |i〉, | f 〉 :

T A
f |i = TrB

( | f 〉〈i |
Tr(| f 〉〈i |)

)
. (2.4)

To summarise in generality, consider a bipartite system,
the Hilbert space being characterized by Hamiltonian eigen-
states |i, i ′〉 with energies Ei,i ′ . The normalized time evolu-

123



Eur. Phys. J. C           (2024) 84:499 Page 3 of 18   499 

tion operator (2.1) and its partial trace over B ≡ {i ′} are

ρt = 1
∑

i,i ′ e
−i Ei,i ′ t

∑

i,i ′
e−i Ei,i ′ t |i, i ′〉〈i, i ′|

→ ρA
t = 1

∑
i,i ′ e

−i Ei,i ′ t
(∑

i ′
e−i Ei,i ′ t

) |i〉〈i |. (2.5)

The time evolution operator with projection onto state |I 〉 is

|I 〉 =
∑

k,k′
ck,k′ |k, k′〉,

ρ
|I 〉
t = 1

∑
i,i ′ |ci,i ′ |2e−i Ei,i ′ t

×
∑

i,i ′, j, j ′
ci,i ′c

∗
j, j ′e

−i Ei,i ′ t |i, i ′〉〈 j, j ′|,

ρ
|I 〉,A
t = 1

∑
i,i ′ |ci,i ′ |2e−i Ei,i ′ t

×
∑

i, j

( ∑

i ′
ci,i ′c

∗
j,i ′e

−i Ei,i ′ t
)|i〉〈 j |. (2.6)

The reduced transition matrix for pseudo-entropy is obtained
as

|I 〉 = ci,i ′ |i, i ′〉, |F〉 = c′
i,i ′ |i, i ′〉;

TF |I = 1∑
i,i ′ c

′
i,i ′c

∗
i,i ′

×
∑

i,i ′, j, j ′
c′
i,i ′c

∗
j, j ′ |i, i ′〉〈 j, j ′|

T A
F |I = 1∑

i,i ′ c
′
i,i ′c

∗
i,i ′

×
( ∑

i ′
c′
i,i ′c

∗
j,i ′

)
|i〉〈 j |. (2.7)

It is clear that the time evolution operator with projection
(2.6) is obtained from the pseudo-entropy reduced transition
matrix (2.7) by restricting to the final state being that obtained
by time-evolving the initial state, i.e. |F〉 = U(t)|I 〉.

2.1 The time evolution operator and the transition matrix

With a single Hilbert space, the structure of the reduced
transition matrix appears different in detail from that of the
reduced time evolution operator: this is clear in bipartite sys-
tems from (2.5), (2.6), (2.7). However it would seem that
there should be close connections between the time evolu-
tion operator and the transition matrix since both pertain to
time evolution if we focus on final states as time-evolved
initial states.

Towards studying this, let us first recall that a special class
of states comprises thermofield-double type states |I 〉T FD =∑

k ck,{k}|k, {k}〉, with only diagonal components (a further

special subclass comprises maximally entangled TFD states,
with all ck,{k} equal).

Towards mapping time evolution and the transition matrix,
consider doubling the Hilbert space at both initial and final
times: i.e. extend the Hilbert state H ≡ H1 to H1 ⊗ H2,
where the Hilbert space H2 is an identical copy of H1. Now
consider thermofield-double type initial and final states:

|ψI 〉 =
∑

i

cIi |i〉1|i〉2,

|ψF 〉 =
∑

i

cFi |i〉1|i〉2, (2.8)

where {|i〉} is a basis of states. The (un-normalized) tran-
sition matrix is

TF |I = |ψF 〉〈ψI |
=

∑

i, j

cFi c
I ∗
j |i〉1|i〉2 〈 j |1〈 j |2. (2.9)

Performing a partial trace over copy-2 gives

Tr2 TF |I =
∑

i

cFi c
I ∗
i |i〉1〈i |1. (2.10)

For this to equal the time evolution operator, we require

Tr2 TF |I = U(t)

=
∑

i

e−i Ei t |i〉〈i | ⇒ cFi c
I
i ∗ = e−i Ei t . (2.11)

A “symmetric” solution is

cIi = ei Ei t/2 : |ψI 〉 =
∑

i

ei Ei t/2 |i〉1|i〉2,

cFi = e−i Ei t/2 : |ψF 〉 =
∑

i

e−i Ei t/2 |i〉1|i〉2. (2.12)

These can be regarded as obtained from a continuation
β → i t of the usual finite temperature thermofield-double
type states e−βEi /2|i〉|i〉. There are of course less symmet-
ric solutions cIi , cFi , describing the initial and final states.
However the symmetric solution reduces to ordinary entan-
glement when the initial and final states are the same, i.e.
|ψI 〉 = |ψF 〉 (i.e. at t = 0), the transition matrix becomes
the usual density matrix TF |I = |ψI 〉〈ψI | = ρI for the state
|ψI 〉. Thus the time evolution operator can be regarded as a
particular reorganization of the transition matrix appearing
in pseudo-entropy.

It is worth noting that for systems with infinite towers
of states, the trace of the time evolution operator contains
highly oscillatory terms and thus requires a regulator to be
well-defined: we will see this explicitly for the harmonic
oscillator later; see (3.18).

Single qubit: This simple case serves to illustrate the
above. In this case (described by (3.1)), we have H |1〉 =
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E1|1〉, H |2〉 = E2|2〉, with H the Hamiltonian. Let us take

|ψF 〉 =
∑

n=1,2

e− i En t
2 |n〉1 ⊗ |n〉2,

|ψI 〉 =
∑

m=1,2

e
i Em t

2 |m〉1 ⊗ |m〉2. (2.13)

Here the subscript 2 stands for the second auxiliary system
with the identical Hilbert space H2. Then the unnormalised
transition matrix T = |ψF 〉〈ψI | is

TF |I = |ψF 〉〈ψI | =
∑

n,m=1,2

e
−i(En+Em )t

2 |n〉1|n〉2〈m|1〈m|2.

(2.14)

Taking a partial trace over the second component gives

T 1
F |I = Tr2(TF |I )

=
∑

n=1,2

e−i Ent |n〉1〈n|1 = e−i Ht , (2.15)

thus obtaining the time evolution operator. This illustrates
the general discussion earlier in this simple case.

3 Time evolution operator and entanglement: examples

In this section we will study various examples of finite quan-
tum systems to explore the entanglement structure of the time
evolution operator.

3.1 2-qubit systems

For a 2-state system,

H |k〉 = Ek |k〉, k = 1, 2

|k〉F ≡ |k(t)〉 = e−i Ek t |k〉P . [〈1|2〉 = 0] (3.1)

we obtain ρt (t) using (2.1). Now, imagining a 2-spin analogy
|1〉 ≡ | + +〉, |2〉 ≡ | − −〉, performing a partial trace over
the second spins gives

ρA
t = 1

1 + eiθ
(|+〉P 〈+|P + eiθ |−〉P 〈−|P

)
, θ

= −(E2 − E1)t,

SA = −tr
(
ρA
t log ρA

t ) = − 1

1 + eiθ
log

1

1 + eiθ

− 1

1 + e−iθ
log

1

1 + e−iθ
, (3.2)

so the von Neumann entropy, recast as α +α∗, is real-valued
in this special case. We see that SA

t grows large as θ →
(2n + 1)π . Further ρA

t and SA
t are periodic in θ and so in

time t (simplifying SA
t shows terms containing log(eiθ/2)

which we retain as it is, rather than iθ
2 , so as to avoid picking

specific branches of the logarithm, thereby losing manifest

periodicity; within one θ -cell the simplified expression for
SA
t coincides with the corresponding one in [23]).

Now consider two qubits, each being |1〉, |2〉, with a more
general Hamiltonian

H = E11|11〉〈11| + E22|22〉〈22|
+E12

(|12〉〈12| + |21〉〈21|) (3.3)

that is diagonal in this basis. It is reasonable to take
E12 = E21. So the normalized time evolution operator (2.1)
becomes

ρt =
∑

i, j

e−i Ei j t
∑

kl e
−i Ekl t

|i j〉〈i j |

=
(|11〉〈11| + eiθ1 |22〉〈22| + eiθ2 (|12〉〈12| + |21〉〈21|))

1 + eiθ1 + 2eiθ2
;

θ1 ≡ −(E22 − E11)t, θ2 ≡ −(E12 − E11)t. (3.4)

(At t = 0, the θi vanish and this is the normalized identity
operator.) A partial trace over the 2nd component gives the
reduced time evolution operator,

ρA
t = 1

1 + eiθ1 + 2eiθ2

×
((

1 + eiθ2
)|1〉〈1| + (

eiθ1 + eiθ2
)|2〉〈2|

)
(3.5)

which generically has complex-valued von Neumann entropy.
It is clear that this matches ordinary finite temperature entan-
glement, except with imaginary temperature β = i t .

Now let us impose an exchange symmetry |1〉 ↔ |2〉 : this
occurs for instance if we consider two spins |±〉 with nearest
neighbour interaction H = −Js1

z s
2
z . This restriction now

implies E22 = E11 thereby reducing (3.5) to (3.2) earlier,
with just one nontrivial phase, giving real entropy.

Qubit chains: In Appendix B, we study finite and infi-
nite chains of qubits with nearest neighbour interactions,
towards understanding the reduced time evolution operator
for a single qubit, after partial trace over all other qubits. This
also reveals interesting complex-valued entropy in general,
obtainable as a finite temperature system but with imaginary
temperature. We also find a real-valued slice when the system
enjoys |1〉 ↔ |2〉 exchange symmetry.

To illustrate obtaining the time evolution operator (3.4)
from the doubled transition matrix as in (2.11), (2.12), we
write

|ψF 〉 =
∑

n,m=1,2

e− i Enm t
2 |nm〉1 ⊗ |nm〉2,

|ψI 〉 =
∑

n,m=1,2

e
i Enm t

2 |nm〉1 ⊗ |nm〉2. (3.6)

Then the unnormalized transition matrix T = |ψF 〉〈ψI | after
partial trace over the second component gives

T 1
F |I = Tr2

( ∑

n,m,p,q=1,2

e− i Enm t
2 e− i E pq t

2
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|nm〉1|nm〉2〈pq|1〈pq|2
)

=
∑

n,m=1,2

e−i Enmt |nm〉1〈nm|1, (3.7)

so this reduced transition matrix is the same as the unnor-
malized time evolution operator.

3.1.1 Mutual information

Mutual information defined as I [A, B] = S[A] + S[B] −
S[A ∪ B] can be studied for the time evolution operator as
well. In the general 2-qubit case (3.3), (3.4), above, we can
calculate ρ1

t = Tr2ρt and ρ2
t = Tr1ρt , which then leads to

the von Neumann entropies S1
t and S2

t respectively. The time
evolution operator ρt itself leads to St = −tr

(
ρt log ρt ). It is

straightforward to see that ρ
1,2
t are of the same form as ρA

t
in (3.5), which along with ρt in (3.4) gives

S1,2
t = − 1 + eiθ2

1 + eiθ1 + 2eiθ2
log

1 + eiθ2

1 + eiθ1 + 2eiθ2

− eiθ1 + eiθ2

1 + eiθ1 + 2eiθ2
log

eiθ1 + eiθ2

1 + eiθ1 + 2eiθ2

St = − 1

1 + eiθ1 + 2eiθ2
log

1

1 + eiθ1 + 2eiθ2

− eiθ1

1 + eiθ1 + 2eiθ2
log

eiθ1

1 + eiθ1 + 2eiθ2

− 2eiθ2

1 + eiθ1 + 2eiθ2
log

eiθ2

1 + eiθ1 + 2eiθ2
, (3.8)

so the mutual information is

I [A, B] = S1
t + S2

t − St . (3.9)

In general this is nonzero and complex since the entropies
are complex in general. However there are special cases: for
instance if all energy eigenvalues are identical, then

θ1,2 = 0 : S1,2
t = log 2, St = 2 log 2 ⇒ I [A, B] = 0

(3.10)

although the time evolution is nontrivial since each phase
e−i Et is nonzero.

Likewise the 2-state subcase (3.1) is obtained by setting
eiθ2 = 0 which gives S1,2

t , St of the same real-valued form
as in (3.2), so I [A, B] = S1

t .
These expressions above can also be viewed as arising

from the finite temperature results for inverse temperature β

continued to β = i t . From that point of view, the high tem-
perature limit β → 0 gives vanishing mutual information:
this limit has βEi → 0 which is mathematically equivalent
to the θ1,2 = 0 subcase earlier, with I [A, B] → 0. In the
present context, this is t → 0, and we again obtain vanishing
mutual information, I [A, B] → 0.

3.2 2-qutrit systems

Consider now two qutrits, |i〉, i = 0, 1, 2: the Hamiltonian
(in eigenstate basis) and the normalized time evolution oper-
ator are

H =
∑

Ei j |i j〉〈i j |, Ei j = {E00, E11, E22, E01, E02, E12}

ρt = e−i Ei j t

∑
i j e

−i Ei j t
|i j〉〈i j | = e−i Ei j t

e−i E00t + e−i E11t + e−i E22t + 2e−i E01t + 2e−i E02t + 2e−i E12t
|i j〉〈i j |,

(3.11)

again with Ei j = E ji . The reduced time evolution opera-
tor tracing over the second qutrit is

(ρA
t )i j = (ρt )i jklδ

kl;
ρA
t = 1

∑
i j e

−i Ei j t

×
∑

i=0,1,2

( ∑

j

e−i Ei j t
)|i〉〈i |. (3.12)

In general this leads to complex-valued entropy as before,
with multiple distinct phases. Imposing exchange symmetry
between the qutrits, i.e. |0〉 ↔ |1〉 ↔ |2〉, this reduces to a
single independent phase controlled by −(E01−E00)t which
then gives real entropy.

3.3 Two uncoupled oscillators

We consider two uncoupled harmonic oscillators: the Hamil-
tonian is

H =
∑

En1n2 |n1, n2〉〈n1, n2|,
En1n2 = ω(n1 + n2 + 1). (3.13)

The normalized time evolution operator then becomes

ρt =
∑ e−i En1n2 t

∑
e−i En1n2 t

|n1, n2〉〈n1, n2| (3.14)
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The normalization evaluates to
∑

1,2

e−i En1n2 t = e−iωt
∑

1,2

e−iωn1t e−iωn2t

= e−iωt

(1 − e−iωt )2 . (3.15)

Now, tracing over the second oscillator, we obtain

ρA
t =

∞∑

n2=0

ρt

=
∑

n1

e−iωn1t

1/(1 − e−iωt )
|n1〉〈n1| (3.16)

with the von Neumann entropy

SA
t = −

∑

n

e−iωnt

1/(1 − e−iωt )
log

e−iωnt

1/(1 − e−iωt )

= − log(1 − e−iωt ) + iωt e−iωt

1 − e−iωt
(3.17)

which is the usual entropy for a single oscillator at finite
temperature with β = i t . In general this is complex-valued.
The zero temperature limit gives S ∼ βE e−βE which here
gives S ∼ i tω e−iωt .

In evaluating the normalization (3.15), it is important to
note that this sum over the infinite tower of states (and similar
quantities involving any infinite tower of states) is not strictly
convergent as an infinite series since this complex expression
is highly oscillatory for high energy states, although the sum
and its closed form expression are formally true. This is also
true for the single oscillator expression (3.16) obtained as
the reduced time evolution operator, whose normalization is∑

n1
e−iωn1t = 1/(1 − e−iωt ). Towards rendering this well-

defined as a series, one can introduce a small regulator either
in ω or in t (giving time a tiny regulating Euclidean compo-
nent) which then makes it converge: e.g. a small Euclidean
time component gives

∑

n1

e−iωn1(t−iε) =
∑

n1

e−iωn1t e−n1ωε

= 1

1 − e−iω(t−iε)
, (3.18)

which defines the sum. An alternative way to view it is to
start with the (convergent) finite temperature partition func-
tion

∑
n e

−βEn and then perform analytic continuation to
imaginary temperature β = i t .

It is interesting to also study two coupled harmonic oscil-
lators with Hamiltonian

H = 1

2
(p2

A + p2
B) + k1

2
(x2

A + x2
B) + k2

2
(xA − xB)2.

(3.19)

We describe this in detail in Appendix C. The resulting
entropy from the time evolution operator can be realized as
following from imaginary temperature.

4 The time evolution operator with projections

As we have seen, the entanglement structures arising from
the time evolution operator involve the entire space of states
since the time evolution operator is like a full density matrix.
It is desirable to isolate a “part” of the time evolution operator,
to understand various components of the latter. This suggests
appending projections onto individual states.

With this in mind, we now consider the time evolution
operator along with a projection operator onto some state
|i〉, as in (2.2):

ρ
|i〉
t = ρt |i〉〈i |

Tr(ρt |i〉〈i |)
= | f [i]〉〈i |

Tr(| f (i)〉〈i |) | f [i]〉 = e−i Ht |i〉. (4.1)

(The projection here is from the right: at the calculational
level, projecting from the left is similar but leads to complex
conjugate expressions in general.) The state | f [i]〉 is the final
state obtained by time-evolving the initial state |i〉. If |i〉 is
a Hamiltonian eigenstate, then ρ

|i〉
t reduces to just a single

component |i〉〈i | (the phase coefficient cancels upon normal-
izing), i.e. the usual density matrix for |i〉. This is also true at
t = 0 for a generic state |i〉: here ρ

|i〉
t |t=0 = |i〉〈i |

Tr(|i〉〈i |) which
gives ordinary entanglement structures at t = 0.

For a generic state |i〉, we obtain (2.6). As a simple con-
crete example, consider the 2-state system (3.1) earlier with
a generic initial state:

|i〉 = c1|1〉 + c2|2〉 (|c1|2 + |c2|2 = 1) →
| f [i]〉 = c1e

−i E1t |1〉 + c2e
−i E2t |2〉;

ρ
|i〉
t = N−1

(
|c1|2e−i E1t |1〉〈1|

+|c2|2e−i E2t |2〉〈2| + c1c
∗
2e

−i E1t |1〉〈2|
+c2c

∗
1e

−i E2t |2〉〈1|
)
, (4.2)

where N = Tr(| f 〉〈i |) is the normalization. Now taking
|1〉 ≡ |++〉 and |2〉 ≡ |−−〉 and performing a partial trace
over the second component gives

ρ
|i〉,A
t = 1

|c1|2 + |c2|2eiθ
(
|c1|2|+〉〈+|

+|c2|2eiθ |−〉〈−|
)
, θ = −(E2 − E1)t,

S|i〉,A
t = − |c1|2

|c1|2 + |c2|2eiθ log
|c1|2

|c1|2 + |c2|2eiθ

− |c2|2eiθ
|c1|2 + |c2|2eiθ log

|c2|2eiθ
|c1|2 + |c2|2eiθ . (4.3)
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At t = 0, the von Neumann entropy above is ordinary entan-
glement entropy for the generic state |i〉 (obtained from
ρA = TrB |i〉〈i |). For general timelike separation t , the
entropy SA is real-valued only if |c1|2 = |c2|2, i.e. maxi-
mal entanglement at t = 0 (or θ = 0).

Consider now two qubits, each |1〉, |2〉, with a general
Hamiltonian (3.3) as before. For a generic state

|I 〉 =
∑

i j

ci j |i j〉 (4.4)

with the basis |i j〉 = {|11〉, |22〉, |12〉, |21〉}, and the time
evolution operator with projection can be evaluated as (2.6).
Performing a partial trace over the second component here
gives

ρ
|I 〉,A
t = 1

∑
i j |ci j |2e−i Ei j t

×
2∑

i,k=1

( ∑

j

ci j c
∗
k j e

−i Ei j t
)

|i〉〈k|

= 1
∑

i j |ci j |2e−i Ei j t

((|c11|2e−i E11t + |c12|2e−i E12t
)|1〉〈1|

+(
c11c

∗
21e

−i E11t + c12c
∗
22e

−i E12t
)|1〉〈2|

+(
c21c

∗
11e

−i E12t + c22c
∗
12e

−i E22t
)|2〉〈1|

+(|c21|2e−i E12t + |c22|2e−i E22t
)|2〉〈2|

)
(4.5)

At t = 0, this is ordinary entanglement for the generic state
|I 〉. There are special subcases with interesting structure,
some of which we will discuss soon.

For 3-qubits with Hamiltonian (B.2) with energies Ei jk

for eigenstates |i jk〉 (along with the symmetry-based simpli-
fications there), we obtain

|I 〉 =
2∑

i, j,k=1

ci jk |i jk〉 : ρ
|I 〉
t = 1

∑
i jk |ci jk |2e−i Ei jk t

×
2∑

i, j,k,l,m,n=1

ci jkc
∗
lmne

−i Ei jk t |i jk〉〈lmn|,

ρ
|I 〉,A
t = 1

∑
i jk |ci jk |2e−i Ei jk t

×
2∑

j,m=1

( ∑

i

∑

k

ci jkc
∗
imke

−i Ei jk t
)

| j〉〈m|, (4.6)

where the last line is the reduced transition matrix for the
middle qubit, arising after a partial trace over the 1st and 3rd
components (ρA

t ) jm = (ρt )i jk,lmnδ
ilδkn .

4.1 Thermofield-double type states

It is interesting to focus on thermofield-double type initial
states with only “diagonal” components: then for 2-qubits,

using (4.5) we obtain

|I 〉 =
∑

i=1,2

cii |i i〉 :

ρ
|I 〉
t = 1∑

i |cii |2e−i Eii t

2∑

i,k=1

cii c
∗
kke

−i Eii t |i i〉〈kk|,

ρ
|I 〉,A
t = 1

|c11|2e−i E11t + |c22|2e−i E22t

(
|c11|2e−i E11t |1〉〈1|

+|c22|2e−i E22t |2〉〈2|
)
. (4.7)

This is identical to (4.3). To elaborate a little, the initial state
is |I 〉 = c11|11〉 + c22|22〉 and its time-evolved final state
is |F〉 = c11e−i E11t |11〉 + c22e−i E22t |22〉, and the reduced
time evolution operator with projection, ρ

|I 〉,A
t above, is the

normalized reduced transition matrix for |I 〉, |F〉, with the
corresponding (in general complex-valued) pseudo-entropy
(2.4).

Now restricting further to maximally entangled states with
|c11|2 = |c22|2 = 1

2 simplifies this to just a single non-
trivial phase eiθ = e−i�E t where �E = E22 − E11,
thereby leading to the entanglement structure (3.2) of the
time evolution operator for the 2-state case, i.e. S|I 〉,A

t =
− 1

1+eiθ
log 1

1+eiθ
− 1

1+e−iθ log 1
1+e−iθ . The states in question

here can be regarded as maximally entangled Bell pairs and
the entropy can be regarded as pseudo-entropy for the Bell
pair initial state |I 〉 and its time-evolved final state |F〉. As
noted there, this is a real-valued entropy, oscillating in time
with periodicity set by �E , growing unbounded at specific
time values where t = (2n+1)π

�E . Note also that specific time
values t = 2nπ

�E lead to the minimum value SA = log 2, which
is simply the ordinary entanglement entropy of the maximally
entangled initial state. The fact that this time entanglement
entropy can be unbounded is a novel feature compared with
ordinary entanglement entropy for ordinary quantum sys-
tems.

For ann-qubit system comprising basis states |{i1, . . . , in}〉,
with ik = 1, 2, the time evolution operator with projection
onto generic initial states gives complicated entanglement
structure. However projecting onto thermofield double type
initial states, we obtain

|I 〉 =
∑

i=1,2

cii ...i |i i . . . i〉 :

ρ
|I 〉,A
t = 1∑

i |cii ...i |2e−i Eii ...i t

×
2∑

i=1

|cii ...i |2e−i Eii ...i t |i〉〈i |, (4.8)

which is identical to the 2-qubit case. It is clear that any qubit
system has identical entanglement structure for the time evo-
lution operator with projection onto thermofield double type
states. Now if we additionally restrict to maximal entangle-

123



  499 Page 8 of 18 Eur. Phys. J. C           (2024) 84:499 

ment, we have both |cii ...i |2 equal so |cii ...i |2 = 1
2 . This

again contains just one nontrivial phase thereby leading to
the entanglement structure of the time evolution operator for
the 2-state case, i.e. (3.2).

5 Time evolution operator, normalized at t = 0

In this section, we will discuss aspects of the time evolution
operator with normalization at t = 0 (rather than at general
time t), following [12]. This gives

ρ0
t (t) ≡ U(t)

Tr U(0)

→ ρ
0,A
t = trB ρt → SA = −tr(ρA

t log ρA
t ). (5.1)

The normalization ensures that we obtain ordinary entangle-
ment structures at t = 0. In this case Tr ρt (t) = 1 at t = 0
but not at general t . This gives quite different entanglement
structures, as we will see.

Since U(0) = ∑
I |I 〉〈I | = 1 i.e. the identity operator

made up as a sum over all eigenstate projection operators, the
normalization factor is Tr U(0) = N , the dimension of the
Hilbert space, constant in time. Thus for a general bipartite
system we obtain

ρ0
t (t) = 1

N

∑

i,i ′
e−i Ei,i ′ t |i, i ′〉〈i, i ′| → ρ

0,A
t

= 1

N

∑

i

(∑

i ′
e−i Ei,i ′ t

)|i〉〈i |, (5.2)

differing from (2.5) only in the normalization. A general 2-
qubit system (3.3) now gives

ρ0
t (t) = 1

4

∑

i j

e−i Ei j t |i j〉〈i j | (5.3)

and taking a partial trace over the second component gives

ρ
0,A
t = 1

4

((
e−i E11t + e−i E12t

)|1〉〈1|
+(

e−i E21t + e−i E22t
)|2〉〈2|

)

S0,A
t = −1

4

(
e−i E11t + e−i E12t

)

× log
(1

4

(
e−i E11t + e−i E12t

))

− 1

4

(
e−i E21t + e−i E22t

)

× log
(1

4

(
e−i E21t + e−i E22t

))
. (5.4)

In general S0,A
t is a complicated complex entropy. However

there are special cases. If all energy values are the same, this

simplifies to

Ei j = E0 : ρt = e−i E0t

4

∑

i j

|i j〉〈i j |,

ρ
0,A
t = e−i E0t

2

∑

i=1,2

|i〉〈i |,

S0,A
t = −e−i E0t log

(1

2
e−i E0t

)

= (log 2 + i E0t) e
−i E0t . (5.5)

Appending a projection operator for a state |i〉 as in Sect. 4,
we obtain

ρ
0,|i〉
t = ρ0

t |i〉〈i |
Tr(ρ0

t |i〉〈i |) = | f [i](t)〉〈i |
Tr (U(0)|i〉〈i |)

= | f [i](t)〉〈i |
Tr(|i〉〈i |) , (5.6)

since U(0) is the identity operator. This is similar to (2.2),
but differs in normalization. So if the initial state is unit-
normalized, the normalization factor is a trivial 1. This is not
ordinary entanglement even if the state is an eigenstate since
the nontrivial time evolution phase remains. For instance a
2-qubit system (3.3) gives

|i〉 = |11〉 : ρ
0,|i〉
t = U(t)|11〉〈11|

Tr(|11〉〈11|)
= e−i E11t |11〉〈11|, (5.7)

after projecting onto a simple eigenstate |11〉. The partial
trace then gives

ρ
0,|i〉,A
t = Tr2ρ

0,|i〉
t = e−i E11t |1〉〈1| ⇒ S0,|i〉,A

t

= −e−i E11t log
(
e−i E11t

) = i E11t e
−i E11t . (5.8)

The normalization at t = 0 makes this different from ordi-
nary mixed state entanglement structures at finite temper-
ature, although these still resemble imaginary temperature
structures. Although it might seem natural to normalize at
general t , part of the motivation here, following [12], is that
the time evolution only enters via the final state in (5.6), which
apart from this is akin to the pseudo-entropy (2.2), (4.1). This
appears to help isolate the timelike characteristics, as in (5.8)
where the leading time-dependence is manifestly pure imag-
inary: it would be interesting to explore this further.

6 2-dim CFTs and timelike intervals

The studies of dS3 extremal surfaces in [11,12,19,20], led to
studies of timelike entanglement in ordinary 2-dim CFT (in
particular (6.8)): we now elaborate on this (there are parallels
with some discussions in [32] which appeared as we were
finalizing this paper).
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We want to consider the time evolution operator as a den-
sity operator towards exploring entanglement-like structures:
towards this we define

ρt [{φ(x)}|{φ(x ′)′}] = 1

Zt
〈{φ(x)}|e−i t H |{φ(x ′)}〉 (6.1)

with Zt = Tr e−i t H . However rendering this well-defined is
best done in the Euclidean path integral formulation, defining
the ground state wavefunction for the configuration φ(x ′) as


[{φ(x ′)}] =
∫ φ(tE=0,x)=φ(x ′)

tE=−∞
Dφ e−SE

=
∫ tE=0

tE=−∞
Dφ e−SE

∏

x

δ(φ(tE = 0, x) − φ(x ′))

(6.2)

with SE the Euclidean action for the field φ(tE , x) (we model
this discussion along the lines of [36–38], and [2]). Now the
reduced density matrix for the interval A is obtained from
ρt [φ0(x)|φ′

0(x
′)] above by performing a partial trace over

the environment B setting φ0(x) = φ′
0(x). This becomes

ρ[φ(x)0+|φ(x)0−] = 1

Z

∫ tE=∞

tE=−∞
Dφ e−SE (φ)

∏

x∈A

δ(φ(0+, x)

−φ(x)0+) δ(φ(0−, x) − φ(x)0−)

(6.3)

In this form there is no sacrosanct meaning to what we define
as Euclidean time: the differences for a timelike interval only
enter in the analytic continuation to Lorentzian signature
eventually. For a free massless 2-dim scalar, the action is
SE = ∫

dtEdx ((∂tEφ)2 + (∂xφ)2) and Euclidean evolution
appears symmetric between tE , x . For the usual spacelike
interval, the reduced density matrix involves Euclidean time
evolution along tE : for a timelike interval on the other hand,
the reduced density matrix involves Euclidean time evolution
along x which is regarded as Euclidean time now calculation-
ally. So we have

ρt [φ(tE )0+|φ(tE )0−]
= 1

ZtE

∫ x=∞

x=−∞
Dφ e−SE (φ)

∏

tE∈A

δ(φ(tE , 0+)

−φ(tE )0+) δ(φ(tE , 0−) − φ(tE )0−) (6.4)

Apart from x ↔ tE , this is equivalent to (6.3).
Let us now discuss this in terms of Hamiltonians for a

free massless scalar: note that Euclidean and Lorentzian
times are related as tE = i t . For the usual time coordi-
nate t , the Hamiltonian is H+

t = ∫
dx ((∂tφ)2 + (∂xφ)2) =∫

dx (−(∂tEφ)2+(∂xφ)2): this is positive definite. Now com-
pactifying tE can be used to obtain the reduced density matrix
TrB e−βt H at finite temperature for an interval with width �x .
With x taken as Euclidean time, we obtain the Hamiltonian
Hx = ∫

dtE ((∂tEφ)2 − (∂xφ)2). Now compactifying x with

periodicity βx and considering a timelike interval with width
�t , the reduced density matrix becomes

Hx =
∫

dtE (−(∂xφ)2 + (∂tEφ)2)

= −i
∫

dt ((∂xφ)2 + (∂tφ)2) ≡ −i H+
x ;

ρA
t = TrB e−βx Hx = TrB eiβx H+

x , (6.5)

so that in terms of the positive definite Hamiltonian H+
x ,

this resembles a thermal reduced density matrix but with
imaginary temperature.

The usual replica formulation of entanglement entropy for
a single interval proceeds by picking some Euclidean time
direction τE and the interval �x ≡ [u, v] on that slice, then
constructing n replica copies of the space glued at the interval
endpoints and evaluating Trρn

A. The reduced density matrix
for the ground state is formulated as above, via Euclidean
time evolution, with appropriate boundary conditions for the
fields on the replica sheets. Then Trρn

A in the replica space
can be mapped to the twist operator 2-point function at the
interval endpoints which implement the boundary conditions
across the sheets. This finally leads to

SA = − lim
n→1

∂nTrρn
A → c

6
log

(�x)2

ε2 . (6.6)

The only data that enters this is the central charge of the CFT
and the interval in question. When we consider a timelike
interval, the above formulation goes through with the only
change being that the Euclidean time slice we pick is the
spatial slice x = const with the interval being �t ≡ [ut , vt ].
However now when we continue back to Lorentzian time, we
must rotate ut , vt accordingly, so the spacetime interval is

�2 = −(�t)2 = −(vt − ut )
2 (6.7)

and the entanglement entropy becomes

SA = c

6
log

�2

ε2

= c

6
log

−(�t)2

ε2 = c

3
log

�t

ε
+ c

6
(iπ) (6.8)

with the imaginary part arising as iπ = log(−1). Note that
imaginary values also arise in studies of quantum extremal
surfaces in de Sitter with regard to the future boundary [39,
40], stemming from timelike-separations.

The discussions above are formulated in terms of Euclidean
path integrals with an eventual analytic continuation to obtain
timelike interval entanglement. Along the lines of our finite
quantum system descriptions, one could consider Lorentzian
time evolution explicitly. Towards this consider a CFT on a
cylinder, with time running along the axis. The Hamiltonian
is Hcyl = π

l (L0 + L̄0 − c+c̄
24 ) and the unnormalized time

evolution operator becomes e−i Hcyl t ∼ q
∑

n nNn |Nn〉〈Nn|
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with q = e−2i t/ l for both left/right modes, and the nor-
malization becomes Tr q

∑
n nNn = ∏∞

n=1
1

1−qn (the c+c̄
24 fac-

tor cancels with normalization). In the momentum basis,
the time evolution operator is an infinite sum of decoupled
oscillators. Recalling the case of two uncoupled oscillators
(3.14), tracing out all higher mode oscillators leaving only
the lowest frequency n = 1 oscillator mode naively gives
ρA
t = ∑

n
qn

1/(1−q)
|n〉〈n| and SA

t = − log(1 − q) − q log q
1−q ,

with appropriate limits as described after (3.16). Also, along
the lines of Sect. 4, we can study aspects of the time evolution
operator along with projection onto initial states. We leave
these and related investigations for the future.

7 Time entanglement, time-dependent interactions

So far we have considered time-independent Hamiltonians.
In these cases we can relate the time evolution operator to the
thermal density matrix by the analytic continuation β → i t ,
consistent with the expectation that time independence maps
to thermal equilibrium. In this section, we consider some
special simple examples of time-dependent Hamiltonians:
we expect that the time evolution operator will not admit any
simple map to some thermal density matrix in such cases (no
thermal equilibrium).

We obtain the time evolution operator in the interaction
picture by solving the Schrodinger time evolution equations,
evolving the state by the time evolution operator

|α, t; t0〉I = UI (t, t0) |α, t0; t0〉I =
∑

ci j (t)|i j〉. (7.1)

This enables to determine the time evolution operator, where
|i j〉 are the eigenstates of H0 (and t0 = 0). Our conventions
are those of [41], with the interaction picture time evolution
equations of the form i h̄ d

dt cN (t) = ∑
M VNMeiωNM t cM (t)

with ωNM = EN − EM .
As a toy example, consider a 2-state system with states

|1〉, |2〉, and energies E1, E2: then a δ-function interaction
V12 = V δ(t−ε) (with ε > 0 an infinitesimal regulator) gives
the interaction picture evolution equations (with ċi = d

dt ci )

i h̄ċ1 = V12e
iω12t c2, i h̄ċ2 = V21e

iω21t c1;
i h̄c1(t) = Vc2(ε) + i h̄c1(0),

i h̄c2(t) = Vc1(ε) + i h̄c2(0), (7.2)

where the second line is obtained by integrating across the
interaction support at t = ε (and the phases eiω12t are trivial).
Since the time dependence is only nontrivial for t = ε, we
see that ci (t) = ci (ε), i.e. the coefficients remain unchanged

for t ≥ ε. Solving for c1(t), c2(t) gives
(c1(t)
c2(t)

) = ρt,I
(c1(0)

c2(0)

)

with generic initial state c1(0), c2(0), where the interaction
picture time evolution operator is ρt,I = 1

1+ V 2

h̄2

(|1〉〈1| +
V
ih̄ |1〉〈2|++ V

ih̄ |2〉〈1|+|2〉〈2|) (this can also be seen to agree

with time dependent perturbation theory). We now general-
ize this sort of delta-function coupling interaction to a system
of two qubits to study time entanglement.

Consider a simple system of two qubits with the time-
dependent interaction

VI (t) = V δ(t − ε)
(|11〉〈12| + |12〉〈11|), (7.3)

with an infinitesimal regulator ε > 0 (so the impulse interac-
tion is just after t = 0). The Hamiltonian H0 before turning
on the interaction (t ≤ 0) has eigenstates |11〉, |22〉, |12〉,
|21〉, and eigenvalues E11, E22, E12, E21 = E12, respec-
tively. The time evolution equations for the coefficients (sup-
pressing the phases), and their integrated versions, are (with
h̄ = 1)

d

dt
c11(t) = −iV δ(t − ε) c12(t),

d

dt
c12(t) = −iV δ(t − ε) c11(t),

d

dt
c21(t) = 0,

d

dt
c22(t) = 0,

⇒ c11(t) = c11(0) − iV c12(ε),

c12(t) = c12(0) − iV c11(ε),

c21(t) = c21(0) , c22(t) = c22(0). (7.4)

We now note that the ci j (t) = ci j (ε) for the impulse inter-
action, where t ≥ ε, since there is no nontrivial time depen-
dence after t = ε. This then gives

c11(t) = 1

1 + V 2

(
c11(0) − iV c12(0)

)
,

c12(t) = 1

1 + V 2

(
c12(0) − iV c11(0)

)
,

c21(t) = c21(0), c22(t) = c22(0). (7.5)

This gives the interaction picture time evolution operator

UI (t, t0) (with t0 = 0 and t > 0) which maps
(c11(t)
c12(t)

) =
UI (t)

(c11(0)

c12(0)

)
in the {|11〉, |12〉} subspace, using (7.1). Then

the time evolution operator U (t) ≡ ρ̃t in the Schrödinger
picture is (with ρt the normalized one)

ρ̃t = e−i H0t UI (t) = 1

1 + V 2

(
e−i E11t |11〉〈11|

− iV e−i E11t |11〉〈12| − iV e−i E12t |12〉〈11|
+ e−i E12t |12〉〈12|

)
+ e−i E12t |21〉〈21|

+ e−i E22t |22〉〈22|,
ρt = NV ρ̃t ,

N−1
V ≡ Tr(ρ̃t )

= 1

1 + V 2

(
e−i E11t + e−i E12t

) + e−i E12t + e−i E22t .

(7.6)
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We now find the reduced time evolution operator by tracing
out a qubit. ρA

t arises from tracing out the second qubit in ρt ,
and ρB

t from tracing out the first qubit:

N−1
V ρA

t = 1

1 + V 2

(
e−i E11t + e−i E12t

)
|1〉〈1|

+
(
e−i E12t + e−i E22t

)
|2〉〈2| ,

N−1
V ρB

t = 1

1 + V 2

(
e−i E11t |1〉〈1|

− iV e−i E11t |1〉〈2| − iV e−i E12t |2〉〈1|
+ e−i E12t |2〉〈2|

)
+ e−i E12t |1〉〈1|

+ e−i E22t |2〉〈2| . (7.7)

Note that ρA
t = ρB

t for V = 0 is in agreement with Sect. 3
for the 2-qubit system. The entropy associated with ρA

t or
ρB
t is complex-valued in general.

Consider now the same 2-qubit system but a more general
impulse interaction

VI (t) = V δ(t − ε)
(|11〉〈12| + |12〉〈11|

+|21〉〈22| + |22〉〈21|). (7.8)

Using (7.1), the interaction picture time evolution equations
and the integrated versions are

d

dt
c11(t) = −iV δ(t − ε) c12(t) ,

d

dt
c12(t) = −iV δ(t − ε) c11(t),

d

dt
c21(t) = −iV δ(t − ε) c22(t) ,

d

dt
c22(t) = −iV δ(t − ε) c21(t),

⇒ c11(t) = c11(0) − iV c12(ε),

c12(t) = c12(0) − iV c11(ε),

c21(t) = c21(0) − iV c22(ε),

c22(t) = C22(0) − iV c21(ε). (7.9)

These are the analogs for the interaction (7.8) of (7.4) with
the simpler interaction (7.3). As before, we have ci j (t) =
ci j (ε), t ≥ ε, since there is no nontrivial time dependence
after the impulse at t = ε. Solving for ci j (t) leads here to
the Schrödinger picture time evolution operator U (t) ≡ ρ̃t
(with ρt the normalized one)

ρ̃t = e−i H0t UI (t) = 1

1 + V 2

(
e−i E11t |11〉〈11|

− iV e−i E11t |11〉〈12| − iV e−i E12t |12〉〈11|
+ e−i E12t |12〉〈12| + e−i E12t |21〉〈21|
− iV e−i E12t |21〉〈22|
− iV e−i E22t |22〉〈21|

+ e−i E22t |22〉〈22|
)

,

ρt = NV ρ̃t

N−1
V ≡ Tr(ρ̃t )

= 1

1 + V 2

(
e−i E11t + 2e−i E12t + e−i E22t

)
. (7.10)

Tracing out either the second qubit or the first gives ρA
t or

ρB
t :

ρA
t = NV

1

1 + V 2

(
(e−i E11t + e−i E12t )|1〉〈1|

+ (e−i E12t + e−i E22t ) |2〉〈2|
)

,

ρB
t = NV

1

1 + V 2

(
(e−i E11t

+ e−i E12t ) |1〉〈1| − iV (e−i E11t + e−i E12t )|1〉〈2|
− iV (e−i E12t + e−i E22t )|2〉〈1|
+ (e−i E12t + e−i E22t ) |2〉〈2|

)
. (7.11)

Note that here the 1
1+V 2 factors cancel with that inNV (which

is an accident; this would not occur if the interaction strengths
in (7.8) were not uniformly V for all matrix elements). As for
(7.7), we see that these reduced time evolution operators are
equal, ρA

t = ρB
t , for V = 0, in agreement with Sect. 3. These

give complex-valued entropy in general, although there are
special cases with real entropy: e.g. for E11 = E22 = E12

we obtain ρB
t = 1

2 ( 1−iV
−iV

1 ) with eigenvalues λk = 1
2 (1 ±

iV ): then the entropy SB
t = −∑

k λk log λk becomes real-
valued giving SB

t = log 2 − 1
2 (1 + iV ) log(1 + iV ) − 1

2 (1 −
iV ) log(1 − iV ).

We now look at this time evolution operator with pro-
jection onto some initial state, along the lines of Sect. 4.
First consider a thermofield-double type initial state |I 〉 =∑

i=1,2 cii |i i〉 as in Sect. 4.1: this gives (with N the normal-
ization)

Nρt |I 〉〈I | = N
1 + V 2

(
ρt |I 〉〈I |

)∣∣
V=0

−N iV e−i E12t

1 + V 2

(
|c11|2|12〉〈11|

+c11c
∗
22|12〉〈22|

+ c∗
11c22|21〉〈11| + |c22|2|21〉〈22|

)
. (7.12)

A partial trace over the second or first qubit gives, respec-
tively,

ρA
t,I = N 1

1 + V 2 ρA
t

∣∣
V=0 − N iV e−i E12t

1 + V 2

×
(
c11c

∗
22|1〉〈2| + c∗

11c22|2〉〈1|
)
,
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ρB
t,I = N 1

1 + V 2 ρB
t

∣∣
V=0 − N iV e−i E12t

1 + V 2

×
(
|c11|2|2〉〈1| + |c22|2|1〉〈2|

)
. (7.13)

This thus leads to nontrivial contributions to the complex-
valued entropy stemming from the impulse interaction con-
trolled by the strength V . For special cases the entropy is
real: e.g. E11 = E22 = E12 with maximally entangled ini-
tial state c11 = c22 = 1√

2
gives ρA

t,I = ρB
t,I = 1

2 ( 1−iV
−iV

1 )

with eigenvalues λk = 1
2 (1 ± iV ) leading to real entropy

SB
t = −∑

k λk log λk .
This is essentially the pseudo-entropy for the initial state

|I 〉 = c11|11〉+ c22|22〉 and its time evolved final state using
ρ̃t in (7.10)

|F〉 = ρ̃t |I 〉 = 1

1 + V 2

(
e−i E11t c11|11〉 + e−i E22t c22|22〉

−iV e−i E12t c11|12〉 − iV e−i E12t c22|21〉
)
. (7.14)

If on the other hand, one considers some initial state within
the {|11〉, |12〉} subspace, then it turns out that ρA

t,I ∝ |1〉〈1|
while ρB

t,I has eigenvalues 0, 1 (perhaps this is not surpris-
ing since any state in this subspace is of a factorized form
|1〉A(a|1〉 + b|2〉)B). This leads to vanishing pseudo entropy
for ρA

t,I and ρB
t,I .

We have illustrated the time evolution operator and its time
entanglement structure focussing on simple 2-qubit exam-
ples involving an impulse δ-function interaction. We have
obtained the time evolution operator by solving the time
evolution Schrodinger equation for the state coefficients. The
time-dependence of the interaction leads to nontrivial depen-
dence on the interaction strength V , in addition to the depen-
dence on the energy eigenvalues and the timelike separation
t . No simple continuation via some imaginary temperature
exists here, unlike the discussions in the rest of the paper with
time-independent quantum systems. It is likely that general
time-dependent quantum systems will exhibit similar fea-
tures. Perhaps there are deeper ways to formulate timelike
entanglement, which make more explicit a partial trace over
time paths or histories.

8 Discussion

We have studied various aspects of entanglement like struc-
tures with timelike separations arising from the time evolu-
tion operator regarded as a density operator, following [12].
There are close parallels with pseudo-entropy [23] as we have
seen. The entropy from the time evolution operator along with
projection onto some initial state as we have seen in Sect. 4 is
identical to pseudo-entropy for the initial state and its time-
evolved final state. More broadly, there are large parallels of
the investigations here and in [12] with corresponding ones

in [11,32]. In general the non-Hermitian structures here give
complex-valued entropy, although there are several interest-
ing real-valued subfamilies e.g. (3.2), special subcases of
(3.5) and (4.7), qubit chains Appendix B with the |1〉 ↔ |2〉
exchange symmetry, and so on. The behaviour of this entropy
is quite different from usual spatial entanglement entropy: for
instance, (3.2) oscillates in time and appears to grow large at
specific time values. Correspondingly at other specific peri-
odic time values the entropy acquires its minimum value,
coinciding with ordinary entanglement entropy for the ini-
tial state (see Sect. 4.1 in the context of thermofield-double
states, akin to Bell pair states). Overall these appear to be new
entanglement-like measures involving timelike separations,
likely with many new aspects open for exploring further. (It
is also worth noting other work e.g. [42–45], which may have
bearing on this broad circle of ideas.)

While more detailed understanding and physical interpre-
tation of time entanglement in general is yet to be developed,
the mapping to pseudo-entropy allows certain connections
to previously studied quantities. Pseudo-entropy stems from
the transition matrix TF |I in (2.4), (2.7), regarded as a gen-
eralized density operator involving a preparation state and a
postselected state. Related quantities pertain to weak values
of operators, obtained as Ow = Tr(TF |IO). These are in
general complex-valued, not surprising since the transition
matrix is not a hermitian object (unlike ordinary hermitian
density matrices). See e.g. [46,47] for more on postselected
states, conditional entropy and weak values (including some
experimental aspects). In the current context, components
of the time evolution operator can be isolated via projec-
tions onto specific initial states as we have seen in Sect. 4:
this then maps onto the corresponding pseudo-entropy. Thus
time entanglement with projection onto initial state |I 〉 dove-
tails with postselected states being the corresponding time-
evolved states. We hope to obtain more refined understanding
of these interrelations in the future.

The finite quantum systems we have studied allow anal-
ysis using Hamiltonian eigenstates and are thus intrinsi-
cally straightforward. Time-independent Hamiltonians allow
mapping the time evolution operator to a thermal density
matrix by the analytic continuation β → i t , consistent with
the expectation that time independence can be mapped to
thermal equilibrium. We expect that in cases with nontriv-
ial time dependence, these time-entanglement structures will
become more intricate with no natural imaginary temperature
analytic continuation: along the lines of studies of scattering
amplitudes, we expect that analogs of the interaction picture
will be useful in organizing these time entanglement struc-
tures. All these are vindicated in the simple 2-qubit examples
with δ-function impulse potentials (Sect. 7), where we solve
explicitly for the nontrivial time evolution operator and the
corresponding time entanglement structures. Related, com-
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plementary studies (including holographic ones) appear in
[11,23–34]. We hope to report further on these in the future.

We now make a few remarks on de Sitter extremal sur-
faces anchored at the future boundary, which have time-
like components, in particular paraphrasing some discus-
sions in [48]. The dS/CFT dictionary [9] ZCFT = 
dS

implies that boundary entanglement entropy is bulk pseudo-
entropy (since a replica formulation on ZCFT amounts to
one on 
dS , i.e. single ket rather than a density matrix).
Among other things this leads to novel entropy rela-
tion/inequalities based on the complex-valued dS extremal
surface areas. This is put in perspective by comparing with
time-entanglement/pseudo-entropy in qubit systems, using
the analyses in this paper, in particular Sect. 4: this reveals
striking differences for mutual time-information, tripartite
information and strong subadditivity (see Sect. 2.5 in [48]).
The dS areas give definite signs for these quantities relative to
those obtained from time-entanglement/pseudo-entropy for
qubit systems (with the final state being time-evolved from
the initial state). Since the dS areas are analytic continua-
tions from AdS, these differences are perhaps not surprising
in light of the studies in [49] (which reveal definite signs the
AdS RT surface area inequalities compared with those for
entanglement entropy in qubit systems), but they are striking.
Overall there are new entanglement structures here stemming
from timelike separations: we expect that the investigations
here and related ongoing ones will lead to further insights
into both quantum information and holography.
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Appendix A: Time evolution, pseudo-entropy: special
cases

Consider now the pseudo-entropy transition matrix (2.4) for
the 2-state case (3.1), with arbitrary initial state |i〉 and arbi-
trary final state | f 〉,
|i〉 = c1|1〉 + c2|2〉, | f 〉 = c′

1|1〉 + c′
2|2〉;

T f |i = 1

c′
1c

∗
1 + c′

2c
∗
2

(
c′

1c
∗
1 |1〉〈1| + c′

2c
∗
2 |2〉〈2|

+c′
1c

∗
2 |1〉〈2| + c′

2c
∗
1 |2〉〈1|

)
. (A.1)

With |1〉 ≡ | + +〉, |2〉 ≡ | − −〉, a partial trace over the
second component gives

T A
f |i = 1

c′
1c

∗
1 + c′

2c
∗
2

(
c′

1c
∗
1 |+〉〈+| + c′

2c
∗
2 |−〉〈−|

)
(A.2)

as the reduced transition matrix. To compare with entangle-
ment for the time evolution operator, we take the final state
to be time-evolved from some other initial state |i ′〉 so

| f 〉 = c′
1e

−i E1t |1〉 + c′
2e

−i E2t |2〉 →
T A
f |i =

(
c′

1c
∗
1 |+〉〈+| + c′

2c
∗
2e

iθ |−〉〈−|)
c′

1c
∗
1 + c′

2c
∗
2e

iθ
, (A.3)

with θ = −(E2 − E1)t . Then we see that:

• using (3.2) for the time evolution operator, T A
f |i = ρA

t if

c1 = c′
1 = 1√

2
, c2 = c′

2 = 1√
2

, i.e. the initial and final
states are identical maximally entangled states.

• using (4.3) for the time evolution operator with projec-
tion, T A

f |i = ρ
|i〉
t if c′

1 = c1, c′
2 = c2, i.e. | f 〉 = | f [i]〉

i.e. the final state is time-evolved from the initial state
|i ′〉 = |i〉.

This structure of mapping T A
f |i = ρA

t however is not true
more generally. For instance, consider two qubits more gen-
erally, as in (3.3). Then the pseudo-entropy transition matrix
(2.4) becomes

|I 〉 =
2∑

i, j=1

ci j |i j〉, |F〉 =
2∑

i, j=1

c′
i j |i j〉;

TF |I = 1∑
i j c

′
i j c

∗
i j

2∑

i, j,k,l=1

c′
i j c

∗
kl |i j〉〈kl| (A.4)

and partial trace over the 2nd component gives the reduced
transition matrix as

T A
F |I = 1∑

i j c
′
i j c

∗
i j

2∑

i,k=1

(
∑

j

c′
i j c

∗
k j ) |i〉〈k|

= 1∑
i j c

′
i j c

∗
i j

(
(c′

11c
∗
11 + c′

12c
∗
12)|1〉〈1|
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+(c′
11c

∗
21 + c′

12c
∗
22)|1〉〈2| + (c′

21c
∗
11 + c′

22c
∗
12)|2〉〈1|

+(c′
21c

∗
21 + c′

22c
∗
22)|2〉〈2|

)
. (A.5)

Towards comparing with the time evolution operator, we
think of the future state as time-evolved from some ini-
tial state, i.e. |F〉 = ∑

i j c
′
i j e

−i Ei j t |i j〉. It is then clear that
pseudo-entropy via the reduced transition matrix matches
time entanglement via the normalized time evolution oper-
ator with projection onto |i〉, i.e. T A

f |i ′ = ρ
|i〉,A
t if the final

state is taken to be time-evolved from the initial state, i.e.
|F〉 = U(t)|I 〉 so c′

i j = ci j e−i Ei j t . However, in contrast with
(A.3), the fact that there are off-diagonal terms in (A.5) makes
the structure different from the reduced time evolution opera-
tor. To set the off-diagonal terms to vanish, we could consider
specializing to maximally entangled thermofield-double type
initial and final states, and with |F〉 time-evolved from |I 〉, i.e.
|I 〉 = ∑

i i cii |i i〉 with ci j , c′
i j = 0, i �= j, cii = c j j ∀ i, j ,

and |F〉 = ∑
i i c

′
i i |i i〉 = U(t)|I 〉. In this case, we find that

all the off-diagonal terms vanish and we obtain the reduced
transition matrix to be of the same form as in (A.3). On
the other hand the reduced time evolution operator for the
general 2-qubit case is (3.5), which has two distinct phases
in general. Thus the reduced transition matrix differs from
the reduced time evolution operator. One can engineer spe-
cial energy values Ei j where the two coincide (although this
appears ad hoc).

Of course, these structures are with a single Hilbert
space for constructing both initial and final states. Doubling
the Hilbert spaces directly enables a map from the transi-
tion matrix to the time evolution operator in general, as in
Sect. 2.1.

Appendix B: Qubit chains

Now we consider qubit chains to understand time entangle-
ment structures. For any nearest neighbour 2-qubit pair, we
impose nearest-neighbour interactions, with

s|q〉 = aq |q〉, |q〉 = {|1〉, |2〉}; H = −Js1s2,

H [11] = E11 = −Ja2
1 , H [22] = E22 = −Ja2

2 ,

H [12] = H [21] = E12 = −Ja1a2. (B.1)

In the first line, we are defining operators si with action as
above (the i being the site label), that give the qubit Hamil-
tonian action elaborated on in the second line. This Hamil-
tonian generalizes the 2-qubit case (3.3) earlier. (Imposing
a |1〉 ↔ |2〉 exchange symmetry simplifies this to Ising-like
interactions, as we will discuss later.)

3-qubit chain: Consider now a chain of 3 qubits with
Hamiltonian based on the nearest neighbour 2-qubit interac-

tion above. This gives the 3-qubit chain Hamiltonian as

H = −J (s1s2 + s2s3)

H ≡ EI |I 〉〈I | = E1|111〉〈111| + E2|222〉〈222|
+E5

(|121〉〈121| + |212〉〈212|)

+ E3
(|112〉〈112| + |211〉〈211|)

+E4
(|122〉〈122| + |221〉〈221|),

E1 = −2Ja2
1 = 2E11,

E2 = −2Ja2
2 = 2E22,

E5 = −2Ja1a2 = 2E12,

E3 = −Ja2
1 − Ja1a2 = E11 + E12,

E4 = −Ja1a2 − Ja2
2 = E22 + E12,

E4 − E3 = 1

2
(E2 − E1),

E1 + E5 = 2E3, E2 + E5 = 2E4. (B.2)

Then the time evolution operator U(t) after normalizing
becomes

ρt = 1

e−i E1t + e−i E2t + 2e−i E3t + 2e−i E4t + 2e−i E5t

×
∑

I

e−i EI t |I 〉〈I | ≡ N
∑

I

e−i EI t |I 〉〈I |. (B.3)

Now tracing out the 1st and 3rd qubit states gives the reduced
time evolution operator

(ρA
t )11 = N

(
e−i E1t + 2e−i E3t + e−i E5t

)

(ρA
t )22 = N

(
e−i E2t + 2e−i E4t + e−i E5t

)
(B.4)

for the middle qubit. Using the relations between the Ei in
(B.2) simplifies this to

(ρA
t )11 = N

(
e−i E11t + e−i E12t

)2
,

(ρA
t )22 = N

(
e−i E22t + e−i E12t

)2
,

N−1 = Tr U(t) = (
e−i E11t + e−i E12t

)2

+(
e−i E22t + e−i E12t

)2
. (B.5)

In general, this is a function of three independent parameters
E11, E22, E12 (or equivalently E1, E2, E5) so it is a complex-
valued function of three phases in general. A straightforward
real slice is obtained when there is a |1〉 ↔ |2〉 exchange
symmetry as we will discuss later.

5-qubit chain: the configurations and their energies are

|11111〉, 4E11; |22222〉, 4E22; |12121〉, |21212〉,
4E12; |11112〉, |11122〉, |11222〉, |12222〉, 3E11 + E12;
|22221〉, |22211〉, |22111〉, |21111〉, 3E22 + E12;
|11121〉, |11211〉, |12111〉, |21112〉, 2E11 + 2E12;
|12221〉, |22212〉, |22122〉, |21222〉, 2E22 + 2E12;
|11221〉, |12211〉, |22112〉, |21122〉, E11 + E22

+2E12; |11212〉, |12112〉, |21211〉, |21121〉, E11 + 3E12;
|12122〉, |12212〉, |22121〉, |21221〉, E22 + 3E12;
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(B.6)

Tracing over all but the middle (3rd) qubit gives the reduced
time evolution operator as

(ρ̃t )
(3)
11 = e−i(4E11)t + e−i(4E12)t + 2e−i(3E11+E12)t

+2e−i(3E22+E12)t + 2e−i(E11+E22+2E12)t

+ 3e−i(2E11+2E12)t + e−i(2E22+2E12)t

+2e−i(E11+3E12)t + 2e−i(E22+3E12)t ,

(ρ̃t )
(3)
22 = e−i(4E22)t + e−i(4E12)t + 2e−i(3E22+E12)t

+2e−i(3E11+E12)t + 2e−i(E11+E22+2E12)t

+ 3e−i(2E22+2E12)t + e−i(2E11+2E12)t

+2e−i(E22+3E12)t + 2e−i(E11+3E12)t , (B.7)

where the tilde denotes un-normalized. The normalization of
the time evolution operator here becomes

N−1
5 = Tr ρ̃

(3)
t

= Tr U(t) = (ρ̃t )
(3)
11 + (ρ̃t )

(3)
22 (B.8)

In general the resulting von Neumann entropy is a compli-
cated complex-valued function of the three energy parame-
ters E11, E22, E12.

There are parallels between our discussions here on qubit
chain configurations and those in [50] on ghost-spin chains
(although the context is different).

Infinite qubit chain: Consider now an infinite 1-dim chain
of qubits, again with only nearest-neighbour interactions, the
Hamiltonian being

H = −J
∑

n

snsn+1 = . . . − Js−1s0 − Js0s1 + . . . (B.9)

We can focus on the qubit at location n = n0 as the subsystem
in question, tracing over all the other qubits in the chain. The
reduced time evolution operator is

ρt = 1∑
I e

−i E[I ]t
∑

n0=1,2

( ∑

I ; n �=0

e−i E[I ]t)|n0〉〈n0| (B.10)

This is a complicated object in general, although still simply
a complex-valued function of the three energy parameters
E11, E22, E12. Since this qubit only interacts directly with
its two neighbours, the effective system has some parallels
with the 3-qubit chain above: but the detailed structure is
complicated, as already evident in the 5-qubit case earlier.

|1〉 ↔ |2〉 exchange symmetry: In the simple subcase
enjoying |1〉 ↔ |2〉 exchange symmetry, there are substantial
simplifications in (B.1): this is when there is an Ising-like
structure, with

a1 = −a2 = 1; E11 = E22 = −E12 = −J. (B.11)

For instance the 3-qubit case (B.5) simplifies to

N−1
3 = 2

(
ei J t + e−i J t)2

,

(ρA
t )11 = (ρA

t )22

= N3
(
ei J t + e−i J t)2 = 1

2
(B.12)

which thus gives von Neumann entropy log 2. Likewise the
5-qubit (B.7) case can be seen to simplify to

N−1
5 = 2

(
ei J t + e−i J t)4

,

(ρA
t )11 = (ρA

t )22 = N5
(
ei J t + e−i J t)4 = 1

2
(B.13)

so the middle qubit has identical structure. For an infinite
qubit chain with this Ising-like Z2 symmetry, we expect
translation invariance in the “bulk” so we expect that the
reduced time evolution operator has again similar structure.
Considering an N -qubit chain (towards large N ), the con-
figurations can be organized similar to (B.6). It is then clear
that the ground states are |11 . . . 11〉, |22 . . . 22〉, with energy
−(N−1)J . The first excited states comprise “one kink” states
with exactly one 12- or 21-interface with energy −(N − 3)J
and degeneracy 2(N − 1). The next set of excited states con-
tain two kinks, so the energy is −(N − 5)J with degeneracy
4(N − 2). Higher excited states contain multiple 12- or 21-
interfaces. The two highest energy states have maximally
alternating 1, 2s, i.e. |12121..〉, |21212..〉: there are (N − 1)

interfaces giving energy (N−1)J . Furthermore, every energy
E (with corresponding configurations) comes in pairs, i.e.
there are corresponding configurations with energy −E . This
can be seen above, with the ground states and highest energy
states: likewise, corresponding to the one kink states, we have
states with energy (N −3)J obtained by transforming one of
the 12- or 21-interfaces in the highest energy states to 11 or
22, which then lowers the energy precisely by 2J (and their
degeneracy can be checked easily). Thus the normalization
of the time evolution operator (akin to the partition function)
is N−1

N = Tr ρ̃t , i.e.

N−1
N = 2

(
ei J t (N−1) + (N − 1)ei J t (N−3)

+ . . . + (N − 1)e−i J t (N−3) + e−i J t (N−1)
)

= 2
(
ei J t + e−i J t)N−1

. (B.14)

Each component of the reduced time evolution operator for
some bulk qubit can be explicitly seen to receive contribu-
tions equally from half these states: so we obtain

(ρA
t )11 = (ρA

t )22 = NN
(
ei J t + e−i J t)N−1 = 1

2
(B.15)

which is identical to the structure of the middle qubit in the
previous finite qubit cases.

Note that it is adequate to require E11 = E22 to implement
this |1〉 ↔ |2〉 exchange symmetry: then shifting the energies
arrives at the symmetric values in (B.11). However if keep
E12 independent of E11 = E22 then there are apparently
two independent parameters: however it is straightforward
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to see that the reduced time evolution operator, while non-
Hermitian, nevertheless leads to real-valued von Neumann
entropy. It is likely that similar studies can be extended for
“ghost-spin” models such as those in [50,51].

All of the above structures can be seen to match ordinary
finite temperature entanglement, except with imaginary tem-
perature β = i t .

Appendix C: Two coupled oscillators

We consider the following Hamiltonian H with unit masses
mA = mB = 1,

H = 1

2
(p2

A + p2
B) + k1

2
(x2

A + x2
B) + k2

2
(xA − xB)2.

(C.1)

This is slightly different from the coupled oscillators case
discussed in [23]. We diagonalise the Hamiltonian in a coor-
dinate basis {y1, y2} as below. Then the hamiltonian (C.1)
becomes

H = (
1

2
p2

1 + 1

2
�2

1 y
2
1 ) + (

1

2
p2

2 + 1

2
�2

2 y
2
2 ),

y1 = (xA + xB)√
2

; y2 = (xA − xB)√
2

(C.2)

where �1 = √
k1 , �2 = √

k1 + 2k2. The energy eigenval-
ues and eigenfunctions of (C.2) are labelled by En1n2 , and
φn1n2(y1, y2) respectively,

En1n2 = (n1 + 1

2
)�1 + (n2 + 1

2
)�2

= En1 + En2 ;φn1n2(y1, y2)

= φn1(y1) φn2(y2), (C.3)

where n1, n2 take values from 0 to ∞ and En1 = (n1+ 1
2 )�1,

En2 = (n2 + 1
2 )�2 .

We now write the time evolution operator in its eigenbasis
as follows

e−i Ht = ρ(t) =
∑

n1,n2

e−i En1n2 t

×|φn1n2〉〈φn1n2 |. (C.4)

In position space

ρ(y1, y2; y′
1, y

′
2, t)

=
∑

n1,n2

e−i En1n2 t φn1n2(y1, y2) φ∗
n1n2

(y′
1, y

′
2) ,

=
∑

n1,n2

e−i (En1+En2 )t φn1n2(y1, y2) φ∗
n1n2

(y′
1, y

′
2) ,

= ρ1(y1; y′
1, t) ρ2(y2; y′

2, t) . (C.5)

We have applied (C.3) in the first line of (C.5), and

ρ1(y1; y′
1, t) =

∑

n1

e−i En1 t φn1(y1)φ
∗
n1

(y′
1) ;

ρ2(y2; y′
2, t) =

∑

n2

e−i En2 t φn2(y2)φ
∗
n2

(y′
2) . (C.6)

(C.5) shows that the time evolution operator ρ(t) is decom-
posed as ρ(t) = ρ1(t) ⊗ ρ2(t). The energy eigenstate for a
single harmonic oscillator of frequency � (setting m = 1) is

φn(x) = 1√
2nn!

(
�

π

) 1
4

e− � x2
2 Hn(

√
� x);

En = (n + 1

2
)�. (C.7)

We now use Mehler’s formula for Hermite polynomials [52]

∞∑

n=0

(α
2 )n

n! Hn(X)Hn(Y )

= 1√
1 − α2

e
−α2(X2+Y2)+2αXY

1−α2 . (C.8)

We now consider the time evolution operator for a single har-
monic oscillator of frequency � in order to calculate (C.5):

ρ(x; x ′, t) =
∞∑

n=0

e−i Ent φn(x) φ∗
n (x

′). (C.9)

Applying (C.7) into (C.9)

ρ(x; x ′, t) =
∞∑

n=0

e−i(n+ 1
2 )�t 1

2n n!
(

�

π

) 1
2

e− �
2 (x2+x ′2)

×Hn(
√

� x) Hn(
√

� x ′). (C.10)

We now use (C.8) in (C.10),

ρ(x; x ′, t) =
(

�
π

) 1
2

√
2i sin(� t)

e− p (x2+x ′2)
2 +q xx ′

, (C.11)

where

p(t) = −i � cot(� t) ; q(t)

= −i �

sin(� t)
. (C.12)

We will not write the t dependence of p and q explic-
itly, we simply write p and q instead of p(t) and q(t).
We now define the normalised time evolution operator as
P(x; x ′, t) = ρ(x;x ′,t)

Tr(ρ(x;x ′,t)) ,

P(x; x ′, t) =
√

p − q

π
e− p (x2+x ′2)

2 +q xx ′
. (C.13)

Note that the normalization Tr(ρ(x; x ′, t)) using (C.11)
is

∫ ∞
−∞ dx ρ(x, x, t), which is oscillatory (rather than a

damped Gaussian), using (C.12). To render this well-defined,
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we insert a small exponentially damping regulator: this is
the position space analog of the regularization in (3.18).
Similar regulators are required to define various infinite
sums/integrals here.

We now find the expressions for ρ1(y1; y′
1, t) and ρ2(y2;

y′
2, t) appearing in (C.5) using (C.11),

ρ1(y1; y′
1, t) =

(
�1
π

) 1
2

√
2i sin(�1 t)

e− p (y2
1 +y′1

2
)

2 +q y1y′
1 ,

ρ2(y2; y′
2, t) =

(
�2
π

) 1
2

√
2i sin(�2 t)

e− r (y2
2 +y′2

2
)

2 +s y2 y′
2 , (C.14)

where

p = −i �1 cot(�1 t) ; q = −i �1

sin(�1 t)
;

r = −i �2 cot(�2 t) ; s = −i �2

sin(�2 t)
. (C.15)

We define the normalised time evolution operator as P(y1, y2;
y′

1, y
′
2, t) = ρ(y1,y2;y′

1,y
′
2,t)

Tr(ρ(y1,y2;y′
1,y

′
2,t))

,

P(y1, y2; y′
1, y

′
2, t) =

√
p − q

π

√
r − s

π
e− p (y2

1 +y′1
2
)

2 + q y1y′
1

×e− r (y2
2 +y′2

2
)

2 + s y2 y′
2 . (C.16)

Writing P(y1, y2; y′
1, y

′
2, t) in terms of original variables xA,

xB (C.2) gives

P(xA, xB; x ′
A, x ′

B = xB , t)

=
√

p − q

π

√
r − s

π

× e− (p+r)
4 (x2

A+x ′
A

2
)+ (q+s)

2 xA x ′
A

× e− x2
B
2 (p+r−q−s)+xB

(xA+x ′A )

2 (−p−s+q+r). (C.17)

We now trace over the 2nd oscillator PA(xA; x ′
A, t) =

TrB[P(xA, xB; x ′
A, x ′

B, t)]. For this we integrate (C.17) over
xB , after performing the integration, we get

PA(xA; x ′
A, t) =

√
γ − β

π
e− γ

2 (x2
A+x ′

A
2
) +β xA x ′

A (C.18)

where

γ = p + r

2
− 1

4

(p + s − q − r)2

p + r − q − s
; β = q + s

2

+ 1

4

(p + s − q − r)2

p + r − q − s
,

γ − β = 2
(p − q)(r − s)

p − q + r − s
; γ + β

= p + q + r + s

2
. (C.19)

The entropy associated with the reduced density matrix
PA(xA, x ′

A, t) is given by SA = −Tr(PA log PA). The eigen-
values λn and eigenvectors fn(x) of an operator of the form
(C.18) are given in [53]: we have λn = (1 − ζ ) ζ n , where
ζ = β

γ+α
, α = √

γ 2 − β2, which gives

SA = − log(1 − ζ ) − ζ

1 − ζ
log ζ. (C.20)

We see that the entropy SA is complex valued, recasting ζ in
terms of γ + β and γ − β,

ζ =
√

γ + β−,
√

γ − β√
γ + β + √

γ − β
. (C.21)

The explicit expressions for (C.19) in terms of original vari-
ables are given by

√
γ + β =

(
− i

(�1

2
cot

�1t

2
+ �2

2
cot

�2t

2

)) 1
2
,

√
γ − β =

( 2i
1

�1
cot �1t

2 + 1
�2

cot �2t
2

) 1
2
. (C.22)

For �1 = �2 = ω (i.e. k2 = 0), we recover our result for
two uncoupled oscillators. Comparing our result with the
spacelike entanglement evaluated at finite inverse tempera-
ture i t , we recover the result in [54] (in particular ζ in (C.21)
matches with eq.(2.22) in [54]).
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