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Abstract We study the butterfly effect and pole-skipping
phenomenon for the 1RCBH model which enjoys a critical
point in its phase diagram. Using the holographic idea, we
compute the butterfly velocity and interestingly find that this
velocity can probe the critical behavior of this model. We
calculate the dynamical exponent of this quantity near the
critical point and find a perfect agreement with the value
of the other quantity’s dynamical exponent near this crit-
ical point. We also find that at special points, namely the
(ω� = iλL , k� = iλL/vB), where λL and vB are Lya-
punov exponent and butterfly velocity respectively, the phe-
nomenon of pole-skipping appears which is a sign of a mul-
tivalued retarded Green’s function. Furthermore, we observe
that v2

B ≥ c2
s at each point of parameter space of the 1RCBH

model where cs is the speed of sound wave propagation.
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1 Introduction

So far, many approaches have been introduced for the char-
acterization of quantum chaos ranging from semiclassical
methods to random matrix theory to improve this fairly com-
plicated notion [1]. In recent years, the gauge-gravity duality
[2–4], which relates a d-dimensional quantum field theory
(QFT) to some (d + 1)-dimensions classical gravitational
theory in the bulk, has provided remarkable insights into the
nature of quantum chaos.

A distinct feature of quantum chaos is the butterfly effect
which is a very common phenomenon in thermal systems.
In the context of quantum mechanics, this phenomenon
can be characterized using the commutator 〈[W (t), V (0)]2〉
between two generic Hermitian operators V (0) and W (t).
This quantity measures how much an early perturbation V (0)

affects the later measurements of W (t) or, in other words,
how sensitive the system is to an initial perturbation created
by acting with V (0). The strength of such measurement is
encoded in the following double commutator [5]

C(t) = −〈[W (t), V (0)]2〉β, (1)

where the expectation value has been taken in a thermal state
with β = 1/T . If we assume that V and W are Hermitian
and unitary operators, then the double commutator will be
written

C(t) = 2 − 2〈W (t)V (0)W (t)V (0)〉β, (2)

where the second part, 〈W (t)V (0)W (t)V (0)〉β, is called
Out of Time Ordered Correlation (OTOC) and measures the
degree of non-commutativity between W (t) and V (0). It also
contains all the information of C(t). OTOC was first intro-
duced by Larkin and Ovchinnikov to quantify the regime of
validity of quasi-classical methods in the theory of supercon-
ductivity [6]. More recently, the definition of quantum chaos
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based on OTOC became the focus of much research due to
its applicability to many-body quantum systems. This kind
of correlator, in the dual gravitational description, is related
to the collision of shock waves that takes place close to the
black hole horizon [7–17]. Furthermore, there exist experi-
mental proposals for measuring OTOC as a measure of chaos
in quantum systems which is found in [18–21]. There have
also been various efforts to connect OTOC and transport and
hydrodynamic behavior which we will refer the reader to see
[22–38].

For a chaotic large N theory, C(t) is typically expected to
grow exponentially with time

C(t) ∝ 1

N
eλL t , td � t � t∗ (3)

where λL is the Lyapunov exponent. There is the time scale
where C(t) becomes of order O(1) called scrambling time
t∗ ∼ 1

N log N which controls how fast the chaotic system
scrambles information. There is another time scale the dissi-
pation time td which characterizes the exponential decay of

two-point functions, e.g., 〈V (0)W (t)〉 ∼ e
− t

td and also con-
trols the late time behavior of C(t). In quantum field theories
when we separate the operators V and W in space, then at
large distances the (1) will generalize to

C(t, 	x) = −〈[W (t, 	x), V (0, 0)]2〉β. (4)

The butterfly effect is naturally characterized in terms of
such a commutator, which expresses the dependence of later
measurements of distant operators W (t, 	x) on an earlier per-
turbation V (0, 0). Note that the above expression is generi-
cally divergent and hence it requires regularization by adding
imaginary times to the time arguments of the operators V and
W, for example see [39]. The interesting point is that the (4),
for a large class of models such as spin chain, higher dimen-
sional Sachdev, Ye and Kitaev (SYK) model, and conformal
field theories (CFT’s), is roughly given by [9,11,32]

C(t, 	x) ∝ exp

[
λL

(
t − t∗ − |x |

vB

)]
, (5)

where vB is the so-called butterfly velocity which describes
the speed at which the information about V (0, 0) will spread
among the other degrees of freedom of the system in space.
Likewise, the Lyapunov exponent λL is upper bounded in
terms of the Hawking temperature for a generic quantum
system by [40]

λL ≤ 2π

β
, (6)

where the bound is saturated in holographic systems with
black holes present in the bulk, the nature’s fastest scrambler

[41]. Also, this saturation occurs for a variety of systems
including two-dimensional CFT’s in the large central charge
limit, and strongly coupled SYK models. Moreover, there
have been different proposals for the form of the exponen-

tial growth C(t, 	x) including C(t, 	x) ∼ exp
[−λL

(x−vB t)2

t

]
in local random circuit models [42,43] and C(t, 	x) ∼
exp

[
λL t − |x |2

D0t

]
by a diffusive spreading around the expo-

nential growth [44,45].
Once we study the retarded Green’s functions of the dual

field theory in holography, denoted as GR, there exist special
points in complex momentum plane (ω−k), known as pole-
skipping points (ω�, k�), namely ω� = iλL and k� = i λL

vB

where it will be found that GR(ω, k) becomes non-unique
and its behavior is dependent on the slope δω

δk as we approach
(ω�, k�). From a bulk point of view, this nonuniqueness arises
due to the absence of a unique ingoing solutions at the black
hole horizon. More generally, the non-uniqueness of Green’s
function at (ω�, k�) in complex momentum plane (ω − k)
is explicitly shown in [46,47] where they perform a near
horizon expansion of the equation of motion.

Recent developments have indicated that there exists a
sharp manifestation between the retarded Green’s function
of energy density, the GR

T 00T 00(ω, k) and chaotic proper-
ties of many-body thermal systems at the pole-skipping
points (ω�, k�) located in upper-half complex momentum
plane, which is referred to as pole-skipping phenomenon
[38,48,49]. It has also been confirmed that the general pole-
skipping points for some models [46,50–55] are located at
special points in the lower-half complex momentum plane,
namely at negative integer Matsubara frequencies ωn =
−2π iT n (n ≥ 1) which are not related to the information
of quantum chaos.

The same pole-skipping phenomenon has also been
observed in effective field theory (EFT) in two-point func-
tions of energy density and flux [22] and it holds in the
context of chaotic two-dimensional CFTs with large cen-
tral charge limit [26]. Moreover, the pole-skipping can be
explored by the near horizon solutions of scalar field pertur-
bations [46,56,57]. More investigations have recently been
devoted to the relationship between the chaos and energy
dynamics in rotating black holes through the pole-skipping
phenomenon [58–60]. There have been many works study-
ing this phenomenon which we will refer the reader to see
[50,51,61–69].

In this paper, we study the butterfly effect and pole-
skipping phenomenon for the 1RCBH model. This model
has an analytical top-down string theory construction which
is obtained from 5-dimensional maximally supersymmet-
ric gauged supergravity and is holographically dual to a 4-
dimensional strongly coupled N = 4 SYM theory at finite
chemical potential under a U(1) subgroup of the global SU(4)
symmetry of R-charges [70–72]. Since the theory is con-
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formal, its phase diagram is a function of a dimensionless
parameter μ

T , where μ and T are the U(1) R-charge chemi-
cal potential and temperature of the boundary theory, respec-
tively. This model enjoys a second-order phase transition
with a critical point at μ

T = π√
2

in its parameter space whose
critical exponents were calculated in [73–78]. Our primary
goal in this paper is to find whether the butterfly velocity
vB can serve as a measure to probe the critical behavior of
this model and if so, what the critical exponents are. Another
motivation is to study the appearance of the pole-skipping
phenomenon in the 1RCBH model which has a second-order
phase transition. To do this, we study the linearized pertur-
bations in scalar sector (spin 0) by two different points of
view which are consistent with each other in their results.
We also extend our analysis and show that the same phe-
nomenon can also occur at higher Matsubara frequencies
ωn = −2π iT n (n ≥ 1) for the gauge perturbations.

The organization of this paper is as follows. In Sect. 2
we focus on the butterfly effect which characterizes chaos
by parameters such as butterfly velocity and Lyapunov expo-
nent and study holographically these parameters in the men-
tioned model. Interestingly, we find that butterfly velocity
can probe the critical point of corresponding strongly cou-
pled field theory. Motivated by this, in Sect. 3 the dynami-
cal exponent of this velocity will be obtained near the crit-
ical point and the perfect agreement is found with the ones
reported in the literature. Additionally, we examine the pole-
skipping for higher Matsubara frequencies in differential
equation of scalar field perturbations. In particular, we obtain
detM(ω, k2) �= 0 at the points ωn = −2π iT n (n ≥ 1) and
k = k� = iλL/vB regarding the equationM(ω, k2)·δφ̃ = I
in which M(ω, k2) is the coefficient matrix for scalar per-
turbations δφ̃ living near the horizon and I is a compli-
cated vector composed of the other variables. The property
detM(ω, k2) �= 0 states that scalar solutions are unique and
the corresponding retarded Green’s functions are not multi-
valued at ω = ωn and k = k�. We guess that this feature may
come from the presence of finite charge in our model. How-
ever, for matrix coefficients of gauge perturbations we get
detM(ωn, k2

� ) = 0 and hence the respective retarded corre-
lation functions become multivalued and the poles of Green’s
functions skip at the point ω = ωn and k = k�. In Sect. 4
we study the pole-skipping phenomenon in 1RCBH model.
Indeed, we consider a special set of fluctuations in the spin 0
sector and derive the linearized equations for these perturba-
tions. We observe that the v − v component of Einstein’s
equations near the horizon at the (ω�, k�) point becomes
equivalent to the shock wave equation and we can read off the
information about the chaos. Furthermore, this component of
the Einstein equations automatically satisfied at the (ω�, k�)

point and one can deduce that there exists one extra regular
mode emerging at this point and as a result leads to the pole-

skipping in the retarded energy density correlation function.
Due to the complicated nature of master equations in the
1RCBH model, we supply MATHEMATICA files contain-
ing the linearized equations in the spin zero sector separately.
In Sect. 5, we conclude and briefly review our results. To give
more details, Appendix A is devoted to more accurate calcu-
lations of invariant fluctuations in the Eddington–Finkelstein
coordinates. Moreover, in Appendix B we give details of near
horizon expansions of scalar fluctuation in Sect. 4.

2 Butterfly effect in the 1RCBH model

We would like to study the butterfly effect in a strongly cou-
pled field theory including a critical point, using the frame-
work of holography. To do so, we first review the 1RCBH
model. The bulk theory is a top-down string theory construc-
tion which is a consistent truncation of the super-gravity on
AdS5× S5 geometry in which one scalar field and one gauge
field are coupled to the Einstein gravity. The thermal solution
is an asymptotically AdS black brane geometry with a non-
trivial profile of the scalar and gauge fields, so-called 1RCBH
[70–72]. This geometry is dual to a four-dimensional strongly
coupled gauge theory N = 4 SYM at finite temperature and
chemical potential.

2.1 Background

The bulk part of the 1RCBH model is given by the following
action [70]

Sbulk = 1

16πG5

∫
d5x

√−g

(
R − f (φ)

4
FμνF

μν

−1

2
(∂μφ)2 − V (φ)

)
, (7)

where G5 is the 5-dimensional Newton constant, g and R
are the determinant of the metric and its corresponding Ricci
scalar, respectively, and Fμν is the field strength of the gauge
field Aμ. The self-interacting dilaton potential V (φ) and the
Maxwell-dilaton coupling f (φ) are given by

V (φ) = − 1

L2

(
8e

φ√
6 + 4e−

√
2
3 φ

)
, (8)

f (φ) = e−2
√

2
3 φ

. (9)

where L is the asymptotic AdS5 radius. For simplicity, in
the following we set L = 1. The equations of motion corre-
sponding to the action (7) are given by

ϕ ≡ 1√−g
∂μ

(√−ggμν∂νφ
) − f ′(φ)

4
FμνF

μν − V ′(φ) = 0,

Aν ≡ ∂μ

(√−g f (φ)Fμν
) = 0,
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Gμν ≡ Rμν − gμν

3

(
V (φ) − f (φ)

4
FαβF

αβ

)

− 1

2
∂μφ∂νφ − f (φ)

2
FμαF

α
ν = 0. (10)

The 1RCBH solution to the equation of motion of the
action (7) is described by the following metric

ds2 = e2A(r)
(

− h(r)dt2 + d 	x2
)

+ e2B(r)

h(r)
dr2 (11)

where

A(r) = ln (r) + 1

6
ln

(
1 + Q2

r2

)
,

B(r) = − ln (r) − 1

3
ln

(
1 + Q2

r2

)
,

h(r) = 1 − M2

r2(r2 + Q2)
,

φ(r) = −
√

2

3
ln

(
1 + Q2

r2

)
,

at (r) =
(

MQ

r2
H + Q2

− MQ

r2 + Q2

)
. (12)

Here, r is the radial bulk coordinate, the holographic direc-
tion, and the strongly coupled field theory lives on the bound-
ary at r → ∞. The time component of the gauge field is at (r)
which is chosen to be zero on the horizon and is regular on
the boundary. M is the black hole mass and Q is its charge.
rH is the black hole horizon position which is obtained from
h(rH = 0) and can be written in terms of the charge Q and
mass M of the black hole as follow

rH =
√√

Q4 + 4M2 − Q2

2
. (13)

The Hawking temperature T and the chemical potential μ of
the dual field theory are also given by

T =
√−g′

t t grr
′

4π

∣∣∣∣
r=rH

=
⎛
⎝ Q2 + 2r2

H

2π

√
Q2 + r2

H

⎞
⎠ , (14a)

μ = lim
r→∞ at = QrH√

Q2 + r2
H

, (14b)

where “ / ” denotes a derivative with respect to the r. We can
now parametrize the class of solutions corresponding to the
1RCBH model by different values of the dimensionless ratio

Q
rH

which is

Q

rH
= √

2

⎛
⎝1 ±

√
1 − (

√
2

π
μ
T )2

√
2

π
μ
T

⎞
⎠ , (15)

and implying that 0 ≤ μ
T ≤ π√

2
. We point out from above

equation that there are two different values of Q
rH

corre-
sponding to each value of μ

T which parametrize two different
branches of solutions. Utilizing the relations between entropy
s and charge density ρ in terms of the bulk solution param-
eters Q and rH , we can compute the Jacobian J = ∂(s,ρ)

∂(T,μ)
.

At the critical point (
μ
T )∗ = π√

2
(
Q
rH

= √
2) the Jacobian

becomes zero and two branches intersect with each other.
Thermodynamically stable (unstable) states correspond to
the positive (negative) Jacobian branches. The branch with
the parameters satisfying Q

rH
<

√
2 is stable.

2.2 Shock wave geometry

In holographic theories, the butterfly effect corresponds to the
blue shift suffered by a probe particle in the bulk, which we
call W particle, that falls towards the horizon. W -particle’s
energy is blue-shifted by the black hole’s temperature for
late times from the point of view of the t = 0 slice of the
geometry

E = E0e
( 2π

β
)t
, (16)

where E0 is the asymptotic past energy of the W particle.
The back-reaction of this particle on the geometry becomes
significant at late times and creates a shock-wave along the
horizon. The effect of the shock wave is to produce a shift in
the trajectory of W particle. The interesting point is that the
shock wave profile contains information about the parameters
characterizing the chaotic behavior of the boundary theory
[5].

2.2.1 Holographic setup

To study chaos it is convenient to consider a thermofield
double state (TFD) which is made out of two identical copies
of the CFT

|ψ〉 = 1

Z(β)
1
2

∑
n

e−βEn/2 |n〉L |n〉R, (17)

where the subscript L(R) specifies the energy eigenstates of
the CFT living on the left (right) asymptotic boundary of
geometry. Here, Z(β) is the corresponding CFT partition
function. Furthermore, this state is dual to a two-sided black
hole with two boundaries which is asymptotically AdS [79].
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We now would like to calculate the butterfly effect velocity
corresponding to the 1RCBH model (11) by constructing
the relevant shock wave geometries. To do so, we assume a
general d + 1 dimensional metric of the following form

ds2 = − f1(r)dt
2 + f2(r)dr

2 + f3(r)dx
2
i ,

i = 1, 2, . . . , d − 1, (18)

whose boundary is located at r → ∞ and is assumed to be
asymptotically AdSd+1. We take the horizon as located at
r = rH on which f1(r) vanishes and f2(r) has a first-order
pole. To describe the shock wave solution of this geometry,
it is more useful to re-write the above metric in the Kruskal–
Szekeres coordinates. We first define the so-called tortoise
coordinate

dr∗ =
√

f2(r)

f1(r)
dr, (19)

which behaves such that r∗ → ∞ as r → rH , and then
introduce the Kruskal–Szekeres coordinates as follows

U = e
2π
β

(r∗−t)
, V = −e

2π
β

(r∗+t)
, (20)

where β = 4π
f ′
1(rH )

. In terms of these coordinates, metric (18)

can be written

ds2 = A(UV )dUdV + ( f3)i j (UV )dxidx j , (21)

where i, j = 1, 2, . . . , d − 1 run over the d − 1 transverse
directions, and A(UV ) is a function given by the component
of the general metric as follows

A(UV ) = β2 f1(UV )

4π2UV
. (22)

In these coordinates the horizon is located at U = 0 or
V = 0, and the left and right asymptotic boundaries are
positioned in UV = −1. These coordinates cover the max-
imally extended eternal black hole solution including two
entangled boundaries connected by a wormhole.

As we have mentioned before, the back-reaction of W par-
ticle on the geometry becomes significant at late times, (i.e.
t > β). The associated stress energy distribution becomes
highly compressed in the V direction and stretched in the U
direction and one can approximately read the stress-energy
tensor of the W particle as [5,11]

TVV ∼ β−1 e( 2π
β

)t
δ(V )a(	x), (23)

where TVV is localized at V = 0 and a(	x) is a generic func-
tion whose precise form depends on details of the pertur-
bation in the spatial direction, as well as the propagation to

the horizon. The back-reaction of the above matter distribu-
tion is a shock wave geometry whose metric is described by
[7,80,81]

ds2 = A(UV )dUdV + ( f3)i j (UV )dxidx j

− A(UV )h(t, 	x)δ(V )dV 2, (24)

where h(t, 	x) is the corresponding shift in the U direction,
U −→ U+h(t, 	x), asW -particle crosses theV = 0 horizon.
Eventually, one can determine the precise form of h(t, 	x) by
solving the VV component of Einstein equation

Rμν − 1

2
gμνR + �gμν = 8πGNTμν, (25)

where � = − d(d−1)
2 is the cosmological constant, and Tμν

is given by (23). To obtain h(t, 	x) one can solve the v − v

component of Einstein’s equations by setting δ′(V ) = −δ(V )
V

and V 2δ(V )2 = 0. For a local perturbation, i.e. a(	x) =
δd−1(	x) we get

(
∂i∂i − χ2

)
h(	x) = 16π GN f3(0)

A(0)
β−1e( 2π

β
)t

δd−1(	x).
(26)

Assuming ( f3)i j to be diagonal and isotropic, the solution to
the above differential equation at long distances x � χ−1

reads

h(x) ∼ e( 2π
β

)(t−t∗)−χ |x |

|x | d−1
2

, (27)

where the screening length χ is given by

χ2 = (d − 1)

A(0)

∂ f3(UV )

∂(UV )

∣∣∣∣
V=0

, (28)

and the scrambling time t∗ ∼ β
2π

log 1
GN

. For later conve-
nience, we express χ as a function of the coordinates (t, r)

χ2 = (d − 1)π f ′
3(r)

β
√

f1(r) f2(r)

∣∣∣∣
r=rH

, (29)

where “ / ” takes the radial derivative. For the case of the
d + 1−dimensional AdS–Schwarzschild in which f1(r) =
r2 − r2−d , f2(r) = f1(r)−1, rH = 1 and β = 4π

d one

finds χ2 = d(d−1)
2 as expected [11]. On the other hand, the

shock wave profile (27) contains information regarding the
parameters such as λL and vB which corresponded to the
chaotic behavior of the boundary theory. Hence, one can read
off λL and vB holographically as

λL = 2π

β
, vB = 2π

βχ
, (30)
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where λL is universal in all such theories, while vB is model
dependent. Now we are in a position to extract butterfly veloc-
ity for metric (18). Using (30) and (29) we obtain vB as the
following form

vB = 2
√

π( f1 f2)
1
4√

β(d − 1) f ′
3

∣∣∣∣
r=rH

, (31)

where we simply reach the d + 1− dimensional AdS–

Schwarzschild result i.e., vB =
√

d
2(d−1)

, as reported in [11].

2.3 vB in the 1RCBH model

Having discussed the characteristic parameters of chaotic
systems such as Lyapunov exponent λL and butterfly velocity
vB in detail and obtained the explicit expressions for them,
we are now in a position to write vB for the 1RCBH model
whose metric is given by (11). Using (14a), (14b), (12) and
(31) and considering f3(r) = e2A(r), f1(r) = h(r) f3(r)

and f2(r) = e2B(r)

h(r) , one can read the butterfly velocity of the
1RCBH model as follows

v2
B = 4

7 ∓
√

1 −
(

μ/T
π/

√
2

)2
, (32)

where −(+) indicates the stable(unstable) black hole solu-
tions. The above relation has been depicted in Fig. 1 for both
stable and unstable black hole solutions for different values
of μ

T . The circle point has specified the precise location of
the critical point which is at (

μ
T )∗ = π√

2
. The point is that

for all values of μ
T , we observe that v2

B > c2
s = 1

3 where cs
is the speed of sound wave propagations. This is the result
we obtained for the 1RCBH model in which the conformal
symmetry is respected and hence this is not generic in some
sense. One can find some models which are not conformal
and this bound is violated, see for example [82]. Also, vB gets
smaller (larger) towards the critical point in stable (unstable)
branches solution signaling the fact that the speed of informa-
tion propagation can be a good diagnostic quantity to pinpoint
the location of the critical point.

3 Critical exponent

As mentioned before, the 1RCBH model we study in this
paper enjoys a critical point at (

μ
T )∗ = π√

2
. The behav-

ior of different observables near the critical point has been
studied in the literature [74,75,77,78,83–86] in which the
authors have shown that this behavior can be considered as(
(

μ
T )∗ − μ

T

)−θ where θ is the dynamical exponent which is
obtained to be 1

2 . We also would like to study the behavior

0.0 0.5 1.0 1.5 2.0
0.50

0.55

0.60

0.65

Fig. 1 The square of the butterfly velocity v2
B as a function of dimen-

sionless ratio μ
T . The solid blue curve corresponds to the stable solutions

while the red dashed curve corresponds to the unstable solutions. The
green circle point where these branches of solutions merge is called the
critical point where (

μ
T )∗ = π√

2

of butterfly velocity vB near this critical point. To proceed,
we expand vB and dvB

d( μ
T )

in power of
(
(

μ
T )∗ − μ

T

)
as follows

vB = 2√
7

+ 23/4

7
√

7π

((μ

T

)∗ − μ

T

) 1
2 + O

[((μ

T

)∗ − μ

T

)1
]

,

(33)

dvB

d
(

μ
T

) = 1

7 × 2
1
4
√

7π

((μ

T

)∗ − μ

T

)− 1
2 + O

[((μ

T

)∗ − μ

T

)0
]

.

(34)

It has been seen that vB remains finite, while dvB
d( μ

T )
diverges

near the critical point and one can see that the dynamical
exponent is equal to 1

2 . This also shows that butterfly velocity
can probe the location of the critical point and in other words
can be used as a probe to investigate the phase diagram of
the 1RCBH model. The reason why we look for vB to probe
the critical point is that this is a dynamical quantity that has
a time scale and seems to have such scaling property.1

4 Pole-skipping in the 1RCBH model

As we have pointed out before, OTOCs can be recognized
as very useful tools to diagnose many-body quantum chaos.
In addition to OTOCs, the chaotic nature of many-body ther-
mal systems is also encoded in the equations of motion for
linearized fluctuations in the spin-0 sector. For a general and
non-critical background, it has been shown that the vv com-
ponent of Einstein’s equation near the horizon gets the fol-
lowing form [49]

1 We are grateful to S. Grozdanov for his valuable comment regarding
this subject.
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(
k2 + k2

0
ω

2πT i

)
δg(0)

vv (rH ) + (ω − 2iπT )
(
ωδg(0)

xi xi
(rH )

+2kδg(0)
vz (rH )

)
= 0, (35)

where the gravitational and matter perturbations have been
expanded near the horizon as

δgμν(r) = δg(0)
μν + δg(1)

μν (r − rH ) + · · · ,

δφ(r) = δφ(0) + δφ(1)(r − rH ) + · · · , (36)

and the propagations have been parametrize along the z direc-
tion. At ω = ω� = 2πT i and k = k� = ik0 this equation
becomes identically zero. A consequence of this issue is that
there exists plenty of linearly independent solutions to the
Einstein equations. All these linear solutions approach the
(ω�, k�) by different slope

δω

δk
= 2k0δg0

vv(rH )

k2
0

ω0
δg0

vv(rH ) − ω0δg0
xi xi

(rH ) − 2k0δg0
vz(rH )

, (37)

where ω0 = 2πT . Another manifestation of having many
solutions is that two regular solutions exist in ingoing coor-
dinates, i.e. solutions become (r − rH )α1,α2 where both
(α1, α2) ≥ 0. In this section, we want to examine these fea-
tures for the 1RCBH model.

4.1 Setup for the 1RCBH model

In this subsection, we would like to study the linearized equa-
tions of motion on top of the metric (18) near the following
points

λL = 2π

β
= 2πT, (k0)

2 = π(d − 1) f ′
3(rH )

β
√

f1(rH ) f2(rH )
, (38)

where k0 has been calculated through (31) and k0 = λL
vB

.

The sound mode which corresponds to the retarded hydro-
dynamic correlators obeys the equations whose solutions sat-
isfy ingoing wave boundary conditions at the horizon. Note
also that these solutions in part contain the vv component
of Einstein’s equations where v is the ingoing Eddington–
Finkelstein (EF) coordinate. It is therefore convenient to
introduce ingoing EF coordinates (v; r; xi ) in terms of which
the general metric (18) becomes

ds2 = − f1(r)dv2 + 2
√

f1(r) f2(r)dvdr + f3(r)(dx
i )2.

(39)

Under infinitesimal diffeomorphism xμ → xμ + ξμ and an
infinitesimal gauge transformation Aμ → Aμ + ∇μ�, the
perturbations δgμν, δAμ and δφ transform as

δgμν → δgμν − ∇μξν − ∇νξμ,

δAμ → δAμ + ∇μ� − ξν∇ν Aμ − Aν∇μξν,

δφ → δφ − ξν∇νφ,

where ξμ and � are diff and gauge functions, respectively.
Due to the symmetry considerations, we set the metric, gauge
and scalar field perturbation along the x3 ≡ z direction as
follows

δgμν(v, r, z) = e−iωv+ikzδgμν(r),

δAμ(v, r, z) = e−iωv+ikzδAμ(r),

δφ(v, r, z) = e−iωv+ikzδφ(r). (40)

The above perturbations can be classified into three sets of
sectors named scalar (spin 0), vector (spin 1) and tensor (spin
2) sectors respectively, which are decoupled at the level of
equations due to the symmetry [87]. Fluctuations in the spin
0 sector and EF coordinates are given by

δ� =
(

δgvv, δgrv, δgrr , δgrz, δgvz, δgxi xi , δAv, δAz, δφ

)
,

(41)

which due to the SO(3) invariance, δgyy = δgxx . The
linearized equations for these perturbations derived from
Eq. (10) are very hard to solve. But series solution exists for
every single point of the bulk. According to the fluid/gravity
conjecture, the small energy (charge) perturbations on top
of the living strongly coupled theory on the boundary corre-
spond to equivalent small metric (gauge) field perturbations
on the event horizon surface. Therefore, we scrutinize the
near horizon points. We make a series assumptions for each
perturbing field as

δgμν(r) =
∞∑
n=0

δgnμν(rH ) (r − rH )n,

δAμ(r) =
∞∑
n=0

δAn
μ(rH ) (r − rH )n,

δφ(r) =
∞∑
n=0

δφn(rH ) (r − rH )n, (42)

and plug them into the linearized equations to solve the series
order by order in ε = r − rH . We observe that the Gvv equa-
tion for fluctuations near the horizon on top of the 1RCBH
background gets the following form

δg0
vv(rH )

(
k2 − ik2

0ω

2πT

)
+ (ω − 2iπT )(2qδg0

zv(rH )

+ 2ωδg0
xx (rH ) + ωδg0

zz(rH )) = 0, (43)
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where k2
0 = λ2

L
v2
B

= 6πT A′(rH )eA(rH )−B(rH ). For general

ω and k Eq. (43) imposes a non-trivial constraint on the
near-horizon expansion components δg0

vv(rH ), δg0
zv(rH ),

δg0
xx (rH ) and δg0

zz(rH ). However, at the point ω∗ = iλL =
2πT i the metric component δg0

vv(rH ) decouples from the
other components and Eq. (43) reduces to

δg0
vv(rH )

(
k2 − ik2

0ω

2πT

)
= 0. (44)

Interestingly, this equation has the same form as the equation
that determines the profile of shift corresponding to the shock

wave geometry, Eq. (26), with χ2 ≡ λ2
L

v2
B
. The other point is

that at the point k = ik0 Eq. (44) is automatically satisfied.
Put in other words, at (ω�, k�), Eq. (43) becomes trivial and it
does not impose any constraint on the near-horizon expansion
components δg0

vv(rH ), δg0
zv(rH ), δg0

xx (rH ) and δg0
zz(rH ). Its

message is that there exists one extra ingoing mode emerging
at this point and as a result lead to the pole-skipping in the
retarded energy density correlation functionGR

T 00T 00(ω, k) at
the (ω�, k�). To understand this phenomenon more precisely,
we can now check what happens as one moves slightly away
from the special point. We consider Einstein’s equations with
ω = iλ+ ε δω and k = ik0 + ε δk where |ε| � 1 and hence,
at leading order in ε, we have a family of different ingoing
modes by varying the slope δω

δk . This slope can be chosen to
correspond to the resulting ingoing mode near the (ω�, k�)
with different asymptotic solutions at the boundary. If one
chooses δω

δk in the following form

δω

δk
= 2k0δg0

vv(rH )

k2
0

2πT δg0
vv(rH ) − 2k0δg0

zv(rH ) − 2πT
(
2δg0

xx (rH ) + δg0
zz(rH )

) ,

(45)

then we will get an ingoing mode that matches continuously
onto the normalizable solution at the boundary. All these
lines pass through the (ω�, k�) and if we move away from
that point, we see different lines with slopes (45) in the Tvv

correlation functions. This can also be described as a line of
poles in the energy density correlation function that passes
through the special point when we move away from the spe-
cial point along the slope (45). The point is that one could
also choose different δω

δk such that the ingoing mode matches
onto a solution with different asymptotes at the boundary.

Apart from this viewpoint, we can study linearized equa-
tions more fashionably. To do this, we have to decouple
the linearized equations by choosing the suitable gauge+diff
invariant master field variables. In the spin 0 sector, there are 7
combinations of gauge+diff-invariant perturbations [87,88],
but in the on-shell level only three of them are independent.
In the following, we write a specific choice of these three
combinations for the general metric

ψ1 ≡ d

dr

[
2δgxx (r) + δgzz(r)

f3(r)

]

− iω

f3(r)

√
f2(r)

f1(r)
(2δgxx (r) + δgzz(r))

− 2ik

f3(r)

(
δgrz(r) +

√
f2(r)

f1(r)
δgvz(r)

)

− 3 f ′
3(r)

2 f3(r) f2(r)

(
δgrr (r) + 2

√
f2(r)

f1(r)
δgrv(r) + f2(r)

f1(r)
δgvv(r)

)

−
(

2k2 f2(r)

f3(r) f ′
3(r)

+ 3

f3(r)

(
f ′′
3 (r)

f ′
3(r)

− f ′
3(r)

f3(r)
− f ′

2(r)

2 f2(r)

))
δgxx (r),

ψ2 ≡ δgxx (r)

f ′
3(r)

φ′(r) − δφ(r),

ψ3 ≡ kδAv(r) + ωδAz(r) − k A′
t (r)

f ′
3(r)

δgxx (r). (46)

In Appendix A we discuss the independent combinations
of gauge+diff-invariant perturbations in detail. By choos-

ing ( f1(r), f2(r), f3(r)) = (e2A(r)h(r), e2B(r)

h(r) , e2A(r)) in the
Eq. (39), we rewrite the 1RCBH metric in the EF coordinates

ds2 = −e2A(r)h(r)dv2 + 2eA(r)+B(r)dvdr + e2A(r)dx2
i .

(47)

So, we will get the following gauge-invariant master field
variables

ψ1 ≡ d

dr

[
e−2A(r) (2δgxx (r) + δgzz(r))

]

− iωeB(r)−3A(r)

h(r)
(2δgxx (r) + δgzz(r))

− 2ike−2A(r)

(
δgrz(r) + eB(r)−A(r)

h(r)
δgvz(r)

)

− 3h(r)A′(r)e−2B(r)

(
δgrr (r) + 2

eB(r)−A(r)

h(r)
δgrv(r)

+ e2B(r)−2A(r)

h2(r)
δgvv(r)

)
−

(
k2 e

2B(r)−4A(r)

A′(r)h(r)

+ e−2A(r)
(
3A′(r)h′(r) + h(r)(6A′′(r) − 6A′(r)B ′(r))

)
2A′(r)h(r)

)
δgxx (r),

ψ2 ≡ e−2A(r) δgxx (r)

2A′(r)
φ′(r) − δφ(r),

ψ3 ≡ kδAv(r) + ωδAz(r) − k A′
t (r)e

−2A(r) δgxx (r)

2A′(r)
. (48)

The linearized perturbation equations can be written for these
gauge+diff-invariant perturbations. But the choices of metric
perturbations in master field variables are not correct, since
they are rank (0, 2) tensors and vary under coordinate trans-
formations. We have to convert them to the rank (1, 1) tensors
and then plug them into these master equations. To do so, we
note that δgμν = g0

μαδgα
ν where g0

μα are metric components
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written in (47). Hence, we have

δgrr = eA(r)+B(r)δgv
r ,

δgrv = eA(r)+B(r)δgv
v = −e2A(r)h(r)δgv

r + eA(r)+B(r)δgrr ,

δgvv = −e2A(r)h(r)δgv
v + eA(r)+B(r)δgrv,

δgii = e2A(r)δgii , i = x, z,

δgzj = e2A(r)δgzj , j = r, v. (49)

These replacements should be inserted in the invariant com-
binations of Eq. (48). To solve the linearized equations, it
is useful to consider the two points. First, from the invari-
ant sets of the Eq. (48) or any combinations, we omit
(δgrr , δAv, δφ) in favor of other fluctuations. Second, the
background solutions are used to relate higher derivatives of
functions (A(n)(r), h(n)(r), φ(n)(r), · · · ) with n ≥ 2 to the
lower orders (A(n)(r), h(n)(r), φ(n)(r), · · · ) with n ≤ 1. The
Number of independent equations is 11. Four of them are con-
strained equations that only contain first-order derivative with
respect to the “r” coordinate and the rest are dynamical equa-
tions with two order of derivatives. To obtain the constrained
equations, we define a normal vector nμ = (0, 1, 0, 0, 0) to
the r = cte hypersurfaces. Hence, the constrained equations
becomes

nμGμν = gμαnαGμν = 0,

nμAμ = gμαnαAμ = 0. (50)

For the 1RCBH background, these equations can be written
as follows

nvGvv + nrGrv = e−A(r)−B(r)Gvv + e−2B(r)h(r)Grv = 0,

nvGrv + nrGrr = e−A(r)−B(r)Gvr + e−2B(r)h(r)Grr = 0,

nvGvz + nrGr z = e−A(r)−B(r)Gvz + e−2B(r)h(r)Gr z = 0,

nvAv + nrAr = e−A(r)−B(r)Av + e−2B(r)h(r)Ar = 0.

(51)

From these equations, the fluctuations
(
δg′z

v (r), δg′x
x (r),

δg′z
z (r), δA′

z(r)
)

are solved in terms of the set
(
δgv

r (r), δg
r
v(r),

δgzr (r), δg
z
v(r), δg

x
x (r), δg

z
z (r)

)
and invariant perturbations(

ψ1(r), ψ2(r), ψ3(r), ψ ′
1(r), ψ

′
2(r), ψ

′
3(r)

)
. On the other

hand, the dynamical equations are given by

ϕ = 0,

Ar = 0, Az = 0

Grv = 0, Gxx = 0, Gzz = 0, Gvz = 0. (52)

To rewrite these dynamical equations in terms of the invariant
perturbations, we have to do the following steps:

(1) Solving the equations
(Gxx = 0, Gzz = 0, Gvz = 0,

Az = 0
)

would give us the results for (δg′′x
x (r), δg′′z

z (r),

δg′′z
v (r), δA′′

z (r)) in terms of other perturbations. Remem-
ber that from Eq. (51), the perturbations

(
δg′z

v (r), δg′x
x (r),

δg′z
z (r), δA′

z(r)
)

are solved in terms of other non-
derivatives perturbations. So the set (δg′′x

x (r), δg′′z
z (r),

δg′′z
v (r), δA′′

z (r)) are written solely in terms of non-
derivatives fluctuations.

(2) The solutions for (δg′′′x
x (r), δg′′′z

z (r)) are derived from
derivatives of “r” of the solutions in item one. These are
needed for simplifications of the equation Grv = 0.

(3) We insert the solutions of (δg′′x
x (r), δg′′z

z (r), δg′′z
v (r),

δA′′
z (r)) and

(
δg′z

v (r), δg′x
x (r), δg′z

z (r), δA′
z(r)

)
into the

following equations

ϕ = 0,

Ar = 0,

Grv = 0, (53)

as well as using zero-order equations. Careful simpli-
fications would give us three dynamical equations for
(ψ1, ψ2, ψ3) .

Symbolically, the resulting equations are as follows

f 1
1 (r)ψ1(r) + f 2

1 (r)ψ2(r) + f 3
1 (r)ψ3(r) + f 1

2 (r)ψ ′
1(r)

+ f 2
2 (r)ψ ′

2(r) + f 3
2 (r)ψ ′

3(r) + f 2
3 (r)ψ ′′

2 (r) = 0,

g1
1(r)ψ1(r) + g2

1(r)ψ2(r) + g3
1(r)ψ3(r) + g1

2(r)ψ ′
1(r)

+ g2
2(r)ψ ′

2(r) + g3
2(r)ψ ′

3(r) + g3
3(r)ψ ′′

3 (r) = 0,

m1
1(r)ψ1(r) + m2

1(r)ψ2(r) + m3
1(r)ψ3(r) + m1

2(r)ψ
′
1(r)

+ m2
2(r)ψ

′
2(r) + m3

2(r)ψ
′
3(r)

m1
3(r)ψ

′′
1 (r) + m2

3(r)ψ
′′
2 (r) + m3

3(r)ψ
′′
3 (r) = 0, (54)

where ( f ij , g
i
j ,m

i
j ) are some coefficients.2 This procedure

can be applied to any configuration of perturbing fields.
The multivaluedness of boundary retarded Green’s func-

tion can also be seen from another point of view. Recently,
there have been reported that at higher Matsubara frequen-
cies, i.e. ω = ωn = −2inπT with n ≥ 1, the equa-
tions of motion of perturbations exhibit a pole-skipping in
the GR

OO(ω, k) for the corresponding boundary operator
[46,56,57]. This is because at these points the equations give
no constraints on δφn(rH ) coefficients of the expansion (42)
and these many unknown coefficients reflect many hydrody-
namics poles which each of them approaches to that point
with a special slope [46].

At k = ik0 = iλL/vB and ω = ωn the regular solu-
tions are labelled with two independent parameters, since

2 Since the coefficients ( f ij , g
i
j ,m

i
j ) are very complicated and lengthy,

we pack them in three MATHEMATICA files and are provided along
with this paper.
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detM(ωn, k0) = 0 and there exists no non-trivial solution
there. To do this, we expand the equations of motion for scalar
perturbation around the horizon. The result is as follows

I1 = M11(ω, k2)δφ0(rH ) + (2πT − iω)δφ1(rH ),

I2 = M21(ω, k2)δφ0(rH ) + M22(ω, k2)δφ1(rH )

+ (4πT − iω)δφ2(rH ),

· · · (55)

where the coefficients Mi j (ω, k2) take the following form

Mi j (ω, k2) = iωai j + k2bi j + ci j , (56)

with ai j , bi j , ci j are determined by the background solu-
tions in (12) and their derivatives on the horizon. Expres-
sions I1, I2, I3 are combinations of other perturbations
with specific coefficients derived from background solutions.
Their special form is very complicated and we list them in
Appendix B.

We observe from Eq. (55) that at frequencies ω = ωn

it is not possible to read the coefficients iteratively from
δφ0(rH ). It means that δφn(rH ) are no longer dependent
parameters and thus are free parameters near the horizon.
Also, at the point ω = ωn the first n equation are decou-
pled and we can solve a simple matrix equation for δφ̃ =(
δφ0(rH ), · · · , δφn−1(rH )

)
as it follows

M(ω, k2) · δφ̃ = I, (57)

and M(ω, k2) is the coefficient matrix of scalar perturba-
tions living near the horizon. This feature is similar to former
observation [46,56,57]. However, we observe that at k = ik0

and ω = ωn, detM(ωn, k0) �= 0. Therefore, solutions for
the linear equations (55) are labelled with just one parame-
ter. This is the novelty of our computations which may be
because of the presence of the electric charge. It is worth-
while to mention that equations for gauge field perturbations
do not capture such properties.

5 Conclusion

In this paper, we study the chaotic properties of the 1RCBH
model. This 5-dimensional Einstein–Maxwell-Dilaton model
is dual to a 4-dimensional strongly charged coupled field
theory enjoying a critical point in its parameter space. To
diagnose these properties, we use the OTOCs and pole-
skipping analysis. In the latter, the chaotic properties of
many-body thermal systems are encoded in energy density
two-point functions GR

T 00T 00(ω, k) and linearized equations
of motion. The butterfly velocity vB and Lyapunov expo-
nent λL , which are naturally extracted from OTOC, have

been studied as the parameters containing the information
about chaos. On the other hand, we investigate the pole-
skipping phenomenon which concerns the analytic behavior
of GR

T 00T 00(ω, k) around the (ω�, k�) in the complex (ω − k)
plane. We also address the chaotic behaviors for AdS-RN
background and find that v2

B ≥ c2
s at every point of black

hole solutions. This finding is valid for the 1RCBH model as
well. We list our main results in the following:

• We consider a general asymptotically AdS background
whose metric is given by Eq. (18) and compute OTOC
and then derive holographically explicit expressions for
λL and vB

λL = 2π

β
, vB = 2

√
π( f1 f2)

1
4√

β(d − 1) f ′
3

∣∣∣∣
r=rH

, (58)

where β is the inverse of Hawking’s temperature. The
above result perfectly matches the previously reported
CFT results. In the 1RCBH model, we read

v2
B = 4

7 ∓
√

1 −
(

μ/T
π/

√
2

)2
, (59)

where −(+) indicates the stable(unstable) blackhole
solutions. Interestingly, we find that the butterfly velocity
vB can be used as a probe to see the critical point of the
corresponding dual field theory. Furthermore, we study
the behavior of vB near this critical point and observe
that the dynamical critical exponent is equal to 1

2 which
is in complete agreement with the results reported in the
literature. Interestingly, we find v2

B ≥ c2
s for every point

of 0 ≤ μ
T ≤ π√

2
.

• Related to the pole-skipping phenomenon we observe
that the metric component δg0

vv(rH ) decouples from the
other components of the vv component of the linearized
equations at special point ω∗ = iλL = 2πT i and reduces
to the following form

δg0
vv(rH )

(
k2 − ik2

0ω

2πT

)
= 0, (60)

which is interestingly identical to the one governing
the spatial profile of a gravitational shock wave (26).
Hence, one can use the pole-skipping analysis to deter-
mine the chaotic properties of the underlying theory
including vB and λL . The other point is that at special
point k = ik0 Eq. (44) is identically satisfied which
means that this equation does not impose any constraint
on the near-horizon expansion components δg0

vv(rH ),

δg0
zv(rH ), δg0

xx (rH ) and δg0
zz(rH ). In other words, there
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exists an extra linearly independent ingoing solution to
Einstein’s equations that leads to the pole-skipping in
GR

T 00T 00(ω, k). To find a better understanding of this phe-
nomenon, it is observed that if one moves away from
the (ω�, k�), i.e. ω = 2πT i and k = ik0 along the
slope (45), then there will be lines in GR

T 00T 00(ω, k) that
passes through that point. As a result, this slope can
be considered as an extra parameter in the near-horizon
solution and can be used to adjust the ingoing solution
onto different asymptotic solutions at the boundary. We
study also the pole-skipping phenomenon through the lin-
earized equations from another point of view. Indeed, we
decouple the linearized equations by choosing the suit-
able gauge+diff invariant master field variables focusing
on the spin 0 sector. Details of derivations for dynam-
ical equations are given. We provide the exact form
of the linearized equations of motion in separate files
along with this paper. We investigate pole-skipping of
the retarded Green’s function at higher Matsubara points
in the equations of motion for scalar field perturbations.
It is observed that regular solutions near the horizon are
labelled with only one unknown coefficient and point
k = ik0 not to add further constraints on equations. These
issues are not seen in the gauge field perturbation equa-
tions.

• We investigate the chaotic behaviors for the AdS-RN
background. We obtain v2

B ≥ c2
s for every black

hole solution. We obtain the dynamical equations for
gauge+diff invariant perturbations given in the (54), by
using the general method based on the properties of Ein-
stein equation. Having the regular solutions near the hori-
zon is guaranteed once the Eq. (43) is derived.

Our main concern in this study is to check whether the criti-
cal models respond to chaotic conditions. Several questions
call which we leave for further investigations. One can inves-
tigate the OTOC and pole-skipping for the Non-conformal
backgrounds having special critical points. Also examining
the chaotic behaviors of the gravitational models having large
similarities to the QCD phase diagram deserves further inves-
tigation. These works are postponed to our future works.
Another interesting work is to look more carefully at the
relation v2

B ≥ c2
s by mathematical arguments.
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Appendix A: Diff+gauge transformations

In the spin-zero sector, there are seven combinations of fluc-
tuation which are invariant under the diff+gauge transfor-
mations [87]. By the metric given in the Eq. (18) (in the
schwarzschild coordinates) and for the following choice of
fluctuations set

δgμν(t, r, z) = eikzδgμν(t, r),

δAμ(t, r, z) = eikzδAμ(t, r),

δφ(v, r, z) = eikzδφ(t, r), (A1)

they can be written as follows

�
(Sch)
1 (r) = δgtt (t, r) + 2i

k
∂tδgtz(t, r)

+ ∂2
t δg−(t, r) + f ′

1(r)

f ′
3(r)

δgxx (t, r),

�
(Sch)
2 (r) = δgtr (t, r) + i

k
∂rδgtz(t, r)

+
(

1

2
∂r∂t − f ′

1(r)

2 f1(r)
∂t

)
δg−(t, r)

− i f ′
1(r)

k f1(r)
δgtz(t, r) − f2(r)

f ′
3(r)

∂tδgxx (t, r),

�
(Sch)
3 (r) = δgrr (t, r) − f2(r)

f ′
3(r)

(
2∂r + f ′

2(r)

f2(r)
− 2

f ′′
3 (r)

f ′
3(r)

)

× δgxx (t, r),

�
(Sch)
4 (r) = − i

k
δgrz(t, r) +

(
f ′
3(r)

2 f3(r)
− 1

2
∂r

)
δg−(t, r)

− f2(r)

f ′
3(r)

δgxx (t, r),

�
(Sch)
5 (r) = δAt (t, r) + i

k
∂tδAz(t, r) − A′

t (r)

f ′
3(r)

δgxx (t, r),
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�
(Sch)
6 (r) = δAr (t, r) + i

k
∂rδAz(t, r) + A′

t (r)

2 f1(r)
∂tδg−(t, r)

+ i A′
t (r)

k f1(r)
δgtz(t, r),

�
(Sch)
7 (r) = δφ(t, r) − φ′(r)

f ′
3(r)

δgxx (t, r), (A2)

where δg− = δgxx−δgzz
q2 . To convert these fluctuations to the

EF coordinates, we must notice to the fluctuations and deriva-
tives transformation rules

δg(Sch)
ab = ∂xμ

∂xa
∂xν

∂xb
δg(EF)

μν ,

∂(Sch)
a = ∂xμ

∂xa
∂(EF)
μ . (A3)

According to the coordinate relation t = v − g(r) with

g′(r) =
√

f2(r)
f1(r)

, the fluctuations set transformations result
to

δgtt (t, r) = δgvv(v, r),

δgtr (t, r) =
√

f2(r)

f1(r)
δgvv(v, r) + δgvr (v, r),

δgrr (t, r) = δgrr (v, r) + 2

√
f2(r)

f1(r)
δgvr (v, r)

+ f2(r)

f1(r)
δgvv(v, r),

δgtz(t, r) = δgvz(v, r),

δgrz(t, r) =
√

f2(r)

f1(r)
δgvz(v, r) + δgrz(v, r),

δgii (t, r) = δgii (v, r), i = x, y, z, δφ(t, r) = δφ(v, r)

δAt (t, r) = δAv(v, r), δAz(t, r) = δAz(v, r),

δAr (t, r) = δAr (v, r) +
√

f2(r)

f1(r)
δAv(v, r). (A4)

Moreover, derivatives transform as follows

∂t → ∂v, ∂r → ∂r +
√

f2(r)

f1(r)
∂v. (A5)

The replacements (A4) and (A5) have to be inserted into the
Eq. (A2) to obtain invariant fluctuations in the EF coordi-
nates. The result is as follows

�
(EF)
1 (r) = δgvv(v, r) + 2i

k
∂vδgvz(v, r) + ∂2

v δg−(v, r)

+ f ′
1(r)

f ′
3(r)

δgxx (v, r),

�
(EF)
2 (r) =

√
f2(r)

f1(r)
δgvv(v, r) + δgvr (v, r)

+ i

k

(
∂r +

√
f2(r)

f1(r)
∂v

)
δgvz(v, r)

+
(

1

2
∂v∂r + 1

2

√
f2(r)

f1(r)
∂2
v − f ′

1(r)

2 f1(r)
∂v

)
δg−(v, r)

− i f ′
1(r)

k f1(r)
δgvz(v, r) − f2(r)

f ′
3(r)

∂vδgxx (v, r),

�
(EF)
3 (r) = δgrr (v, r) + 2

√
f2(r)

f1(r)
δgvr (v, r)

+ f2(r)

f1(r)
δgvv(v, r) − f2(r)

f ′
3(r)

×
(

2∂r + 2

√
f2(r)

f1(r)
∂v + f ′

2(r)

f2(r)
− 2

f ′′
3 (r)

f ′
3(r)

)

× δgxx (v, r),

�
(EF)
4 (r) = − i

k

(√
f2(r)

f1(r)
δgvz(v, r) + δgrz(v, r)

)

+
(

f ′
3(r)

2 f3(r)
− 1

2
∂r − 1

2

√
f2(r)

f1(r)
∂v

)
δg−(v, r)

− f2(r)

f ′
3(r)

δgxx (v, r),

�
(EF)
5 (r) = δAv(v, r) + i

k
∂vδAz(v, r) − A′

t (r)

f ′
3(r)

δgxx (v, r),

�
(EF)
6 (r) = δAr (v, r) +

√
f2(r)

f1(r)
δAv(v, r)

+ i

k

(
∂r +

√
f2(r)

f1(r)
∂v

)
δAz(v, r)

+ A′
t (r)

2 f1(r)
∂vδg−(v, r) + i A′

t (r)

k f1(r)
δgvz(v, r),

�
(EF)
7 (r) = δφ(v, r) − φ′(r)

f ′
3(r)

δgxx (t, r). (A6)

It is obvious that any combination of these invariant functions
is again an invariant choice. For instance, the combinations
of the Eq. (46) are nothing but

ψ1 = 2k2

f3(r)
�

(EF)
4 (r) − 3 f ′

3(r)

2 f2(r) f3(r)
�

(EF)
3 (r),

ψ2 = �
(EF)
7 (r), ψ3 = �

(EF)
5 (r). (A7)

Appendix B: Details of the near horizon expansion

In this part, we present the details of coefficients Mi j (ω, k2)

in the Eq. (55) which are the near horizon expansion of scalar
field solutions. The results are given as follows
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I1 = 2

√
2

3
e−6(A(rH )+B(rH ))δA′

v(rH )

√
−k2

0e
2A(rH )+4B(rH ) + 4e6(A(rH )+B(rH )) + 2

+ δgrr (rH )

(
4

√
2

3
e−3(A(rH )+B(rH ))

(
−k2

0e
2A(rH )+4B(rH ) + 4e6(A(rH )+B(rH )) + 2

)
− 2πTφ′

0(rH )

)

− δgv
r (rH )

2

(
k2

0

2πT
eB(rH )−A(rH )φ′

0(rH ) + φ′′
0 (rH )

)
− 1

2
φ′

0(rH )
(
ikδgv

z (rH ) + δgv′
r (rH )

)
− 1

4
iωφ′

0(rH )
(
2δgxx (rH ) + δgzz (rH )

)
,

a11 = −k2
0e

−A(rH )+B(rH )

4πT
, b11 = −e−A(rH )+B(rH )

2
,

c11 = e−3(A(rH )+B(rH ))

3

(
20 + 34e6(A(rH )+B(rH )) − 8k2

0e
2A(rH )+4B(rH )

)
,

I2 = −
e−3A(rH )−

√
3
2 φ0(rH )

δA′
v(rH )

√
4e2A(rH )+

√
3
2 φ0(rH ) + 2e2A(rH ) − k2

0e

√
2
3 φ0(rH )

3πT

×
(

πT e2A(rH )φ′
0(rH ) + √

6k2
0e

φ0(rH )

2
√

6

)
− 1

2
ikδgv′

z (rH )φ′
0(rH ) − 2iπkT δgrz (rH )φ′

0(rH )

+ δgr
′

r (rH )

(
4

√
2

3
e−2A(rH )− 1

2

√
3
2 φ0(rH )

(
4e2A(rH )+

√
3
2 φ0(rH ) + 2e2A(rH ) − k2

0e

√
2
3 φ0(rH )

)
− 2πTφ′

0(rH )

)

+ 1

4
(4πT − iω)φ′

0(rH )
(
δgz

′
z (rH ) + 2δgx

′
x (rH )

)

+ 1

3
πT δgrv(rH )

(
− 8

√
6e−2A(rH )− 1

2

√
3
2 φ0(rH )

(
4e2A(rH )+

√
3
2 φ0(rH ) + 2e2A(rH ) − k2

0e

√
2
3 φ0(rH )

)

+ (−12πT + 3iω)φ′
0(rH )

)
− 1

2
δgv′′

r (rH )φ′
0(rH ) + 2

√
2

3
e−A(rH )−

√
3
2 φ0(rH )

δA′′
v(rH )

×
√

4e2A(rH )+
√

3
2 φ0(rH ) + 2e2A(rH ) + k2

0

(
−e

√
2
3 φ0(rH )

)

+ 1

3
δgrr (rH )

(4
√

6k2
0e

−4A(rH )− φ0(rH )√
6

(
−4e2A(rH )+

√
3
2 φ0(rH ) − 2e2A(rH ) + k2

0e

√
2
3 φ0(rH )

)

πT

+ 4e− 1
2

√
3
2 φ0(rH )

φ′
0(rH )

(
−3k2

0e

√
2
3 φ0(rH )−2A(rH ) + 10e

√
3
2 φ0(rH ) + 5

)
− 12πTφ

′′
0(rH ) + π

√
6Tφ′

0(rH )2
)

+ δgv′
r (rH )

⎛
⎝−k2

0e
φ0(rH )

2
√

6
−2A(rH )

φ′
0(rH )

4πT
− φ

′′
0(rH ) + φ′

0(rH )2

4
√

6

⎞
⎠ + 1

24
δgv

r (rH )

(
φ′

0(rH )

⎛
⎝k4

0e
φ0(rH )√

6
−4A(rH )

π2T 2 + √
6φ

′′
0(rH )

⎞
⎠

− 6k2
0e

φ0(rH )

2
√

6
−2A(rH )

φ
′′
0(rH )

πT
− 12φ

(3)
0 (rH ) + 6φ′

0(rH )3
)

+ 1

24
ikδgv

z (rH )
(√

6(φ′
0(rH ))2 − 12φ

′′
0(rH )

)
+ 1

48
iω

(
δgzz (rH )

+ 2δgxx (rH )
) (√

6(φ′
0(rH ))2 − 12φ

′′
0(rH )

)
, a22 = 1

12

⎛
⎝√

6φ′
0(rH ) − 3k2

0e
φ0(rH )

2
√

6
−2A(rH )

πT

⎞
⎠ , b22 = −1

2
e

φ0(rH )

2
√

6
−2A(rH )

,

c22 = 1

3

(
2e− 1

2

√
3
2 φ0(rH )

(
−6k2

0e

√
2
3 φ0(rH )−2A(rH ) + 29e

√
3
2 φ0(rH ) + 16

)
− √

6πTφ′
0(rH )

)
,

a21 = 1

24

⎛
⎝k4

0e
φ0(rH )√

6
−4A(rH )

π2T 2 + 6φ′
0(rH )2

⎞
⎠ , b21 = k2

0e
φ0(rH )√

6
−4A(rH )

6πT
,

c21 = e−4A(rH )− 1
2

√
3
2 φ0(rH )

9πT

(
− 16k2

0e
2A(rH )+ φ0(rH )

2
√

6

(
π

√
6T e

1
2

√
3
2 φ0(rH )

φ′
0(rH ) + 6e

√
3
2 φ0(rH ) + 3

)

+ π
√

6T e4A(rH )

(
65 e

√
3
2 φ0(rH ) + 28

)
φ′

0(rH ) + 24k4
0e

5φ0(rH )

2
√

6

)
. (B1)
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