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Abstract We analyze inhomogeneous cosmological mod-
els in the local Universe, described by the Lemaître–Tolman–
Bondi (LTB) metric and developed using linear perturba-
tion theory on a homogeneous and isotropic Universe back-
ground. Focusing on the different evolution of spherical sym-
metric inhomogeneities, we compare the �LTB model, in
which the cosmological constant � is included in the LTB
formalism, with inhomogeneous cosmological models based
on f (R) modified gravity theories viewed in the Jordan
frame. We solve the system of field equations for both inho-
mogeneous cosmological models adopting the method of
separation of variables: we integrate analytically the radial
profiles of local perturbations, while their time evolution
requires a numerical approach. The main result of the anal-
ysis concerns the different radial profiles of local inhomo-
geneities due to the presence of a non-minimally coupled
scalar field in the Jordan frame of f (R) gravity. While
radial perturbations follow a power-law in the �LTB model,
Yukawa-like contributions appear in the f (R) theory. Inter-
estingly, this latter peculiar behavior of radial profile is not
affected by the choice of the f (R) functional form. The
numerical solution of time-dependent perturbations exhibits
a non-diverging profile. This work suggests that investiga-
tions about local inhomogeneities in the late Universe may
allow us to discriminate if the present cosmic acceleration is
caused by a cosmological constant term or a modified gravity
effect.
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1 Introduction

Our current theoretical understanding in cosmology is essen-
tially based on two crucial pillars: (1) General Relativity (GR)
is the underlying gravitational theory; (2) the cosmological
principle states that the spatial distribution of matter in the
Universe is revealed as homogeneous and isotropic on scales
sufficiently large. This paper aims to investigate the robust-
ness of these two pillars, examining also possible deviations.

Presently, the cosmological concordance model is gen-
erally referred to as the well-known �CDM model [1–4],
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which involves a cold dark matter (CDM) component and
a cosmological constant �. This cosmological paradigm is
consistent with most of the data, providing a reliable picture
of the present-day observed Universe. For instance, maps
of the cosmic microwave background radiation (CMB) [5]
have corroborated the idea of a homogeneous and isotropic
Universe on large scales.1 The geometry of a purely homo-
geneous and isotropic Universe is properly described within
the framework of the �CDM model through the Friedmann–
Lemaître–Robertson–Walker (FLRW) metric [3].

Concerning the first pillar of the �CDM model, despite all
the remarkable predictions and successes to explain theoret-
ically many observational facts in the Universe, it is believed
that GR is not the ultimate theory of gravity. Indeed, some
open problems in cosmology, such as the need for dark com-
ponents such as CDM and dark energy, the exact nature of
which is still unknown, the cosmological constant problem
[7,8], and the Hubble constant tension,2 may be regarded as
a possible signal of the breakdown of GR on galactic and
cosmological scales and have motivated people to discuss
some modifications of the theory.

Among all the possible proposals of modified gravity with
respect to the Einsteinian formulation, the so-called f (R)

gravity theories [25–33] stand for their simple morphology
since de facto only an extra scalar degree of freedom is added
to the gravitational field dynamics. These theories represent
an extension of GR, a particular class of modified gravity, in
which the scalar curvature R in the gravitational Lagrangian
density is replaced by a function f (R), i.e., an extra geo-
metrical degree of freedom with respect to GR. Moreover,
scalar–tensor gravity provides an equivalent representation
of f (R) theories: adopting a formulation in the so-called
Jordan frame [26,28–31,33], the additional mode is explic-
itly translated into a non-minimally coupled scalar field to
standard gravity.3

The interest in the f (R) modified gravity is because extra
degrees of freedom may allow us to find alternative expla-

1 This fact is widely accepted, although CMB anomalies and
anisotropies have been recently emerged in the form of an observed
temperature dipole [6].
2 In particular, CMB measurements [5] have provided a value of the
actual expansion rate, i.e., the Hubble constant, that is incompatible
with observations of local probes, such as Cepheids and type Ia super-
novae (SNe Ia) [9], with a significance level of 4.9 σ . See [10–15] for
comprehensive reviews. See also [16–24] for attempts to reduce the
tension, using new statistical analysis and combining different cosmo-
logical probes.
3 As typical in scalar–tensor theories, the f (R) gravity can be also
described upon a proper conformal transformation in the so-called Ein-
stein frame [26,28–30,33], which is mathematically equivalent to the
Jordan one. Actually, the problem of identifying the physical frame has
been long debated [34–39]. In this work, we decide to adopt the Jordan
frame, since it is provided only by a pure redefinition of fields starting
from the f (R) metric formalism.

nations for the abovementioned unresolved problems in cos-
mology. For instance, some successful proposals in the f (R)

gravity [40–43] describe the present accelerating Universe,
avoiding to introduce ad hoc extra components, such as dark
energy. Other examples of f (R) models have been devel-
oped to try to alleviate or solve the Hubble constant tension
[12,44–50]. Moreover, the presence of extra degrees of free-
dom within the f (R) metric formalism is also discussed
in gravitational-wave physics, regarding the nature of their
polarizations [51].

Therefore, an increasing interest has risen in recent years
to develop new methods to discriminate between the standard
�CDM model and modified gravity cosmological scenarios
for the present Universe. Extended f (R) theories of gravity
admit a larger number of solutions than Einstein field equa-
tions in GR, but extra degrees of freedom and non-linearity
imply non-trivial cosmological dynamics. Some cosmologi-
cal exact solutions in the f (R) gravity have been found for
simple scenarios, especially in a homogeneous and isotropic
cosmology [29,52–55].

Concerning the second pillar of the �CDM model, that is
the homogeneity and isotropy of the Universe on large scales,
it should be emphasized that the cosmological principle is not
invariant for any spatial scale: our present Universe seems to
reach the conditions to be homogeneous on a scale of about
100 Mpc, as suggested by galaxy surveys and the large-scale
structure of the Universe [56,57]. Thus, when considering
physical phenomena that occur on smaller spatial scales,
local features of the Universe lead inevitably to deviations
from the FLRW geometry, which could affect cosmological
parameters [58–62] and the luminosity distance distribution
[63]. See also [64–66] for the development of the averag-
ing formalism in cosmology to average scalar quantities in a
limited region of space-time.

Furthermore, observational evidence of a local void (an
underdense region) have emerged on scales of several hun-
dreds of Mpc [67–70]. In this regard, the Lemaître–Tolman–
Bondi (LTB) model [4,8,71–73] is widely employed to
describe spherically symmetric non-stationary inhomogene-
ities in the local Universe, while it approaches a homoge-
neous Universe far enough from the center of symmetry. The
LTB solution with the presence of a cosmological constant �
is commonly referred to as the �LTB model, which has been
studied for many decades as a possible (simplified) frame-
work to consider local deviations of the Universe today from
the homogeneity [74–80] or to alleviate the Hubble constant
tension [81–85].

Since f (R) theories and the �LTB model separately can
only alleviate the Hubble constant tension, the combination
of more than one non-standard physical effect, i.e., modified
gravity and inhomogeneous cosmology, may be needed to
accommodate these data inconsistencies into a cosmological
model.
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However, in this work, we do not focus on the Hubble
tension, but we consider a prodromic question, i.e., the for-
mulation of the LTB cosmology in modified gravity. Other
papers were carried out to find inhomogeneous LTB solu-
tions in extended gravity scenarios [86–92]; here we consider
the f (R) metric formalism to highlight possible peculiari-
ties of local inhomogeneities compared to the GR solutions.
Our aim is to search for some specific markers of the matter
distribution, which could allow us to distinguish a standard
paradigm from an alternative cosmology. Indeed, local inho-
mogeneities incorporated in a modified gravitational scenario
might become a predictive tool.

In this paper, in the spirit of describing small deviations
from the homogeneity of the Universe today, we treat the
inhomogeneous LTB metric as the flat FLRW background
solution with the addition of small spherically symmetric
perturbations, following a linear perturbation approach.4 We
extend the work carried out in [96,97]. The present anal-
ysis aims to discriminate between the �LTB cosmological
paradigm and the LTB solution as emerging in the Jordan
frame of the f (R) gravity, comparing the different evolution
of inhomogeneous perturbations within these two schemes
to describe the local behavior of the actual Universe. In this
regard, we evaluate the role of a cosmological constant with
respect to the presence of a non-minimally coupled scalar
field in the Jordan frame, examining separately the cosmo-
logical dynamics. In particular, regarding the background
cosmology in the Jordan frame, we adopt the f (R) model
developed by Hu and Sawicki [40], which provides an inter-
esting alternative to the dark energy component for the cur-
rent cosmic acceleration within the f (R) gravity.

Therefore, we investigate the first-order perturbation field
equations for local inhomogeneities both in the �LTB and
f (R) inhomogeneous cosmological models. More specif-
ically, the analysis of the 0-1 component of the gravita-
tional field equations points out discrepancies between the
two formalisms considered, due to the presence of the non-
minimally coupled scalar field. In our analysis of the first-
order perturbation equations, we adopt the separable vari-
ables method as a mathematical technique to address the
solution of the partial differential equations system. Then,
we separately obtain the time evolutions and radial profiles
of perturbations within both two cosmological models. Actu-
ally, we get an analytic expression only for the radial part,
while we need to numerically evaluate the time evolution of
perturbations.

4 Differently, in [93–95] the linear perturbation theory is analyzed in the
LTB cosmology considering the background metric as LTB to under-
stand the evolution of perturbations on spherically symmetric space-
times. Here, instead, we consider perturbative deviations from FLRW
as the background metric to build exactly the LTB spacetime at the
linear-order perturbation theory.

The main result of our work is the different radial patterns
of inhomogeneous perturbations in GR and the f (R) cos-
mology. Indeed, in the former case, we deal with a radial solu-
tion that is basically a power law; in the latter case, a peculiar
Yukawa-like dependence emerges in the Jordan frame grav-
ity whatever the f (R) model considered. Both these radial
solutions suggest that inhomogeneities decay rapidly on large
scales according to the cosmological principle, but further-
more, from a theoretical point of view, we have a specific
trace of how a modified gravity model can be distinguished
from a standard gravity scenario in the presence of a cos-
mological constant. In other words, the Yukawa-like radial
solution is a peculiar feature of the f (R) gravity.

Regarding our numerical analysis of the time dependence
of the obtained solutions, we show that local inhomogeneities
are governed by a dynamics preserving the stability of the
isotropic Universe both in the �LTB and modified gravity
theories. Therefore, these stable-time solutions are physically
acceptable and can be thought of as large-scale corrections
to the FLRW geometry.

This work provides an interesting arena to investigate dif-
ferent scenarios of the clumpy inhomogeneous cosmology;
at the same time, the method developed in this paper sup-
plies a useful criterion to distinguish between GR and f (R)

modified gravity models on cosmological scales.
This paper is structured as follows: in Sect. 2 we intro-

duce the f (R) modified theories of gravity in the Jordan
frame and the Hu–Sawicki model; in Sect. 3 and Sect. 4 we
implement the cosmological dynamics to the �LTB model
in GR and the LTB spherically symmetric solution as emerg-
ing in the Jordan frame of the f (R) gravity, respectively;
in Sect. 5 we show our perturbation approach to study local
inhomogeneities in the �LTB model, obtaining background
and first-order perturbation solutions, while in Sect. 6 we
proceed similarly for the f (R) theories in the Jordan frame;
lastly, we summarize our results and conclusions in Sect. 7.

We adopt the metric signature (−,+,+,+) throughout
the paper, and we use natural units for the speed of light c = 1.
We denote with χ ≡ 8 π G the Einstein constant, being G
the gravitational Newton constant. The components of the
gravitational field equations are sometimes denoted with a
pair of indices μ − ν, in which the indices μ, ν = 0, 1, 2, 3
move along the set of coordinates.

2 f (R) modified gravity in the Jordan frame

We investigate the equivalence between f (R) theories of
gravity and the scalar–tensor representation in the Jordan
frame [25–33]. There is no a priori motivation to consider
a linear gravitational Lagrangian density with respect to the
Ricci scalar R, apart from obtaining a second-order partial
differential system for the field equations.
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The gravitational Lagrangian density, which is given by
R in GR in the Einstein–Hilbert action, is generalized in the
context of f (R) theories as a function f of R, i.e., an extra
degree of freedom. In addition, considering a matter term
SM , the total action of f (R) gravity is given by

S = 1

2 χ

∫
d4x

√−g f (R) + SM
(
gμν, ψ

)
, (1)

where g is the determinant of the metric tensor with compo-
nents gμν , and ψ refers to the matter fields.

It can be shown that the extended gravitational field equa-
tions within the f (R) metric formalism are fourth-order
partial differential equations in the metric. If f (R) = R,
specifically, the fourth-order terms vanish, and field equa-
tions reproduce exactly the Einstein field equations in GR.

To bring field equations to a form that is easier to handle,
the f (R) gravity can be restated in the scalar–tensor formal-
ism. In particular, in the so-called Jordan frame,5 it can be
checked that the following action

SJ = 1

2 χ

∫
�

d4x
√−g [φ R − V (φ)] + SM (2)

is dynamically equivalent to the f (R) action given by Eq. (1)
if f ′′ (R) �= 0, where the scalar field

φ ≡ f ′ (R) (3)

is governed by the scalar field potential defined as

V (φ) ≡ φ R (φ) − f [R (φ)] . (4)

It should be noted that the extra degree of freedom given by
the f (R) function turns into a scalar field6 φ, which is non-
minimally coupled to the metric. Conversely, there is only a
minimal coupling for the matter.

Variations of the action (2) with respect to the metric and
scalar field lead to field equations in the Jordan frame

Gμν = χ

φ
Tμν − 1

2 φ
gμν V (φ)

+ 1

φ

(∇μ∇νφ − gμν �φ
)

(5a)

R = dV

dφ
, (5b)

respectively, where Gμν is the Einstein tensor, Tμν is the
stress–energy tensor of matter, ∇μ is the covariant derivative

5 It is quite similar to the prototype of extended gravitational theories,
the Brans–Dicke formulation [98,99] with a non-zero potential and a
null Brans–Dicke parameter or the O’Hanlon proposal [100].
6 Actually, as shown in [101], the relation f ′′ (R) �= 0 is a redundant
requirement for the dynamic equivalence between an f (R) theory and a
scalar–tensor formulation in the Jordan frame. Indeed, it is sufficient to
require that f ′ (R) be invertible (continuous and one-to-one in a given
interval), i.e., the existence of R = R

(
f ′). In this way, it is possible to

build a scalar field potential V (φ).

associated with the Levi-Civita connection of the metric, and
� = gρσ ∇ρ∇σ .

Furthermore, by taking the trace of Eq. (5a) and using
Eq. (5b), a dynamical equation for the scalar field is obtained

3 �φ + 2 V (φ) − φ
dV

dφ
= χ T (6)

for a given matter source, where T is the trace of the matter
stress–energy tensor.

Although the presence of a non-minimally coupled scalar
field implies non-trivial dynamics in the Jordan frame, it
is often convenient to adopt the Jordan frame of the f (R)

gravity, since the field equations (5a), (5b), and (6) are now
second-order differential equations.

Looking at the action given in Eq. (2), the extra degree of
freedom provided by f (R) does not affect the matter action
even in the Jordan frame. Therefore, the stress–energy ten-
sor of ordinary matter must be divergence-free as in GR:
∇νTμν = 0. Since Bianchi identities are kept in modified
gravity, the Einstein tensor is also covariant divergence-free:
∇νGμν = 0. Here, we define an effective stress–energy ten-
sor related to the scalar field

T [φ]
μν = − 1

2 φ
gμν V (φ) + 1

φ

(∇μ∇νφ − gμν �φ
)

(7)

to rewrite the field equations (5a) in the Jordan frame as

Gμν = χ

φ
Tμν + T [φ]

μν . (8)

Finally, considering the divergence-free relations above,
it is trivial to show that

∇νT
[φ]μν = χ

φ2 Tμν ∇νφ. (9)

The effective stress–energy tensor T [φ]
μν does not satisfy the

usual law of the ordinary matter [102–105], unless in vacuum
(Tμν = 0). The extra scalar degree of freedom in the Jordan
frame is quite different from a matter field; actually, φ is an
effective scalar field originating from a scalar mode intrinsi-
cally due to a modification in the gravitational action. Note
that the laws (9) describing the dynamics of T [φ]

μν , as well as
the continuity equation related to Tμν , are not independent of
the field Eqs. (5a) and (6). However, Eq. (9) can be employed
as auxiliary equations to rewrite field equations in a different
equivalent form.

2.1 The Hu–Sawicki model

Among several proposals for the functional form of the
f (R), one of the most studied dark energy models is pro-
vided by Hu and Sawicki [40,41]. It is useful to refer to the
deviation F (R) from the gravitational Lagrangian density in
GR, i.e.

f (R) = R + F (R) . (10)
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The functional form of the deviation F (R) for the Hu–
Sawicki (HS) model is

F (R) = −m2 c1
(
R/m2

)n
c2

(
R/m2

)n + 1
, (11)

where n is a positive integer, c1 and c2 are the HS dimension-
less parameters, and m2 ≡ χ ρm0/3 with ρm0 matter density
today.

Note that for R � m2 the limiting case with an effec-
tive cosmological constant �eff = c1 m2/2 c2 is recovered.
Approximating the cosmic accelerated phase of a flat �CDM
model with an effective cosmological constant, we obtain the
first constraint on the parameters c1 and c2:

c1

c2
≈ 6

��0

�m0
, (12)

in which we have used the definitions of cosmological den-
sity parameters �m0 ≡ ρm0/ρc0 and ��0 ≡ ρ�0/ρc0 for the
matter component and the cosmological constant, respec-
tively, being ρc0 ≡ 3H2

0 /χ the critical energy density of
the Universe today, ρ�0 ≡ �/χ the energy density associ-
ated with �, and H0 is the Hubble constant. The subscript 0
denotes the present cosmic time t0 at the redshift z = 0.

Furthermore, Hu and Sawicki [40] have shown that today
R0 � m2, and also the approximation R � m2 is viable for
the entire past cosmic expansion.

Hereinafter, we set n = 1 for simplicity, focusing on the
most extensively studied scenario in the HS gravity. In that
case, the derivative FR ≡ dF/dR for R � m2 is approxi-
mately

FR ≈ −c1

c2
2

(
m2

R

)2

. (13)

In particular, for a flat �CDM model

R

m2 = 3

(
1

a3 + 4
��0

�m0

)
, (14)

where a = a (t) is the scale factor in terms of the cosmic
time. We have used the well-known Friedmann equations
and the definition of the Ricci scalar R in a flat FLRW metric
[3].

We can rewrite Eq. (13) evaluated today in the limiting
case for R � m2:

FR0 ≈ −c1

c2
2

[
3

(
1 + 4

��0

�m0

)]−2

, (15)

in which we have implicitly assumed that the value of �eff

to be the same as � in the �CDM limit. We have also set
the conventional notation for the scale factor today a0 = 1.
Hence, by setting a reference value for FR0, we can obtain
the second constraint on c1 and c2. Note that, according to

Fig. 1 Behavior of the HS scalar field potential in the Jordan frame,
defined in Eq. (17). It should be noted that V (φ) /m2 is dimensionless

Eqs. (3) and (10), we have in the Jordan frame:

φ = 1 − FR . (16)

It should be noted that FR quantifies the deviation from the
GR scenario, where φ = 1.

The scalar field potential V (φ) in the Jordan frame for the
HS model assumes the following form:

V (φ) = m2

c2

[
c1 + 1 − φ − 2

√
c1 (1 − φ)

]
, (17)

where we used the definitions given in Eqs. (3) and (4)
referred to the F (R) function in Eq. (11). Moreover, we
have selected the branch for the potential related to a minus
sign just before the square root in Eq. (17) to converge to an
asymptotically stable de Sitter Universe [106,107].

Finally, we show two reasonable values for the HS dimen-
sionless parameters c1 and c2. More precisely, we fix �m0 =
0.3111, and ��0 = 0.6889 from the Planck measurements
[5]; we set the value of the derivative of the field at the
present cosmic time |FR0| = 1.0 × 10−7, considering the
strongest bound between solar system [40] and cosmolog-
ical constraints [108–110]. Then, using the conditions (12)
and (15) for the �CDM limit, we obtain c1 = 2.0 × 106 and
c2 = 1.5 × 105. Considering these values for c1 and c2, in
Fig. 1 we show the profile of the HS scalar field potential in
the Jordan frame, noting a slow evolution of V (φ).

3 The LTB model in General Relativity

The LTB spherical solution [4,8,71–73] describes the geom-
etry of an inhomogeneous but isotropic Universe, generaliz-
ing the FLRW line element [3]. In the LTB model, the space
is isotropic only observing the Universe from a specific pre-
ferred point, i.e., the center that is singled out by adopting
a spherical symmetry, where an observer is supposed to be
located. Hereinafter, we consider the evolution of a dust cos-
mological model resulting in a spherical mass overdensity (or
underdensity) with vanishing pressure (p = 0), which can
be formulated in the LTB formalism. Furthermore, we focus
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on the late Universe, hence we neglect relativistic species,
since they are subdominant today, i.e., �r0 ∼ 10−5.

The LTB spherically symmetric line element in the syn-
chronous gauge is written as

ds2 = −dt2 + e2αdr2 + e2β d�2, (18)

in which t is the cosmic time, r is the radial coordinate indi-
cating the spatial distance from the preferred point, and d�

is the solid angle element. Note that there are two metric
functions: α = α (t, r) and β = β (t, r).

The three independent Einstein field equations in the
�LTB model with a pressure-less dust are provided by the
0-1, 0-0, and 1-1 components, which rewrite as

β̇ ′

β ′ − α̇ + β̇ = 0, (19a)

β̇2 + 2α̇β̇ + e−2β − e−2α
[
2β ′′ + 3β ′2 − 2α′β ′]

= χρ + �, (19b)

2 β̈ + 3 β̇2 + e−2β − β ′2 e−2α = �, (19c)

respectively, where (̇) = d/dt and () ′ = d/dr . We have sep-
arated explicitly the cosmological constant and matter term,
and ρ is simply the energy density of the matter component
(we neglected the subscript m in ρ for brevity). The other
non-null field equations in the LTB metric are related to the
previous equations system due to the spherical symmetry.
More precisely, it is straightforward to show the following
relations between the Einstein tensor components in the LTB
metric:

G2
2 = G1

1 +
(
G1

1

)′

2 β ′ , (20)

and also G3
3 = G2

2.
It should be noted that the two metric functions α and β

can be related in GR, by exploiting the 0-1 component (19a)
of the Einstein field equations, in order to rewrite the LTB
line element (18) in a simpler form [111]. Indeed, Eq. (19a)
admits the solution

β ′ = g (r) eα−β, (21)

where g (r) is an arbitrary function of the radial coordinate
r . Then, the LTB line element (18) can be rewritten as

ds2 = −dt2 +
[
(a r) ′] 2

1 − r2 K 2 dr
2 + (a r) 2 d�2, (22)

in which the following parametrization has been adopted

g (r) ≡
(

1 − r2 K 2
)

1/2 (23)

with K = K (r), and a (t, r) ≡ eβr−1 has been defined as
the generalization of the scale factor in an inhomogeneous
Universe.

By using the LTB metric, the remaining Einstein field
equations (19b) and (19c) become

3
[
ȧ2 a r3 + a r3 K 2

] ′ = (χ ρ + �)
[
(a r) 3

] ′, (24a)

2 ä

a
+ ȧ2

a2 + K 2

a2 = �, (24b)

respectively.
It may be observed that the form of the LTB metric given

by Eq. (22) reminds the FLRW line element. More specifi-
cally, if a (t, r) and the LTB curvature function K (r) do not
depend on the radial coordinate r , the FLRW geometry is
exactly recovered to describe a homogeneous and isotropic
Universe. Furthermore, it is straightforward to show in that
limit that Eqs. (24a) and (24b) turn into the Friedmann equa-
tions in the FLRW metric.

Finally, the continuity equation for a pressure-less perfect
fluid in the LTB metric (18) can be written as

ρ̇ + (
α̇ + 2 β̇

)
ρ = 0, (25)

or equivalently

ρ̇ +
(
ȧ + r ȧ′

a + r a′ + 2
ȧ

a

)
ρ = 0, (26)

if the LTB metric in the form given by Eq. (22) is considered.
We recall that the energy conservation law results from the
divergenceless law of the stress–energy tensor ∇μTμν = 0
for ν = 0.

4 The LTB model in the Jordan frame of f (R) gravity

We study the cosmological dynamics in the LTB metric (18)
within the framework of the f (R) gravity in the Jordan
frame. The 0-1, 0-0, 1-1 components of the gravitational field
equations (5a) are written as

β̇ ′

β ′ − α̇ + β̇ = − 1

2 φ β ′
(
φ̇′ − α̇ φ′) , (27a)

β̇2 + 2α̇ β̇ + e−2β − e−2α
[
2β ′′ + 3

(
β ′)2 − 2α′β ′]

= − 1

φ

{(
α̇ + 2β̇

)
φ̇ − e−2α

[
φ′′ − φ′ (α′ − 2β ′)]}

+ χ ρ

φ
+ V (φ)

2 φ
, (27b)

2 β̈ + 3 β̇2 + e−2 β − e−2 α
(
β ′)2 = V (φ)

2 φ

− 1

φ

[
φ̈ + 2 β̇ φ̇ − 2 e−2 α β ′ φ′] , (27c)
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respectively, where we have put a cosmological pressure-less
dust as a source. In the Appendix A, it is shown that the other
non-vanishing gravitational field equations, i.e., 2-2 and 3-3
components, depend on the previous set of equations, as it
must be, basically due to the spherical symmetry in the LTB
geometry.

Moreover, the scalar field equation (6) rewrites as

φ̈ + (
α̇ + 2 β̇

)
φ̇ − e−2 α

[
φ′′ − φ′ (

α′ − 2 β ′)]

− 2

3
V (φ) + φ

3

dV

dφ
= χ ρ

3
. (28)

Note that in an inhomogeneous cosmology all the quantities
φ, ρ, α, and β depend on both t and r .

It should be emphasized the occurrence of extra contri-
butions in field equations (27) and (28) with respect to the
�LTB model, due to the coupling between the scalar field
φ and the metric functions α, β, as well as the presence of
the scalar field potential. For instance, it is quite clear to rec-
ognize an extra coupling term by comparing the 0-1 field
Eq. (27a) with the respective Eq. (19a) in GR. As a con-
sequence, this coupling in the Jordan frame does not allow
us to find a relation between α and β, and then rewrite the
LTB metric in a simpler form, unlike the �LTB model in GR
(Sect. 3). For all these reasons, the cosmological dynamics
in the Jordan frame is really different from the GR scenario.

On the opposite, the continuity equation related to the
ordinary stress–energy tensor Tμν for a dust in the LTB met-
ric exactly exhibits the same form provided in Eq. (25) both
in GR and f (R) gravity. In the latter theory, other additional
equations are those related to the effective stress–energy ten-
sor T [φ]

μν , defined in Eq. (7), for the scalar field in the Jordan
frame. More specifically, Eqs. (9) in the LTB metric become

1

2

dV

dφ
− V (φ)

2 φ
− α̈ − 2 β̈ − α̇2 − 2 β̇2 = χ

φ
ρ

− 1

φ

{(
α̇ + 2β̇

)
φ̇ − e−2α

[
φ′′ − φ′ (α′ − 2β ′)]} , (29a)

α̈ + α̇
(
α̇ + 2 β̇

) + 2 e−2 α
[
β ′ (

α′ − β ′) − β ′′]

− 1

φ

[
φ̈ + 2 β̇ φ̇ − 2 e−2 α β ′ φ′] + V (φ)

2 φ
= 1

2

dV

dφ

(29b)

for μ = 0, 1, respectively.
It should be recalled that these laws for T [φ]

μν are not inde-
pendent of the field equations (27) and (28), because these
laws basically come from field equations using Bianchi iden-
tities. Nevertheless, these additional equations (29) can be
useful to rewrite field equations in a different form. For
instance, Eq. (29b) has been employed to find the dependence
between the 1-1 and 2-2 components of the gravitational field

equations (27c) and (A2), which implies spatial isotropy in
the LTB geometry, as it has been shown in the Appendix A.

To sum up, within the Jordan frame of f (R) gravity in
the LTB metric, we have obtained a system of four partial
differential equations (27) and (28) with four unknown func-
tions: α (t, r), β (t, r), ρ (t, r), and φ (t, r). Note that the
scalar field potential V (φ) provides a degree of freedom in
the theory. Furthermore, other supplementary equations are
provided by Eqs. (25) and (29).

5 Perturbation approach for the LTB model in General
Relativity

In this section, we consider local inhomogeneities of the Uni-
verse as small spherically symmetric perturbations over a flat
background FLRW geometry. We follow a linear perturbation
approach, so that we have the FLRW geometry at the zeroth-
order perturbation theory, while we build a lumpy Universe
described by the LTB metric at the first-order perturbation
[96]. Thus, we can write the LTB metric tensor components
as

gLTB
μν = ḡFLRW

μν + δgμν. (30)

Hereinafter, we use an overbar to denote quantities referred
to the background homogeneous and isotropic Universe, and
the symbol δ is related to linear perturbation terms. We
emphasize that, choosing this decomposition in Eq. (30), we
require spherically symmetric perturbations.

Moreover, we adopt the synchronous gauge for the LTB
metric, which intrinsically includes two degrees of freedom
in the perturbed metric. Indeed, two independent metric func-
tions, i.e., α (t, r) and β (t, r), are contained in the original
LTB line element (18) or, equivalently, a (t, r) and K 2 (r)
in GR, according to Eq. (22). Actually, K 2 (r) is not exactly
a dynamical degree of freedom but an arbitrary parametric
function, as a result of the LTB cosmological dynamics. To
be more specific, we recall that, in Sect. 3, the 0-1 component
(19a) of the Einstein field equations has allowed us to find
a relation between the metric functions α (t, r) and β (t, r)
in GR, hence to reduce one degree of freedom, and the LTB
metric in GR assumes the form given in Eq. (22) in terms of
a (t, r) and K 2 (r).

Since the background FLRW and the perturbed LTB met-
rics are both locally rotationally symmetric and are given in
the same normal geodesic frame, we only need to focus on
scalar functions, as shown in [112,113]. Hence, the scale fac-
tor a (t, r) and the energy density of the matter component
ρ (t, r), contained in the field equations (24a) and (24b), are
defined as:

a (t, r) = ā (t) + δa (t, r) , (31a)
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ρ (t, r) = ρ̄ (t) + δρ (t, r) . (31b)

Note that the curvature function K 2 (r) in the LTB metric
(22) involves radial inhomogeneities, so it can be regarded
as a perturbative contribution. In other words, even if here-
inafter we set the curvature parameter in the FLRW metric
as k̄ = 0, it is possible to define a linear curvature perturba-
tion, which is exactly given by the curvature function K 2 (r)
in the LTB metric, according to the metric decomposition
in Eq. (30). Thus, in addition to the metric perturbation δa,
we have another perturbed quantity with respect to the back-
ground FLRW metric, which is K 2 (r).

We also require that background terms dominate over the
linear perturbations

δa (t, r) 
 ā (t), δρ (t, r) 
 ρ̄ (t) (32)

at any time t , or redshift z, in the late Universe. This condition
is dictated by the cosmological principle.

Once the decomposition has been defined in Eqs. (31a),
(31b), the evolution in time and space of the physical quanti-
ties can be obtained by studying the gravitational field equa-
tions (24a) and (24b) at background and linear levels.

In particular, we define a dimensionless time variable

τ = t

t0
, (33)

in which t0 is the present cosmic time (today τ = 1). Note
that τ is the cosmic time in units of the present Hubble time
since t0 can be approximately written in terms of the Hubble
constant as t0 ≈ 1/H0 [3].

5.1 Background solution

If we consider only background terms, it is straightforward
to show that Eq. (24a) turns into the first Friedmann equation
in a flat FLRW geometry:

H2 (t) ≡
[
ȧ (t)

a (t)

]2

= χ ρ (t)

3
+ �

3
, (34)

being H(t) the Hubble parameter. Furthermore, the other
Eq. (24b) can be rewritten at the background level, and com-
bined with Eq. (34), provides the second Friedmann equation,
also commonly named the cosmic acceleration equation:

ä (t)

a (t)
= −χ ρ

6
+ �

3
. (35)

Then, we rewrite the first Friedmann equation (34) in terms
of τ , defined in Eq. (33), as
[

1

ā (τ )

dā (τ )

dτ

]2

= �m0

ā3 (τ )
+ ��0. (36)

We have used the well-known relation ρ̄ ∼ ā−3 for the matter
component, the chain rule d

dt = 1
t0

d
dτ

≈ H0
d
dτ

, and the usual

definitions of the cosmological density parameters �m0 and
��0.

The Friedmann equation (36) admits an analytical solution
in the late Universe, that is the background scale factor in
terms of τ :

ā (τ ) =
(

�m0

��0

)1/3
⎧⎨
⎩ sinh

⎡
⎣3

2

√
��0 (τ − 1)

+arcsinh

(√
��0

�m0

)]}2/3

. (37)

Note also from Eq. (37) that the deceleration parameter
q̄ (τ ) ≡ −¨̄a ā−1 H−2 → −1 for τ → +∞, as it should be
in a dark-energy-fully-dominated Universe. We here stress
that the solution (37) applies only in the late Universe, oth-
erwise we need to solve numerically the field equations, if
we also consider the radiation contribution. Nevertheless, we
are interested in the evolution of local inhomogeneities at late
times.

It should be noted that in the limit

lim
��→0

ā (τ ) ∼ (τ − 1)2/3 , (38)

we recover the well-known relation for the background scale
factor ā satisfied in the matter-dominated Universe [3].

Concerning the evolution of the background energy den-
sity ρ̄, we start from the continuity equation (26) in the
LTB metric. We verify that this equation at the zeroth order
becomes simply the respective continuity equation for the
matter component in the FLRW metric, i.e.

˙̄ρ + 3 H ρ̄ = 0, (39)

which provides ρ̄ ∼ ā−3. Actually, we recall that Eq. (39)
is not independent of the two Friedmann equations (34) and
(35), since it can be derived by combining them.

Finally, we focus on the relation between the redshift z and
the dimensionless parameter τ , defined in Eq. (33), to under-
stand to what extent of τ values the background solution (37)
can be applied in the late Universe. To be more accurate in
this computation, we also include the radiation contribution
to write τ as

τ (z) = 1 +
∫ 1/1+z

1

dx

x
√

�m0x−3 + �r0x−4 + ��0

, (40)

where we have used the Friedmann equation (36), the defi-
nition of τ in Eq. (33), and we recall that ā0/ā = 1 + z. The
quantity τ (z) can be computed numerically for a given red-
shift z, after specifying the cosmological parameters: �m0 =
0.3111, ��0 = 0.6889, and �r0 = 9.138 × 10−5 from
Table 2 in [5]. For instance, we can compute: τ

(
zeq

) = 0.046
at the redshift of the matter-radiation equality zeq = 3403.5;
τ (zDE) = 0.75 at the matter-dark energy equality zDE =
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Fig. 2 Evolution of the background scale factor ā (τ ) (top panel) and
the respective deceleration parameter q̄ (τ ) (bottom panel) in terms of
the time dimensionless parameter τ , defined in Eq. (33), for a flat�CDM
model within the range τ100eq < τ < 5, according to the solution given
in Eq. (37)

0.303; τ
(
z100eq

) = 0.052 when the energy density of the
matter component was one hundred times more than the radi-
ation contribution at z100eq = 33.045. In particular, consid-
ering this latter value of τ , you can see in Fig. 2 the behavior
of the background scale factor ā (τ ) and the deceleration
parameter q̄ (τ ) in the range τ100eq < τ < 5, when relativis-
tic species are negligible.

5.2 Linearly perturbed solutions in an inhomogeneous
Universe

We analyze the impact of local inhomogeneities in the cos-
mological dynamics. The linearized field equations allow us
to investigate the evolution of spherically symmetric pertur-
bations.

If we include local inhomogeneities in the first-order per-
turbation theory, the Eqs. (24a) and (24b) become

[
ā2 (χ ρ̄ + �) − ˙̄a2

] (
3 δa + r δa′) + χ δρ ā3

= 2 ā ˙̄a (
3 δȧ + r δȧ′) + 3 ā K 2 + 2 ā r K K ′, (41a)

δä + ˙̄a
ā

δȧ −
( ¨̄a
ā

+ ˙̄a2

ā2

)
δa + K 2

2 ā
= 0, (41b)

respectively.

Furthermore, we rewrite the continuity equation (26) at
linear order:

δρ̇ + 3
˙̄a
ā

δρ = ρ̄

ā2

[ ˙̄a (
3δa + rδa′) − ā

(
3δȧ + rδȧ′)] . (42)

To study separately the evolution of local inhomogeneities
in time and space, we adopt the separation of variables
method to solve analytically the first-order perturbation equa-
tions. Hence, we define time and radial functions for all linear
perturbations:

δa (t, r) ≡ ap (t)ap (r) , δρ (t, r) ≡ Rp (t) �p (r) . (43)

The quantities ap (t) and ap (r) are both dimensionless. We
assume, without loss of generality, that Rp (t) has the phys-
ical dimensions of an energy density as ρ̄ and δρ, while we
treat �p (r) like a dimensionless quantity. We also recall that
the curvature perturbation K 2 (r) in the LTB metric depends
only on the radial coordinate.

We stress that if we would also include non-linear terms,
then the separation of variables could not lead to a gen-
eral solution. However, the linearization procedure adopted
for the dynamics allows us to use a separation of variables
characterized by the factorization (43) of the time and space
dependences in the linear perturbation theory.

Using the factorization (43), Eq. (41b) can be split into
two parts. By setting the radial dependence as

K 2 (r) = ap (r) , (44)

we obtain an ordinary differential equation for the time evo-
lution:

äp + ˙̄a
ā

ȧp −
[ ¨̄a
ā

+
( ˙̄a
ā

)2]
ap = 0, (45)

in which we have also considered that ā � ap. We would
emphasize that the assumption given in Eq. (44) is suggested
by the form of Eq. (41b), once we used the separation of vari-
ables from Eq. (43). Nevertheless, we have still two metric
perturbations given by the quantities ap (t) and ap (r).

We proceed similarly for the first-order perturbation con-
tinuity equation (42). After straightforward calculations, by
using again the factorization (43) in Eq. (42), we separate
terms that depend only on t from those related to r . In par-
ticular, the time evolution is provided by

Ṙp + 3
˙̄a
ā
Rp = X

ρ̄

ā

( ˙̄a
ā

ap − ȧp

)
, (46)

while we obtain the following radial dependence

�p = 1

X

(
3ap + r a′

p

)
. (47)

The constant X is introduced by the separation of variables
method. We recall that the background solution for ā is writ-
ten in Eq. (37) and also ρ̄ ∼ ā−3.
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We rewrite the first-order perturbation Eq. (41a), by
employing Eq. (43) and dividing both sides of the equation
by ā2 ap ap, as

[
χ ρ̄ + � −

( ˙̄a
ā

)2

− 2
˙̄a
ā

ȧp
a p

] (
3 + r

a′
p

ap

)

= 3

ā ap

K 2

ap
+ 2

ā ap

r K K ′

ap
− χ ā

Rp

a p

�p

ap
. (48)

We observe the presence of several mixed terms depending
both on t and r . However, we can reduce the number of these
mixed terms, by using Eqs. (34), (44), and (47) to rewrite
Eq. (48) as
[

2
˙̄a
ā

( ˙̄a
ā

ap − ȧp

)
+ χ

X
ā Rp

]
�p

ap
= 0. (49)

Since we want to avoid trivial solutions, we should have �p �=
0 and ap �= 0. Then, we obtain a single ordinary differential
equation in the time domain:

2
˙̄a
ā

( ˙̄a
ā

ap − ȧp

)
+ χ

X
ā Rp = 0. (50)

It is straightforward to check the compatibility between
Eqs. (45), (46), and (50). Indeed, by combining the time
derivative of Eq. (50) with Eq. (46), the background field
equations (34), and (35), it is easy to build exactly Eq. (45).

Then, we rewrite the term in the brackets on the right-hand
side of Eq. (46) by using Eq. (50), and we get an ordinary
differential equation with a single variable Rp (t), that is

Ṙp +
(

3
˙̄a
ā

+ χ ρ̄

2

ā
˙̄a
)

Rp = 0. (51)

Therefore, focusing on the time domain, we can obtain
numerical solutions for the unknown quantities ap and Rp

from the linearized equations (45) and (51). In particular,
Eq. (45) shows exactly the same behavior in terms of t and
τ , as it can be checked by using the definition of τ (33).
Recalling the expression (37) of the background scale factor
in GR, Eq. (45) can be solved numerically. We set the initial
conditions at τ = 1 today: ap (1) = 10−5 and ȧp (1) = 0.
Moreover, we fixed the same values for�m0 and��0 adopted
in Sect. 5.1. In the upper panel of Fig. 3, you can see the
numerical results for 1 ≤ τ ≤ 5. Note that the perturbed
scale factor ap increases as τ grows, and this fact may be
a problem if perturbations become unstable. However, the
evolution of ap is dominated by the background term ā at
any time τ . Indeed, the ratio between the perturbation and
background terms with η (τ) ≡ ∣∣ap/ā∣∣ 
 1 for any τ , as
it is shown in the middle panel of Fig. 3. In other words,
perturbations of the scale factor due to local inhomogeneities
will remain small over time.

Fig. 3 Top panel: Evolution of the linearly perturbed scale factor ap (τ )

in units of 10−4 and in terms of the parameter τ , provided by the numer-
ical solution of Eq. (45). Middle panel: The ratio between the first-order
perturbation term and background scale factor η (τ) ≡ ∣∣ap/ā∣∣ versus
τ in units of 10−5. Bottom panel: Evolution of the dimensionless per-
turbed energy density Op (τ ) ≡ Rp/ρ̄c0 in units of 10−6. Note that all
perturbed contributions are smaller than respective background terms
for 1 ≤ τ ≤ 5

Concerning the time evolution of the perturbed energy
density of the matter component Rp, we rewrite Eq. (51) in
terms of τ as

dOp

dτ
+ 3

[
1

ā

dā

dτ
+ �m0

2 ā2

(
dā

dτ

)−1
]

Op = 0, (52)

in which we have defined the dimensionless quantity Op ≡
Rp/ρ̄c0. We solve numerically Eq. (52) with the initial con-
dition Op (1) = 10−5 for τ = 1. The results are shown in the
bottom panel of Fig. 3. Note that Op (τ ) 
 1 for 1 ≤ τ ≤ 5.

Finally, after obtaining numerical solutions for the time
domain, we focus on the radial part of perturbations. We
recall that K 2 (r) = ap (r) from Eq. (44). Moreover, we
assume for simplicity a proportionality between radial per-
turbations, i.e., �p = C ap with a constant C .

Then, we solve the ordinary differential equation (47) in r ,
and we obtain a power-law behavior for the radial correction
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of the perturbed scale factor in GR:

ap (r) ∝ r−y, (53)

for which y ≡ 3 − C X . More in detail, we need to impose
the condition y > 0 to ensure that inhomogeneities decay on
large scales, according to the cosmological principle.

6 Perturbation approach for the LTB model in the
Jordan Frame of f (R) gravity

In this section, we compare and discuss the evolution of inho-
mogeneous perturbations in GR and in the Jordan frame
of f (R) gravity, considering again a cosmological dust
(p = 0) in the LTB geometry. A complete general solu-
tion in linear perturbation theory within the metric f (R)

gravity was developed in [40,41,114]. Instead of proceeding
with a fourth-order cosmological dynamics, here we work in
the equivalent Jordan frame f (R) gravity. Furthermore, as a
particular case, we focus on spherically symmetric perturba-
tions, following the same perturbation approach developed
in Sect. 5 by using the metric decomposition in Eq. (30).
Hence, we split the metric functions α and β, the energy
density ρ, and the scalar field φ into background terms plus
linear corrections as

α (t, r) = ᾱ (t) + δα (t, r)

β (t, r) = β̄ (t, r) + δβ (t, r)

ρ (t, r) = ρ̄ (t) + δρ (t, r)

φ (t, r) = φ̄ (t) + δφ (t, r) . (54)

We also require again that inhomogeneities are much smaller
than respective background terms.

It should be stressed that, in the Jordan frame, we can not
use the LTB metric in the simpler form (22), but we refer
to the original LTB line element (18). Thus, the two degrees
of freedom of the perturbed metric are given by α (t, r) and
β (t, r); we no longer refer to a (t, r) and K 2 (r), as in the
GR scenario.

Note that the background quantities ᾱ and β̄ are related to
the scale factor ā, since we want to reproduce a flat FLRW
geometry at the zeroth-order perturbation. Then, comparing
a flat FLRW metric with the LTB line element in the form
given by Eq. (18), it is straightforward to show that

ᾱ (t) = ln (ā (t)) , β̄ (t, r) = ln (ā (t) r) . (55)

As a consequence, the metric tensor component grr in the
LTB metric can be approximated for δα 
 1/2 as

grr = e2α = e2(ᾱ+δα) ≈ ā2 (t) (1 + 2 δα) , (56)

in which it is possible to recognize the respective metric ten-
sor component grr in a flat FLRW metric as background term.

We can follow the same reasoning for the other metric tensor
components involving β with the assumption δβ 
 1/2.

Also, we need to expand the scalar field potential V (φ),
defined in Eq. (4), which appears in the field equations (27b),
(27c), (28). Therefore, including local inhomogeneities, we
obtain

V [φ (t, r)] = V
[
φ̄ (t) + δφ (t, r)

]

≈ V
[
φ̄ (t)

] + dV

dφ

∣∣∣∣
φ=φ̄

δφ (t, r) + O
(
δφ2

)
(57)

for the first-order perturbation theory. Similarly, we can
rewrite the derivative of V (φ).

As we have proceeded to study the gravitational field equa-
tions in GR in Sect. 5 to find background and linear solutions,
now we analyze the dynamics of f (R) gravity in the Jordan
frame, provided by the field equations (27), and (28) in the
LTB metric.

6.1 Background solution

If we consider all background quantities, we do not include
spherically symmetric perturbations and Eqs. (27b), (27c),
and (28) turn into field equations in the Jordan frame of f (R)

gravity in a flat FLRW geometry:

H2 = χ ρ̄

3 φ̄
− H

˙̄φ
φ̄

+ V
(
φ̄
)

6 φ̄
, (58a)

¨̄a
ā

= −χ ρ̄

6 φ̄
− H

2

˙̄φ
φ̄

− 1

2

¨̄φ
φ̄

+ V
(
φ̄
)

6 φ̄
, (58b)

3 ¨̄φ − 2 V
(
φ̄
) + φ̄

dV

dφ̄
+ 9 H ˙̄φ = χ ρ̄. (58c)

Equation (58a) is the modified Friedmann equation, Eq. (58b)
is the modified acceleration equation, and Eq. (58c) concerns
the scalar field evolution in the Jordan frame. In particular,
Eq. (58b) is obtained by combining the zeroth-order perturba-
tion Eqs. (27b) and (27c). Furthermore, Eq. (27a) vanishes
at the background level in the synchronous gauge, and it
becomes a trivial identity.

Then, we focus on the f (R) HS model in the Jordan
frame, which has been introduced in Sect. 2.1. Recalling the
form of the scalar field potentialV

(
φ̄
)

in Eq. (17), we observe
that the field equations (58) do not admit any analytical solu-
tions, and we have to solve it numerically.

In this regard, we rewrite the full set of equations (58) in
terms of the dimensionless parameter τ , defined in Eq. (33),
and we obtain, respectively:

[
1

ā (τ )

dā (τ )

dτ

]2

= �m0

φ̄ (τ )

(
1

ā3 (τ )
+ V

(
φ̄
)

6m2

)
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Fig. 4 Numerical background solutions, considering a flat FLRW
geometry, for the f (R) HS model in the Jordan frame. Top panel:
Evolution of the scale factor ā in terms of the parameter τ . Middle
panel: Behavior of the deceleration parameter q̄ (τ ). Bottom panel: The
deviation from the GR scenario (φ̄ = 1) with units of 10−7 for the
vertical axis

− 1

ā (τ ) φ̄ (τ )

dā (τ )

dτ

dφ̄ (τ )

dτ
, (59a)

1

ā (τ )

d2ā (τ )

dτ 2 = − �m0

φ̄ (τ )

(
1

ā3 (τ )
+ V

(
φ̄
)

6m2

)

+ �m0

6m2

dV
(
φ̄
)

dφ̄
+ 1

ā (τ ) φ̄ (τ )

dā (τ )

dτ

dφ̄ (τ )

dτ
, (59b)

3

φ̄ (τ )

d2φ̄ (τ )

dτ 2 − 2
�m0

φ̄ (τ )

V
(
φ̄
)

m2 + �m0

m2

dV
(
φ̄
)

dφ̄

+ 9

ā (τ ) φ̄ (τ )

dā (τ )

dτ

dφ̄ (τ )

dτ
= 3 �m0

φ̄ (τ ) ā3 (τ )
. (59c)

We used the usual relation for �m0, and we recall that m2 =
χ ρ̄/3. In particular, Eqs. (59a) and (59c) allow us to obtain
numerical solutions for ā (τ ) and φ̄ (τ ), while Eq. (59b) is
useful to estimate numerically the deceleration parameter
q̄ (τ ).

We choose the parameters of the model in such a way that
the background modified gravity scenario is almost equiv-

alent to the �CDM cosmological model with the aim of
focusing later on the differences between the linear pertur-
bation solutions in the two models. More precisely, we fix
�m0 = 0.3111, the same value adopted in Sect. 5.1, and we
set the value |FR0| = 1.0 × 10−7 at the present cosmic time
(redshift z = 0 or τ = 1), which provides information about
the deviation from the GR scenario, according to Eq. (16). As
a consequence, we constrain the HS dimensionless parame-
ters: c1 = 2.0 × 106 and c2 = 1.5 × 105, as developed in
Sect. 2.1. We recall that the profile of the background quantity
V

(
φ̄
)
/m2 is plotted in Fig. 1.

To guarantee a nearly frozen evolution of the scalar field
φ̄ for increasing τ , we impose the following condition:
dφ̄
dτ

(τ = 1) = 0. Finally, we solve numerically Eqs. (59a)
and (59c) for 0.2 < τ < 5, when the relativistic com-
ponents remain negligible as compared with the matter, to
obtain the evolution of ā (τ ) and φ̄ (τ ). The numerical results
are shown in Fig. 4. By comparing it with Fig. 2, it should
be emphasized that ā (τ ) and q̄ (τ ) exhibit almost the same
behavior in GR and in the Jordan frame of f (R) gravity, as
desired according to the choice of model parameters above-
mentioned. In particular, in the bottom panel of Fig. 4, we
plot the quantity

∣∣1 − φ̄ (τ )
∣∣ to evaluate the deviation from

GR (φ̄ = 1): we observe more relevant deviations in the late
Universe for τ > 1, but nevertheless the background modi-
fied gravity dynamics still remains almost undistinguishable
from the �CDM scenario. Hence, we can shift the attention
towards the first-order perturbation solutions in the Jordan
frame of f (R) gravity.

6.2 Linearly perturbed solutions in an inhomogeneous
Universe

We focus on the first-order perturbed equations to study the
evolution of spherically symmetric perturbations. Consider-
ing the split between background terms and linear perturba-
tions according to Eq. (54), the set of field equations (27)
becomes

δβ̇ ′ = 1

r

(
δα̇ − δβ̇

) − 1

2 φ̄

(
δφ̇′ − ˙̄a

ā
δφ′

)
, (60a)

2

ā2

[
1

r2 (δα − δβ) − δβ ′′ − 3

r
δβ ′ + 1

r
δα′

]

+
(

2
˙̄a
ā

+
˙̄φ
φ̄

) (
δα̇ + 2 δβ̇

) = χ

φ̄
δρ − 3

˙̄a
ā

δφ̇

φ̄

+
(

1

2

dV

dφ

∣∣∣∣
φ=φ̄

− 1

2

V
(
φ̄
)

φ̄
− χ ρ̄

φ̄
+ 3

˙̄a
ā

˙̄φ
φ̄

)
δφ

φ̄

+ 1

ā2 φ̄

(
δφ′′ + 2

r
δφ′

)
, (60b)

δβ̈ + 3
˙̄a
ā

δβ̇ + 1

ā2 r2

(
δα − δβ − r δβ ′)
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=
(

1

2

dV

dφ

∣∣∣∣
φ=φ̄

− 1

2

V
(
φ̄
)

φ̄
+

¨̄φ
φ̄

+ 2
˙̄a
ā

˙̄φ
φ̄

)
δφ

2 φ̄

− 1

2 φ̄

(
δφ̈ + 2

˙̄a
ā

δφ̇ + 2 ˙̄φ δβ̇ − 2

ā2 r
δφ′

)
. (60c)

Similarly, starting from Eq. (28), the linearized scalar field
equation is given by

δφ̈ + 3
˙̄a
ā

δφ̇ + (
δα̇ + 2δβ̇

) ˙̄φ − 1

ā2

(
δφ′′ + 2

r
δφ′

)

+ 1

3

(
φ̄

d2V

dφ2

∣∣∣∣
φ=φ̄

− dV

dφ

∣∣∣∣
φ=φ̄

)
δφ = 1

3
χ δρ. (61)

Moreover, the continuity equation (25) rewrites as

δρ̇ + 3
˙̄a
ā

δρ + (
δα̇ + 2 δβ̇

)
ρ̄ = 0 (62)

at the linear perturbation order. We have used Eq. (55) to
rewrite ᾱ and β̄ in terms of ā.

Following the same approach we adopted in GR in Sect. 5,
we use a separation of variables method to study separately
the evolution of inhomogeneities in time and space. Hence,
we factorize the linear perturbations as:

δα (t, r) ≡ Ap (t) Ap (r)

δβ (t, r) ≡ Bp (t) Bp (r)

δρ (t, r) ≡ Pp (t) �p (r)

δφ (t, r) ≡ �p (t) ϕp (r) . (63)

Assuming this factorization, we can rewrite Eqs. (60),
(61), and (62). However, we notice the presence of several
mixed terms depending both on t and r , which do not allow
us to solve the equations using the separation of variables in
a standard way, unless we rely on reasonable and simplifying
assumptions (further details on explicit calculations are in the
Appendix B). For instance, we are able to use the separation
of variables method for all field equations, if we require the
two following conditions:

Ap = λ1 Bp, (64a)

�p = λ2 ϕp, (64b)

where λ1 and λ2 are two proportionality constants. These
conditions allow us to simplify the equation system and eas-
ily separate time and radial dependences: we obtain a set of
differential equations describing the radial profiles of per-
turbations and another equation system concerning only the
time evolution.

Hence, starting from Eqs. (60), (61), and (62), after long
but straightforward calculations (see the Appendix B), we

obtain a set of equations for the radial part:

Ap = 1

λ1

[
Bp + r

(
B′
p + μ1 ϕ′

p

)]
, (65a)

Bp = 2

μ4 r
ϕ′
p − μ1 ϕp, (65b)

ϕ′′
p + 2

r
ϕ′
p − μ2

3 ϕp = 0, (65c)

�p = 1

μ2

(
λ1 Ap + 2Bp

)
, (65d)

where μ1, μ2, μ3, and μ4 are constants arising from the
separation of variables. We have four unknown quantities
(Ap, Bp, �p, and ϕp), which are related through the con-
dition given by Eq. (64b), the perturbed 0-1 component of
field equations (65a), the perturbed 1-1 component (65b),
the linearized scalar field equation (65c), and in addition the
perturbed continuity equation (65d). In particular, note that
μ3 has dimensions of reciprocal length, i.e., [μ3] = L−1, as
you can see from Eq. (65c).

Similarly, in the Appendix B, we write an equation system
for the time evolution of perturbations:

Ḃp = 1

2 φ̄ μ1

(
�̇p − ˙̄a

ā
�p

)
, (66a)

μ2λ2

2μ1

(
2

˙̄a
ā

+
˙̄φ
φ̄

) (
�̇p

�p
− ˙̄a

ā

)
+ χρ̄

φ̄
− 1

2

dV

dφ

∣∣∣∣
φ=φ̄

+ V
(
φ̄
)

2φ̄
+ 3

˙̄a
ā

(
�̇p

�p
−

˙̄φ
φ̄

)
− χλ2

Pp

�p

+ 2μ1μ
2
3

φ̄Bp

ā2�p
= μ2

3

ā2 , (66b)

B̈p + Ḃp

(
3

˙̄a
ā

+
˙̄φ
φ̄

)
= μ4

2 ā2

(
�p

φ̄
− μ1 Bp

)
, (66c)

�̈p

�p
+ 3

˙̄a
ā

�̇p

�p
− 1

3

dV

dφ

∣∣∣∣
φ=φ̄

+ 1

3
φ̄

d2V

dφ2

∣∣∣∣
φ=φ̄

+ μ2 λ2
˙̄φ Ḃp

�p
− χ λ2

3

Pp

�p
= μ2

3

ā2 , (66d)

Ṗp + 3
˙̄a
ā
Pp + μ2 ρ̄ Ḃp = 0. (66e)

We have four unknown quantities (Ap, Bp, Pp, and �p)
for the time evolution of inhomogeneities, which are fully
described by the assumption (64a), the perturbed 0-1, 0-0, 1-
1 components of field equations given by Eqs. (66a), (66b),
(66c), respectively, the linearized scalar field equation (66d),
and the perturbed continuity equation (66e). Note that two
equations of the latter list are redundant since the scalar field
and continuity equations are not independent of the other
field equations.
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It should be stressed that the potential V (φ) affects only
the time evolution. As a consequence, since the scalar field
potential is related to a specific modified f (R) model, the
time evolution strongly depends on the particular modified
gravity model considered, while the radial part of the lin-
earized equations is completely model free. This is a crucial
point to identify a peculiar feature of the inhomogeneities
evolution in the Jordan frame of f (R) gravity through anal-
ysis of the radial profiles of perturbations.

Once we have split all field equations in time and radial
contributions, we seek linear order solutions separately.

6.2.1 Radial profiles

If we focus on the radial evolution of perturbations, we
can solve the respective equation system analytically. More
specifically, in solving the differential equation (65c), we
obtain the Yukawa behavior for the radial solution of the
linearly perturbed scalar field:

ϕp (r) = γ

r
e−μ3 r . (67)

We have set perturbations to vanish at infinity according to
the cosmological principle, hence we have only one integra-
tion constant γ . We recall that [μ3] = L−1, as it can be
checked also from Eq. (67). Note that �p (r) has the same
radial dependence, i.e.

�p (r) = λ2 γ

r
e−μ3 r , (68)

in which we considered the assumption given by Eq. (64b).
Consequently, from Eq. (65b), we also get

Bp (r) = − γ

μ4
e−μ3 r

(
μ4 μ1

r
+ 2 μ2

3

r2 + 2

r3

)
, (69)

where we used the solution (67). Finally, we combine
Eqs. (65a), (67), and (69) to obtain the scalar perturbation

Ap (r) = γ

λ1
e−μ3r

(
2μ1 + μ2λ2

r
+ 4μ2

3

μ4r2 + 4

μ4r3

)
. (70)

It should be noted that, in order to satisfy the compatibility
between Eqs. (65a), (64b), (65c), (65b), and (65d), we require
the following relation

μ4 = 2 μ2
3

3 μ1 + μ2 λ2
(71)

between the constants involved in the set of equations.7 In
particular, note that [μ4] = L−2, since μ3 has the dimension
of inverse length, and the other constants are dimensionless.

It should be pointed out that the f (R) gravity establishes
a typical radial scale, rc ≡ μ−1

3 , such that local inhomo-
geneities vanish for r � rc more rapidly than the respec-
tive perturbations in the �LTB model. For instance, this fact
can be shown by comparing the behavior of the perturbed
scale factor given in Eq. (53) with the radial profiles of the
LTB metric functions in Eqs. (69) and (70). It is important to
stress that our result is completely independent of the choice
of scalar field potential V

(
φ̄
)
. Hence these radial solutions

apply to any f (R) extended model, providing a remarkable
feature of the radial evolution within the Jordan frame of the
f (R) gravity as compared to GR.

6.2.2 Time evolution

Now we focus on the time evolution of perturbations in the
Jordan frame. Clearly, the choice of the background f (R)

modified gravity model affects the time dependence of inho-
mogeneities since V

(
φ̄
)

appears in almost all equations
regarding the time part. Our main result concerns the pecu-
liarity of the radial profiles of perturbations in the Jordan
frame, which does not depend on a specific modified gravity
model. Here, we merely want to prove the existence of at
least one stable time solution.

To solve numerically the equation system given by
Eqs. (64a), (66a), (66e), (66d), (66b), (66c), we rewrite it in
terms of the dimensionless parameter τ , defined in Eq. (33).
We also recall that d/dt ≈ H0 d/dτ .

In particular, Eqs. (64a) and (66a) maintain the same form
if we write them in terms of τ as

Ap (τ ) = λ1 Bp (τ ) , (72)

dBp

dτ
= 1

2 φ̄ (τ ) μ1

(
d�p

dτ
− 1

ā

dā

dτ
�p (τ )

)
, (73)

respectively.
Furthermore, the linearized scalar field equation (66d)

becomes

1

�p (τ )

d2�p

dτ 2 + 3
1

ā (τ )

dā

dτ

1

�p (τ )

d�p

dτ

− 1

3

�m0

m2

dV

dφ

∣∣∣∣
φ=φ̄(τ )

+ 1

3
φ̄ (τ )

�m0

m2

d2V

dφ2

∣∣∣∣
φ=φ̄(τ )

7 More specifically, to write this compatibility condition, we have
started from Eqs. (65a), (65d), and then we have replaced �p and Bp
with ϕp and ϕ′

p by using Eqs. (64b) and (65b), respectively; finally,
the resulting equation is compared with Eq. (65c) to set the above rela-
tion (71) between the constants.
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+ μ2λ2
dφ̄

dτ

1

�p (τ )

dBp

dτ
− λ2�m0� (τ)

ā3 (τ ) �p (τ )
= μ̃2

3

ā2 (τ )
.

(74)

We have defined the density contrast �(τ) ≡ Pp (τ ) /ρ̄ (τ )

for linear perturbations. Note also that the quantity μ̃3 ≡
μ3/H0 is dimensionless in natural units.

Similarly, Eq. (66b) in terms of τ rewrites as

μ2λ2

2μ1

(
2

ā (τ )

dā

dτ
+ 1

φ̄ (τ )

dφ̄

dτ

) (
1

�p (τ )

d�p

dτ

− 1

ā (τ )

dā

dτ

)
+ 3 �m0

φ̄ (τ ) ā3 (τ )

+ �m0

2m2

(
V

(
φ̄
)

φ̄ (τ )
− dV

dφ

∣∣∣∣
φ=φ̄(τ )

)
+ 3

ā (τ )

dā

dτ

×
(

1

�p (τ )

d�p

dτ
− 1

φ̄ (τ )

dφ̄

dτ

)
− 3λ2�m0� (τ)

�p (τ ) ā3 (τ )

+ 2μ1μ̃
2
3
Bp (τ )

�p (τ )

φ̄ (τ )

ā2 (τ )
= μ̃2

3

ā2 (τ )
, (75)

and Eq. (66c) turns into:

d2Bp

dτ 2 + dBp

dτ

(
3

ā (τ )

dā

dτ
+ 1

φ̄ (τ )

dφ̄

dτ

)

= μ̃4

2 ā2 (τ )

(
�p (τ )

φ̄ (τ )
− μ1 Bp (τ )

)
. (76)

In the latter equation, we have introduced the dimensionless
quantity μ̃4 ≡ μ4/H2

0 in natural units.
Finally, considering the definition of the density contrast

� (τ) and the background equation (39), it is straightforward
to show that the linearly perturbed continuity equation (66e)
simply rewrites in terms of τ as

d�

dτ
+ μ2

dBp

dτ
= 0. (77)

Note that we can use Eq. (77) to reduce the number of
unknown quantities in the other field equations (74).

Now we want to solve numerically Eqs. (73) and (74) to
obtain � (τ) and �p (τ ). In this regard, we fix the values of
constants for simplicity μ1 = 1, μ2 = 102, λ2 = 5, μ̃3 = 1
and set initial conditions at τ = 1 for inhomogeneities:
� (1) = 10−5, �p (1) = 10−12, and d�p/dτ (1) = 0.
These values have been chosen to have weak and slowly
varying perturbations and guarantee the existence of a sta-
ble numerical solution. Moreover, we use the background
numerical solutions for ā (τ ) and φ̄ (τ ), and the scalar field
potential V

(
φ̄
)

for the HS model discussed in Sect. 6.1.
Then, we obtain numerical solutions for �(τ) and �p (τ ),

which are plotted in Fig. 5. It should be noted that these solu-
tions are stable in time, since inhomogeneous perturbations
are dominated by background terms for any τ .

Fig. 5 Numerical solutions of linear perturbations in the Jordan frame
of f (R) gravity in terms of the parameter τ . Top panel: The difference
between the density contrast � evaluated at a generic τ and τ = 1
today represented in units of 10−11 and logarithmic scale. Bottom panel:
The ratio between the linearly perturbed scalar field �p (τ ) and the
respective background scalar field φ̄ (τ ) in units of 10−13

Once we have obtained � and �p numerically, the remain-
ing perturbed quantities Ap and Bp can be easily found by
using Eqs. (72) and (77).

7 Conclusions

In this paper, we have analyzed the LTB spherically sym-
metric solution, linearized over a flat FLRW background,
comparing its morphology in GR and f (R) modified grav-
ity theories, as viewed in the Jordan frame. In the former
case, we have referred to the �LTB model, including a mat-
ter fluid and a cosmological constant; in the latter model,
we have considered the f (R) Hu–Sawicki formulation for
the dark energy component of the background Universe, in
which the cosmic acceleration is driven by the no-Einsteinian
geometrical terms if compared it to GR.

We have studied the dynamics in both cosmological sce-
narios to highlight the peculiarities of these models. To
describe spherically symmetric deviations from homogeneity
in the late Universe, we have used the separation of variables
method to address the partial differential equations system
for the first-order perturbation. Then, the radial component of
such a reduction procedure has been analytically integrated,
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while the-time dependent part has required a numerical treat-
ment.

The key difference between the two cosmological mod-
els studied in this work concerns the different form of the
0-1 component of the gravitational field equations. Indeed,
in the �LTB model, this equation (19a) can be easily solved
by removing one of the two free metric functions of the prob-
lem, hence the LTB metric takes the well-known simplified
form (22). On the other hand, within the framework of the
f (R) gravity in the Jordan frame, the 0-1 component given
by Eq. (27a) intrinsically links the metric tensor components
to the non-minimally coupled scalar field. Thus, the non-
minimally coupling prevents the simplification above unlike
GR, and we have to deal with two distinct metric functions
α (t, r) and β (t, r) in the LTB metric given by Eq. (18).

Concerning the radial solutions, GR provides only a nat-
ural decay of the perturbations for large r values, following
a power law, as it emerges from Eq. (53). Differently, in the
f (R) modified gravity formulation, we obtain the Yukawa-
like decaying for the radial perturbations of the scalar func-
tions given by Eqs. (67), (68), (69), and (70). Furthermore,
we have employed the f (R) HS model to describe the back-
ground Universe for comparison with the �CDM model, but
we could have considered other viable f (R) modified grav-
ity models. Indeed, we stress that our main result regarding
the Yukawa-like radial perturbations does not depend on the
f (R) functional form.

It should be noted that Yukawa-like radial profiles are
recurring in f (R) theories, as evidenced, for instance, in
other studies [115–118] by the presence of Yukawa-like cor-
rections in the Newton potential with consequent implica-
tions for the dark matter problem and the flat rotation curves
of galaxies.

In this paper, the different morphology of the radial solu-
tions between the �LTB model and inhomogeneous f (R)

cosmology must be regarded as the most relevant signature
we fixed about the possibility to adopt the f (R) modified
gravity scenario to describe the accelerating late Universe
via spherically symmetric perturbations over a homogeneous
background. In other words, the different radial profiles of
local inhomogeneities in the Universe may be possible hints
of a theory beyond GR.

For what concerned the time evolution of inhomogeneous
perturbations both in the �LTB model and in the LTB solu-
tion as emerging from the f (R) gravity in the Jordan frame,
the numerical analysis has allowed us to outline that it is
always possible to obtain a non-divergent amplitude of the
perturbations as time goes by, according to the reliable idea
of a stable homogeneous and isotropic Universe in the near
future.

Nevertheless, we are aware that our work has one limita-
tion: the obtained radial solutions clearly diverge in the center
of the LTB symmetry, where the observer, i.e., human loca-

tion, is intended to be set. This feature simply suggests that
our solution has a non-perturbative extension from a given
large enough radial coordinate up to r = 0, which is an
important task for future investigations in the late Universe.
The present analysis fosters further studies about inhomo-
geneous cosmology when regarded as a local (non-linear)
deformation of the FLRW geometry, as it may be also pos-
sibly pointed out by local measurements of the Hubble con-
stant.

The present study may have a relevant impact on the obser-
vations of the large-scale structure of the Universe, when
forthcoming missions, like the Euclid satellite [119], detect
the clumpy galaxy distribution with greater accuracy. The
comparison between the �CDM model and f (R) modified
gravity theories through the investigation of spatial inhomo-
geneities may become a powerful tool to test the robustness
of the cosmological concordance model.
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Appendix A

We want to check that the spatial isotropy in the LTB geom-
etry is also preserved by the field equations in the Jordan
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frame of f (R) modified gravity. In particular, we prove that
the 2-2 component of gravitational field equations depends
on the other ones. Moreover, it can be easily checked that the
2-2 and 3-3 components are exactly the same.

It should be noted that the isotropy in GR can be shown in
field equations by employing Eq. (20). However, within the
framework of the Jordan frame of f (R) gravity, this simple
relation no longer applies, because of the presence of the non-
minimal coupling between the scalar field φ and the metric.
Then, we need a careful analysis of field equations to verify
the isotropy in the LTB metric. In this regard, we rewrite
the gravitational field equations (5a) in the Jordan frame as
Gμν = Sμν , where

Sμν = χ

φ
Tμν − 1

2φ
gμνV (φ) + 1

φ

(∇μ∇νφ − gμν�φ
)
(A1)

denotes all the source elements in a compact way.
Considering a pressure-less dust, the 2-2 component of

Eqs. (5a) in the Jordan frame in the LTB metric (18), i.e.,
G2

2 = S2
2, is written as

α̈ + β̈ + α̇2 + β̇
(
α̇ + β̇

)

− e−2α
[
β ′′ − β ′ (α′ − β ′)] = V

2φ

− 1

φ

{
φ̈ + (

α̇ + β̇
)
φ̇ − e−2α

[
φ′′ − φ′ (α′ − β ′)]} .

(A2)

For the sake of convenience, we also rewrite here the 1-1
component G1

1 = S1
1, that is Eq. (27c):

2 β̈ + 3 β̇2 + e−2 β − e−2 α
(
β ′)2

= V (φ)

2 φ
− 1

φ

[
φ̈ + 2 β̇ φ̇ − 2 e−2 α β ′ φ′] . (A3)

To verify the isotropy, we start from Eq. (A3) and search
for a proper relation to obtain Eq. (A2). Trying to generalize
the relation (20) valid in GR, we can write

G1
1 + 1

2 β ′
(
G1

1

)′ = S1
1 + 1

2 β ′
(
S1

1

)′
, (A4)

which is equivalent to

α̈ + β̈ + α̇2 + β̇
(
α̇ + β̇

) − e−2α
[
β ′′ − β ′ (α′ − β ′)]

− φ′

2 φ β ′ Gextra = V (φ)

2 φ
− φ′

2 φ β ′ Sextra

− 1

φ

{
φ̈ + (

α̇ + β̇
)
φ̇ − e−2α

[
φ′′ − φ′ (α′ − β ′)]} .

(A5)

We have considered geometric G1
1 and source S1

1 contribu-
tions in Eq. (A3) and their derivatives with respect to r , and

we have defined

Gextra = φ̈′

φ′ − α̈ − α̇2 +
(

φ̇

φ
− 2 β̇

) (
α̇ − φ̇′

φ′

)
(A6)

Sextra = φ̈′

φ′ − φ̈

φ
+ φ̇

φ

(
α̇ − 2β̇ − φ̇′

φ′

)
+ 2β̇

φ̇′

φ′

+ V (φ)

2φ
− 1

2

dV

dφ
+ 2e−2α

×
[
β ′

(
α′ − β ′ + φ′

φ

)
− β ′′

]
. (A7)

Then, comparing Eqs. (A2) and (A5), it is quite immediate
to recognize that the latter equation becomes

G2
2 = S2

2 + φ′

2 φ β ′ (Gextra − Sextra) . (A8)

Note that, as we previously said, the relation (20) is no longer
valid in the Jordan frame since now we have

G2
2 = G1

1 + 1

2 β ′
(
G1

1

)′ + φ′

2 φ β ′ Gextra, (A9)

which is due to an extra term containing the non-minimal
coupled scalar field φ.

As a last point, we show that the bracket in Eq. (A8) van-
ishes. Indeed, it is straightforward to identify the difference
(Gextra − Sextra) = 0, since it exactly coincides with the sup-
plementary Eq. (29b) given by the effective stress–energy
tensor T [φ]

μν for μ = 1, which is just originated from the
gravitational field equations.

Hence, we have proved that the 2-2 component (A2) of
the field equations in the Jordan frame depends on the 1-1
component (A3) and the additional Eq. (29b). As a conse-
quence, despite the presence of extra coupling terms between
the scalar field and the metric, the field equations in the Jor-
dan frame of f (R) gravity implemented at the LTB metric
preserve the spatial isotropy, as it must be for a spherically
symmetric solution.

Appendix B

In this appendix, we want to rewrite the equation system
given by the linearly perturbed field equations (60), (61),
and (62) to study separately time and space evolution of per-
turbations through the separation of variables method. The
final aim is to show explicit calculations to obtain the two sets
of Eqs. (65) and (66), which have been reported in Sect. 6.2.

We adopt the factorization (63) for all linear perturbations,
which we rewrite here for convenience:

δα (t, r) ≡ Ap (t) Ap (r)

δβ (t, r) ≡ Bp (t) Bp (r)
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δρ (t, r) ≡ Pp (t) �p (r)

δφ (t, r) ≡ �p (t) ϕp (r) . (B10)

We have split time and radial dependences for each scalar
function.

Then, considering the factorization (B10), the equation
system (60) becomes:

B′
p

ϕ′
p

+ 1

r

Bp

ϕ′
p

= 1

r

Ap

ϕ′
p

Ȧp

Ḃp
− 1

2 φ̄ Ḃp

(
�̇p − ˙̄a

ā
�p

)
,

(B11a)

2

ā2

[
Ap

r

(Ap

r
+ A′

p

)
− Bp

(
B′′
p + 3

r
B′
p + Bp

r2

)]

+
(

2
˙̄a
ā

+
˙̄φ
φ̄

) (
Ȧ p Ap + 2 Ḃp Bp

) = χ

φ̄
Pp �p

+
(

1

2

dV

dφ

∣∣∣∣
φ=φ̄

− 1

2

V
(
φ̄
)

φ̄
− χρ̄

φ̄
+ 3

˙̄a
ā

˙̄φ
φ̄

)
�pϕp

φ̄

+ 1

ā2 φ̄

(
�p ϕ′′

p + 2

r
�p ϕ′

p

)
− 3

˙̄a
ā

�̇p ϕp

φ̄
, (B11b)

(
B̈p + 3

˙̄a
ā
Ḃp

)
Bp + 1

ā2r2

[
ApAp − Bp

(
Bp + rB′

p

)]

=
(

1

2

dV

dφ

∣∣∣∣
φ=φ̄

− V
(
φ̄
)

2 φ̄
+

¨̄φ
φ̄

+ 2
˙̄a
ā

˙̄φ
φ̄

)
�p ϕp

2 φ̄

− 1

φ̄

(
1

2
�̈p ϕp + ˙̄a

ā
�̇p ϕp + ˙̄φ Ḃp Bp − �p ϕ′

p

ā2 r

)
.

(B11c)

We have tried to separate time-dependent and radial terms.
However, this equations system exhibits a complicated struc-
ture, since it should be noted the occurrence of several mixed
terms depending both on t and r . For instance, focusing on
Eq. (B11a), terms on the left-hand side depend only on r , a
mixed term is the first contribution on the right side, while
the second contribution is only time-dependent.

Using again Eq. (B10), the linearized scalar field equa-
tion (61) rewrites as

ā2

[
�̈p

�p
+ 3

˙̄a
ā

�̇p

�p
+

(
Ȧ p

�p

Ap

ϕp
+ 2

Ḃp

�p

Bp

ϕp

)
˙̄φ

−1

3

dV

dφ

∣∣∣∣
φ=φ̄

+ 1

3
φ̄

d2V

dφ2

∣∣∣∣
φ=φ̄

− χ

3

Pp

�p

�p

ϕp

]

= ϕ′′
p

ϕp
+ 2

r

ϕ′
p

ϕp
, (B12)

while the linearized continuity equation (62) becomes

1

ρ̄ Ḃp

(
Ṗp + 3

˙̄a
ā
Pp

)
+ Ȧ p

Ḃp

Ap

�p
+ 2

Bp

�p
= 0. (B13)

We noticed again the presence of mixed terms depending
on t and r , which do not allow us to solve the equations using
the separation of variables unless we rely on some simplify-
ing assumptions. For instance, focusing on Eqs. (B11a) and
(B13), if we require that the perturbations Ap and Bp follow
a similar time evolution, i.e.

Ȧ p = λ1 Ḃp, (B14)

where λ1 is a constant, then we are able to solve these two
equations through the separation of variables method. Actu-
ally, we also write equivalently

Ap = λ1 Bp, (B15)

which is just Eq. (64a), since we can adjust constant term in
the first-order perturbation theory.

Then, if we impose the assumption (B15) in Eq. (B11a),
we obtain two equations, one in the variable t and the other
one in r :

Ḃp = 1

2 φ̄ μ1

(
�̇p − ˙̄a

ā
�p

)
, (B16a)

Ap = 1

λ1

[
Bp + r

(
B′
p + μ1 ϕ′

p

)]
, (B16b)

which are just Eqs. (66a) and (65a), respectively.
In the same way, we can split Eq. (B13) into Eqs. (66e)

and (65d)

Ṗp + 3
˙̄a
ā
Pp + μ2 ρ̄ Ḃp = 0, (B17a)

�p = 1

μ2

(
λ1 Ap + 2Bp

)
, (B17b)

respectively, where μ1 and μ2 are constants originating from
the separation of variables.

Concerning the linearized scalar field equation (B12),
using Eqs. (B15) and (B17b), we end up in

ā2

[
�̈p

�p
+ 3

˙̄a
ā

�̇p

�p
− 1

3

dV

dφ

∣∣∣∣
φ=φ̄

+ 1

3
φ̄

d2V

dφ2

∣∣∣∣
φ=φ̄

+
(

μ2
˙̄φ Ḃp

�p
− χ

3

Pp

�p

)
�p

ϕp

]
= ϕ′′

p

ϕp
+ 2

r

ϕ′
p

ϕp
. (B18)

At this point, noting a mixed term in the last contribu-
tion of the left-hand side, to proceed analytically with the
separation of variables, we require an additional simplify-
ing assumption, that is the proportionality between the radial
evolution of the matter and scalar field perturbations:

�p = λ2 ϕp, (B19)

i.e., Eq. (64b), where λ2 is the proportionality constant.

123



Eur. Phys. J. C           (2024) 84:490 Page 19 of 23   490 

Hence, we can easily separate time and radial evolutions
in Eq. (B18) to write the two differential equations (66d) and
(65c), respectively:

�̈p

�p
+ 3

˙̄a
ā

�̇p

�p
− 1

3

dV

dφ

∣∣∣∣
φ=φ̄

+ 1

3
φ̄

d2V

dφ2

∣∣∣∣
φ=φ̄

+ μ2 λ2
˙̄φ Ḃp

�p
− χ λ2

3

Pp

�p
= μ2

3

ā2 , (B20a)

ϕ′′
p + 2

r
ϕ′
p − μ2

3 ϕp = 0, (B20b)

where μ3 is a constant.
If we focus on Eq. (B11b), by simplifying mixed terms

with Eqs. (B15), (B16a), (B16b), (B19), and (B17b), it is
straightforward to show that, after long calculations, we
encompass the radial part through Eq. (B20b), and we obtain
a single equation in t :

μ2λ2

2μ1

(
2

˙̄a
ā

+
˙̄φ
φ̄

) (
�̇p

�p
− ˙̄a

ā

)
+ χρ̄

φ̄
− 1

2

dV

dφ

∣∣∣∣
φ=φ̄

+ V
(
φ̄
)

2φ̄
+ 3

˙̄a
ā

(
�̇p

�p
−

˙̄φ
φ̄

)
− χλ2

Pp

�p

+ 2μ1μ
2
3

φ̄

ā2

Bp

�p
= μ2

3

ā2 , (B21)

which is just Eq. (66b).
Finally, regarding the last equation of the system (B11)

to be rewritten with the separation of variables, that is
Eq. (B11c), if we combine it with Eqs. (B15), (B16a), (B16b),
we obtain

B̈p + Ḃp

(
3

˙̄a
ā

+
˙̄φ
φ̄

)
= μ4

2 ā2

(
�p

φ̄
− μ1 Bp

)
, (B22a)

Bp = 2

μ4 r
ϕ′
p − μ1 ϕp, (B22b)

which are exactly Eqs. (66c) and (65b), respectively, where
μ4 is a constant.

In conclusion, in this appendix, we have shown how the
two simplifying assumptions (B15) and (B19) are suggested
from the analysis of the equation system given by Eqs. (60),
(61), and (62) to use the separation of variables. Finally,
we have obtained separately two sets of equations (65) and
(66) for the radial and time evolution of linear perturbations,
which have been reported in Sect. 6.2. Once we have split
all field equations into time and space components, we can
solve them to obtain linear order perturbations separately in
Sects. 6.2.1 and 6.2.2.
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