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Abstract The Dirac equation is one of the most fundamen-
tal equations of modern physics. It is a spinor equation, but
some tensor equivalents of the equation were proposed pre-
viously. Those equivalents were either nonlinear or involved
several components of the Dirac field. On the other hand,
the author showed previously that the Dirac equation in elec-
tromagnetic field is equivalent to a fourth-order equation for
one component of the Dirac spinor. The equivalency is used
in this work to derive a linear tensor equivalent of the Dirac
equation for just one component. This surprising result can
be used in applications of the Dirac equation, for example,
in general relativity or for lattice approximation of the Dirac
field, and can improve our understanding of the Dirac equa-
tion.

1 Introduction

“Of all the equations of physics, perhaps the most ‘magi-
cal’ is the Dirac equation. It is the most freely invented, the
least conditioned by experiment, the one with the strangest
and most startling consequences” [1]. The Dirac equation is
a spinor equation, but previously, some authors offered ten-
sor equations equivalent to the Dirac equation. Those equa-
tions were either nonlinear [2] or, in the case of the Dirac—
Kihler equation [3-5], had a large number of components.
The approach of [6] allows to significantly reduce the num-
ber of components, but still requires several components.
The surprising result of this work is that it is possible to
derive a linear tensor equation for just one component that is
generally equivalent to the Dirac equation. This result builds
on the previous work [7-9] (see also [10], pp. 24-25, [11]),
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where it was shown that, in a general case, three out of four
complex components of the Dirac spinor can be algebraically
eliminated from the Dirac equation in an arbitrary electro-
magnetic field. Therefore, the Dirac equation is generally
equivalent to a fourth-order partial differential equation for
just one component, which can be made real (at least locally)
by a gauge transformation. Some applications of this result
are discussed in [12].

One usually emphasizes the advantages of tensor, rather
than spinor, equations for applications in general relativity
[2] and lattice approximation of Dirac fields [13], but there
can be other applications of the fundamental result of this
work in the future. As Feynman said in his Nobel lecture,
“a good theoretical physicist today might find it useful to
have a wide range of physical viewpoints and mathematical
expressions of the same theory” [14].

Section 2 summarizes the results of the prevous work [7—
9] used in the present article.

Section 3 contains the general derivation of the linear ten-
sor equation for one component that is equivalent to the Dirac
equation.

Formulations of the linear tensor equation in terms of anti-
symmetric second-rank tensors and 3D vectors are provided,
respectively, in Sects.4 and 5.

The supplementary file includes a Mathematica notebook
(seeitalso at [15]). The notebook contains the proofs of sev-
eral algebraic statements (usually indicated by phrases “One
can check that...”) in Sects. 3, 4, and 5, using the chiral repre-
sentation of gamma-matrices, which is sufficient for our pur-
pose. Proofs of the statements in Sect. 2 can be found in [8,9].

2 The Dirac equation as a fourth-order linear equation
for one component

To make this article reasonably self-contained, let us pro-
vide some notation and results from [8,9] (the more tra-
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ditional four-component spinor formalism is used in this
work, although the two-component spinor formalism has
some important strengths [16]).

We use the Dirac equation in the form:

(= Dy =, ey

where, e.g., A = A,y" (the Feynman slash notation). A
system of units 7 = ¢ = m = 1 is used, and the electric
charge e is included in A, (eA, — A,). The metric tensor
is

0 0
0

[y

g=(e") =

0
0
0 @

S O O~
—_

0 —
0 0 —1

Multiplying both sides of (1) by (i§ — A) from the left and
using notation

i
oV = E[y“, '], 3)
0 —E! —E%? —E3
E'' 0 —H3 H?
HY AV ALY
FM = A A—E2H30_H1a(4)
E3—H? H' 0
1
FZE vugvﬂv (5)
we obtain:
@O+ Fy =0, (6)

where the modified d’ Alembertian (I’ is defined as follows:
O =049, +2iA"8, +iAl, — AFA, +1

= —(id, — A" — A" + 1. @)
We assume that the set of y-matrices satisfies the standard
hermiticity conditions [17]:
=yl = =iy Yy ®)
Then a charge conjugation matrix C can be chosen in such a
way [18,19] that
C,}/[Lc—l — _J/MT, CJ/SC_I — )/ST,
Co''C™h = o7, ©)
c'=c'=-c,cc'=cic=1,
Cc? =1, (10

where the superscript 7' denotes transposition, and [ is the
unit matrix. The properties of the charge conjugation matrix
(9,10) are extensively used in the following.

@ Springer

We choose constant Dirac spinors & and 71 (they do not
depend on the spacetime coordinates x = (xO, x!, %2, x3),
so, €. g., 9, = 0) in such a way that they are both eigen-
vectors of y° with the same eigenvalue +1 or —1, and the
normalization condition

En=1 (11)
is satisfied, where 7° is the charge conjugated spinor
n°=Ci'. (12)

Due to the normalization condition, the spinors £ and 7 are
linearly independent. If they are eigenvectors of y> with the
same eigenvalue +1, the Dirac conjugated spinors € and 7
are linearly independent left eigenvectors of 3 with the same
eigenvalue 1. One can check that spinors & F and 7 F are
also left eigenvectors of 1> with the same eigenvalue F1, so,
as the space of left eigenvectors of > with eigenvalue F1
is two-dimensional, & F and 7 F are linear combinations of &
and 7. One can calculate the coefficients and obtain:

EF = (EFn°)E — EFE) = fenk — feei, (13)
nF = Fn)é — MFE) = finé — fuen, (14)
where the following notation for components of the electro-
magnetic field is used:

Jop = G FB°. (15)

Here o and B are some Dirac spinors.
Multiplying (6) by & and 1 from the left and using (13)
and (14), we obtain:

O'EY) + fenEY) — fee(Y) =0,

@) + finEW) — fae@Y) =0, (16)
SO
i = fo' O EY) + fenEY)) (17)
and
(@ = fe fee' @ + fen) + Fi)EY) =0 (18)

(one can show that fz, = f;¢). Thus, it is possible to alge-
braically eliminate three out of four components of the Dirac
equation from (6) and derive an equation for the remaining
component § v,

One can derive the recipes for calculation of the other
components of the Dirac spinor. If £ is known, another
component, 7, can be determined using equation (17). Then
Y can be expressed as a sum of a right-handed and a left-
handed spinors ¥4 and ¥_, where y ¢y = fy/4:
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3 Derivation of the linear tensor equivalent of the Dirac
V=9, +v_, (19) equation
1
= —(1£ ). 20
v 2( yv 0 3.1 Antisymmetric second-rank tensors built from pairs of

Then one can check that

Y = EYIn° — P)EC. (21)

When = is found in this way, ¥+ can be found using the
Dirac equation (1):

1
Wi = Dy = ST = HUF v

1
50 + )i — )Y = Y, (22)

thus, the Dirac spinor can be fully restored if the component
£ is known. Equation (18), together with the recipes for cal-
culation of the other components of the Dirac spinor, is gener-
ally equivalent to the Dirac equation. Some “non-transversal”
cases where there is no equivalency, for example, if fzs = 0,
do not seem to be important from the experimental point of
view. For example, fz¢ = O for a free Dirac particle, and it is
an important case theoretically, but an arbitrarily weak elec-
tromagnetic field, for example, the Coulomb field of a single
charged particle in the Universe, restores the equivalency.

The denominator fg in (18) may look inaesthetic. One
can get rid of it by multiplying (18) by ( fgg)?’, but this is a
matter of preference.

chiral spinors
Let us consider a Dirac spinor y . It can be presented as a sum

of two chiral spinors y and x_ that are eigenvectors of
with eigenvalues of 4+1 and —1, respectively:

X=Xt F A VX = X VX = — X (23)

In the chiral representation of y -matrices [17],
0 —1I i 0 of
0_ i_ i
A= (570) = (%)
10 —io? 0
5 _ —

where index i runs from 1 to 3, and o' are the Pauli matrices.
Then x, x4+, and x_ have the following components:

X1 X1 0
X2 X2 0
= e = x = , 25
X 3 X+ o | X3 (25)
X4 0 X4

Similarly, let us introduce spinors ¢, ¢4, and {_. Itis possible
to build antisymmetric second-rank tensors from pairs of chi-
ral spinors [20, Section 153]. Let us consider the following
matrices 64 and 0_:

0 IS — X560 X178 + X358 —i(x38f + x1'¢5)
- _ kk Lk ek 0 X*§*+X*§* _i(X*§*+X*§*)
oMY — gHVFC) — HX87 = Xx265) 251 152 151 262 (26)
O = (o) = et xio —xiir-xg 0 —Xit G
OGS+ X760 XS+ x380) X6 — X365 0
and
0 (X383 — xa88) X385 + x5l —iOaes +x3¢))
_ —i(X3¢3 — x4¢5) 0 X183 — X385 PO+ Xl
@) = (oree) = | TG Tl D TG et T0e G D ] @)
X383 — X484 X483 T X384 X383 — X484
(X583 +x388) =138+ x58) —x383 + X464 0
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Proper ortochronous Lorentz transformations acting on
Dirac spinors in the chiral representation have the following
form [21]:

(s o ) ’ (28)

where
S11 812
s = .
$21 $22
* *
-1 N —S
sHt=( "2 21). (29)
—S12 11

and the determinant |s| = 1. The relevant Lorentz transfor-
mation acting on tensors is

S11 S12 821 S22
A=(AK) = 1 21 S22 S S
2 | —isp1 —1sp2 1511 IS12
S11 §12 —821 —8$22

ST ST —ISTy ST
STZ STI isikl _STZ (30)
S31 85 —i83, 53
S5 831 i85 =S5
The derivation of (30) is similar to that in [21]. Our (25)
differs from equation (62) of [21], ultimately, because of
a different choice of the sign of y°. One can check that
A" A, = gpy [21], or ATgiA = g;, where the metric
tensor with lower indices g; = (g,v), and that replacement
of x1, x2. ¢1, &2 in 64 with x|, x5, ¢, ¢ in accordance with

formulas

(5)=+(2)
x5 x2 )’
&\ _ 4“1) 1
(cz’> s(fz Gh

gives the same result as A“pA”k@f‘, or AO4 AT, 506, trans-
forms as an antisymmetric second-rank tensor. Also, replace-
ment of x3, x4, {3, {4 in 6_ with x3, x4, £3, ¢4 in accordance
with formulas

()
X4 xa)’

83\ _ (-1 é“l) 32
(Q) e (Cz 42

gives the same result as A“/)A”AGB)‘, or AO_ AT, so6_ trans-
forms as an antisymmetric second-rank tensor. Similarly, 6
(complex conjugates of 6 ) also transform as antisymmetric
second-rank tensors.

One can check that

(04) = (Fixbk") . (02) = (ix63""), (33)
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where the Hodge dual of a second-rank antisymmetric tensor
is defined as [22]

1
*xFP — EGD’M Fs, (34)

and €*P7% is the totally antisymmetric Levi-Civita tensor
(€°123 = 1). That means that tensors 6" are fully defined by
3D vectors Gii, and vice versa, similar to how the Weber vec-
tor (Riemann-Silberstein vector) E 4+ i H [23] fully defines
the real antisymmetric second-rank electromagnetic field ten-
sor F"*V. Four-dimensional rotations in the 4D Minkowski
space for the tensors correspond to rotations through com-
plex angles in a 3D complex space for the 3D vectors [24,
§25]. The following could be presented in terms of 3D vec-
tors, but the author will mostly use tensors and add a short
section on 3D vectors. No distinction is drawn between ten-
sors and pseudotensors in this work.

Chiral spinors ¥+ can be represented by antisymmetric
second-rank tensors ([2], [20, Section 154]):

W) = (950" ) = (vIcomye). (35)

One can see that these are tensors as (") coincide with
(va) if x = ¢¥and ¢ = ¢ (one can check that ()¢ = ¢
and ¥¢ = ¢7 C). One can check that

wi‘)Iﬂin =0. (36)

3.2 Constant tensors and some scalar functions to replace
the elements of the Dirac equation

So is it possible to replace the spinor elements of (18) by
tensor ones while preserving linearity? Note that we want to
avoid the following: while chiral spinors can be represented
by antisymmetric second-rank tensors satisfying (33, 36),
such tensors define spinors only up to a sign, so we need to
avoid the ambiguity related to square roots.

It seems natural to start with the tensors corresponding
to the spinors £¢ and n°, however such an approach creates
the above-mentioned ambiguity. Therefore, we start with a
tensor

ultv = (éc)TCO'#USC — (Cé T)TCU;LV%.C
=ECTCoMES = EoES, (37)

corresponding to £¢, and a tensor v*¥ = (§9)T CaMVnp¢ =
Ea"Vn¢. These tensors satisfy (33), where the signs are cho-
sen depending on whether & and 7 are eigenvectors of 3
with eigenvalue 41 or —1. Taking into account the normal-
ization condition (11), one can show for the tensor w*’ =
)T Con¢ = fjo"Vn¢ corresponding to the chiral spinor
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n° that the assumption (u - t) = 0 leads to a contradiction. Thus, we
proved that u*"t,, # 0.
ut wy, = -8, v w,, =0, w*w,, = 0. (38) Let us seek k*" in the form (au”’ + v*V + t*"). Then we
have:
We also have
0 = (cuh” + ™" + ") x (upy + vy + tuy)
v v v v
u,uvulw =0, u,uvvlw =0, UMVUW; —4. (39) = vy 17 + 2au tuy + 2v Tuv, (44)

There is only one solution for w#" satisfying (38) and (33) if
uM” and v*V satisfy (39) and u*” # 0. To find it, one can first
choose any tensor k" (satisfying (33)) such that k*Vk,,, = 0
and u"Vk,, # 0. Let us prove it.

First, let us consider an antisymmetric second-rank tensor
a satistying (33), so

0 aOl a02 a()3
@) = | "o T T

—a’* Fia 0 =ia

—a® +ia" Fia™ 0

(40)

Such tensor is fully defined by the 3D vectora = (a1 az, a3)
= (@™, a"2, a"). Let us define the scalar product of (com-
plex) 3D vectors @ and b = (b, b%, b>) as (a - b) = a'b’ =
a'b' + a’b* 4+ ab® (no conjugation). One can check that
a*'b,, = —4(a - b), where a*¥ and b*” are antisymmetric
second-rank tensors corresponding to a and b and satisfying
(33).

The space of antisymetric tensors satisfying (33) is 3-
dimensional, so one can choose such an antisymmetric tensor
t"*V satisfying (33) that u*”, v"*”, and "V are linearly inde-
pendent.

Let us prove that u"Vt,,, # 0. Indeed, otherwise (u - t) =
0, so let us consider the following matrix (similar to the Gram
matrix, where, however, a different scalar product is used for
complex vectors):

(u-u) (u-v) (u-t)
M=|@-u @v) w-t)|=0"0, (41)
(t-u) (t-v) (t-0)

where
ul vl gl

0= |u?v?e?]. (42)
M3 U3 l3

From (39), we have (u - u) = (u - v) = 0, and we assumed
(u - t) = 0, so we have for the determinants:

0=|M| =0 (43)

So |Q| = 0, although we assumed that u*¥, v*¥, and r*",
and, therefore, u, v, and ¢ are linearly independent. Therefore,

so we have exactly one solution for o:

v 4+ 1V + 209V,
2utvt,y

, (45)

o =

and for k*V = au™” + v*” + t*¥ we have k/*Vk,, = 0 and
u*Vk, # 0, as otherwise u"’t,, = 0.

The tensors u"’, v*¥, t* are linearly independent, so the
tensors u”¥, vV k*V are also linearly independent, so one
can seek the solution for w*" in the form

wh = o ut’ 4 apv?’ + azkt. (46)
Contracting (46) with u,,, we obtain
o3u kY = —8. (47)
Contracting (46) with v, we obtain
4oy + a3v,k*Y = 0. (48)

Contracting (46) with w;, = ajuyy + a2vyy + azky,, we
obtain

0= (Ol2)2v/4vvlw + 2“]“3”#\1](#” +
200030, kM. (49)

One can obtain from (47, 48, 49):

(v’“’k,w)2 vk
N Wk T R,
v nY
8
a3 = — . (50)
uhtvk,,

The above is a coordinate-free solution. A more explicit
solution (where a specific tensor k*" is chosen) can be written
in coordinates.

If £ and n are eigenvectors of y> with eigenvalue +1,

0 u W P
—ul' 0 +iud Fiu
—u? Fiud 0 +iu' |
—ud +iu® Fiu' 0

0 o' W2 P
—v! 0 +iv? Fi?
—vrFivd 0 £ |
—v3 tiv? Fiv! 0

2

(D
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and
Uiy = —4(@h? + @+ @?)?) =0,
utv,, = —4uo' + Pt + v =0,
V" = =402+ 02+ (1)) =4, (52)

tensor k*” can be chosen in the following form:

0 ul* M2* u3>s<
R R
=] T S el (53)
—u3* £iu® Fiu™* 0
then
Wk = =4 P+ )P+ 1), (54)
This value does not vanish unless # = 0. When tensors

ulv, v*V wH? are known, it is possible to calculate the com-
ponents of the electromagnetic field from (18):

1 1
fég; = 5 MVMILV7 fETI = EFMUUMU’
1
fnn = EF#‘)U}HU. (55)

To rewrite (18) in terms of tensors completely, one needs to
find an appropriate form for £.
If £ is an eigenvector of y°> with eigenvalue +1,

Ey =&Y = —y3k] — Yutj. (56)
The tensor corresponding to ¥_ is

v =ylcoy . (57)
One can check that

Y U = —8(EY). (58)

If £ is an eigenvector of y° with eigenvalue —1,

By =Eyy =~y — k). (59)
The tensor corresponding to vy is

Vi =y iCayy. (60)
One can check that

W e = =8¢ (61)

Thus, if £ is an eigenvector of > with eigenvalue +1,

oy 3
Ey = (—‘”JF%) (62)

@ Springer

So v can be expressed using tensors as a square root of a
scalar, but as (18) is a linear equation with respect to £,
this does not create any ambiguities related to the sign of the
square root (when the sign of the square root is chosen in
one point, the choice can be expanded by continuity, at least
locally). Thus, (18) can be expressed using tensors only.

3.3 Restoration of the Dirac current

One can also show that the Dirac current can be found using
tensors only. Up to a constant factor, the current is

it =gyt =i+ G, (63)
where
it = ey . (64)

One can check that for tensors ¥ (defined by (57) and (60))
the following is true:

W =g (vir)" = 24 Y. (65)

Thus, if we know tensors ¥/, we know tensors j j!, and,
if we know the latter tensors, we can find vectors ji_f, as

R g
Jx = oo
V UD)?

The non-negative value of the square root should be chosen
in (66) as we know that j9 > 0. It is not clear whether
the option to choose the negative value of the square root
and therefore obtain negative charge density for the tensor
equivalent of the Dirac equation can be advantageous, e. g.,
to better describe the antiparticles.

Thus, to prove that one can find out j* from one of the
scalars wgvu v, itis sufficient to prove that one can find both
tensors 4" from the scalar. If £ and 7, are eigenvectors of
y> with eigenvalue £1, then £ = &v-. We have (21), and

Yh = ylCot Y
= (EYV)) —@GYIEDN)Co™ (EYIn—Y)ES)
= EV)* (0" n°) — ) EY)(Ea'n°)
—EV)@Y)"ES) + (1) * EaVEC)
= EY)2w™ = 2 EYIv + Gy, (67)

(66)

as

noE = @oE)T = )T (@) @)
= (CEHT (—~co™ ™ (~-COm*
=ECT(Ca™ ) (O = Ea™n . (68)
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Using (17) and (55), we obtain
Ty = (Fput) ™0 + Fuo™)Ey). (69)

Using (62) and (69), we can express products (& V)2,
@Y)(EY), and (7%)? in (67) via Y& uy,, and the results
do not depend on the choice of the value of the square root in
(62). Therefore, we can express 1//’;” via the scalar function
Y2 uy,, (and its derivatives).

Let us now express ¥  via the same scalar function.
Using (22) and (21), we obtain:

Y =y 0, — A YE
= y"(i0, — A (EYIN — (GY)ES)

=y (Bu&® + Cun), (70)
where
By = =0y — A (),
Cu= 0y —ADEY). (71)
We have

Yyl C= "B +Cu)'C
= By + ) (—CcyrcHe
= (B ECT+C,iCTY(—=Cy™M)= — (B E+Cpuinyh.
(72)
Then

vy

vl Covyy

—(Bu& + Cui)y" o™y (BiE + Can)

= —B,BEy" o'y & — CyByijyt o y g
—BuCEy"ay nS — CuCrity"a ™y 0. (13)

Let us use the following formula for the product of four y-
matrices [25, p. 17]:
)/M)/VJ/GVA — g;wgok _ g;urgvk +gukgun
+g;wyak _ guayvk +gukyvo +gvoyuk
_gvkyua +gJAyuv + V;LVUA’ (74)

where the antisymmetrized products of y-matrices are

g = YRy,
0 otherwise '
yEy yoytif {p, v, o, A}
yror — is a permutation of {0, 1, 2, 3}, (75)
0 otherwise,
so, if v # o,
i .
yha oyt = Syt ty T =y Tyt =i e

2
_gp,crgvk +guvyak _guoyuk +g;l,)»,yva

_gv)\yucr _i_gakyuu + y;wok). (76)
Let us also note that
qytot?ytE

— (ﬁyuovdylEC)T — ECTV)LTO,UGTV[,LTT—’T

= —EC(—Cy*CcH(=Co™ N (=Cy CT ) (=Cn)

=Eyto Tyt (77)
SO
— CuBiiy" oy ¢ = —CyBiéy*a " y"n*
—B,Ciéy" e 7y , (78)

and (73) becomes
Vi = —B,BEy"c "y E° — 2B, CiEy ey "
—CuCaiiy" o™ yii’. (79)
Now we need to substitute (76) in (79). Let us show how

some of the terms can be calculated. For example (one can
check that ££¢ = nn° = 0),

éguvgaknc — gp,vga)»’

EgigME = ng"g 0" =0, (80)

é.g;wyoknc _ guvlvok
l. 9

ég,uvyaksc — guvluak
i b

, 1
ng"y TS = g -w, (81)
l

éyﬂuoknc — éeuvaky0y1y2y3nc
-1 1 -
_ EuvaAE?ySrlc _ :FEING)LlTv Syuvaksc
_ = WO _C __
=y " =0. (82)
Thus. we have, if v # o,
wio — —BMB)L(g‘qu)” _ g;wuvA + gukuva
_gvku;ur +goku;W)
_ZBMCA(ig/wga)» _ l-gu.agvk + glwvtr)» o g;urvv)»
+gu)\vva _ gvkvua + gokvuv F euva)\)
_CMC)\'(gMUwU)L _ gp.trwv)\ +gukwva
_gv)»wuo +gakw/w)
— _B\)B)LMO')\, + BO'B)LMU)» _ BABAMVU
+B, B"u"® — B, B°u™ —2iB"C° +2iB°C"
—2B"C3 v 4+ 2B7 G0Vt — 2B C 0"
+2B,C"v" — 2B, C7v*’ £ 2B, Cye"*
_CVC)LwU)\ + CO'CAwU)L _ C)\C)vaa
+C,C"wh — C,CowH
= —2B"B;u’" +2B° B;u"* — B*B;u"°
—2iB"C? +2iB°C"

@ Springer
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—2BVC;v°" + 2B° C) vV — 2B Cyv"°
+2B,C"v"° —2B,C°v* £ 2B, Ce"*
—2C"Cw’* +2C° Cw" — CMCrw"?, (83)

as, for example,

—B"B;u°* + B, B'u"’ = —B"Bu°*
+B'Bu® = —2B"Bu°". (84)

Thus, we can express wiv (and, finally, the current) via the
scalar function wguu wv (and its derivatives), and the results
do not depend on the choice of the value of the square root in
(62), as, for example, products B”C) do not depend on the
choice of the square root.

4 Formulation in terms of antisymmetric second-rank
tensors

4.1 Formulation

Let us now formulate the tensor equivalent of the Dirac equa-
tion. First, we choose a constant non-zero antisymmetric
second-rank tensor u"" satisfying the following conditions:

(0) = (s} ", = 0. 85)

Let us then denote the unknown scalar function of the tensor
equation ¢, (instead of é Y¥r). Then let us choose any constant
antisymmetric second-rank tensor v* satisfying the follow-
ing conditions:

(v’“) = (:Fi*v“”) LUy, =0,
Ho OV __ s UV
ubf %" = —iuh’. (86)
If we use again 3D vectors u, v, w, corresponding to the
antisymmetric second-rank tensors u”¥, v*”, w*¥, such that,
for example, u = (ul, u?, u3) = (u01, u2, u03), one can

check that (85) implies (u -u) = 0 and (86) implies (v-u) =
0. One can also check that the last equality in (86) implies

Uu="7Fuxv

u3v2, —u'vd + u3v1, ulv? — uzvl), (87)

= 2 —
SO

u=4vxu=vx(xu)
=W -uw)v— - -v)u=—(-v)u, (88)
yielding (v - v) = —1 and v*"v,,, = 4. One can check that

the last equality in (86) is generally (if u°! # 0) equivalent
to

203,02 02,03 _ 4 o1 (89)

@ Springer

Then, using the procedure from Sect. 3, we can calculate
a constant antisymmetric second-rank tensor w" satisfying
the following conditions:
(w‘“’) = (:Fi*w‘“’) LM wy, =0,
wtwy, =0, u*w,, = —8. (90)
Using (18) and (55), we obtain the following linear tensor
equivalent of the Dirac equation:
(@0 = Fup o) (Fpu’) ™1 0 + Fuyv™)
+Fw*)e, =0. on
The current can be restored using the procedure from

Sect. 3. In particular, based on (62), we should use the fol-
lowing:

W
ou = (— ‘”*8”’”) . 92)

Let us provide examples of the tensors u*V, v*”, w"*V, which
play arole similar to that of y-matrices in the spinor formula-
tion of the Dirac equation. One of the choices for the tensors
to be used with the upper signs in the equations like (85) are:

0il10 00 0—i

o | =i 00— oy 0010

@) =1 1001 ") =10 100 |
0il0 i 000
0 —i 1 0

oy | i 0 0 =i

@) =1_10 0 1 ©3)
0 i —-10

One of the choices for the tensors to be used with the lower
signs in the equations like (85) are:

0 i 10 0 00i
o | =i 0 0 oy | 0 010
@) =f_10 01| ®™)=|0 _100]|
0 —i—10 —i 000
0 —i10
oy | i 00
W) =1 _ 01 4
0 —i10

4.2 Proof of equivalency

Let us prove that (91) is equivalent to the Dirac equation. For
example, if we use the upper signs in (85, 86, 90),
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0 W00 0,03 Let us choose one of the solutions and find such spinor
01 203 02
—u 0 iu”’ —iu
() = a2 03 o0 ™ m
—u% W2 % o n= ’3)2 (101)
0 u' W W 0
1 P )
—u' 0 iu —iu
| -u? =i 0 ik | ©3) that
—u? iu? —iul 0
0 01 02 03 0 o 2 3
=% 0 iv? —iy9? vl 0 i —i?
(UMV) = =
02 B 0 ¥ —v?2 —iv3 0 vl
—v® 0% 0 o —v? v —iv! 0
0 i(my&] — n385) ny&l + n385 —i(n38] + ni&y)
— (Ea"VpC) = (& — m85) 251 152 151 252 (102)
GV =\ a0 —niE g
i(m>8] +n1&3) 1(i&7 + n380) ni&l — m3&5 0
let us find such spinor . This ii equivalent to the following system of equations for
n} and n5:
&1 vl =g = m383), VP = miE 4+ m3Es,
£ = 502 ©06) V= —in3Er +niED). (103)
0 One can check that, due to the properties of u and v, these
equations are compatible and have one solution for the spinor
that n:
o (((ED? = EDD ED” + ED? 2stE
z —i()°— (& 0 2678 —i(ED”+HEDD)
W) = (EgMVec) — l((él) (%'2) ) 152 1 2 97
A Dl (R S S e 0 —E+E) on
28 iGN+ 6D G~ (6 0
This is equivalent to the following system of equations for
£/ and &5 L, —ivt+ur vl +0?
= e = (104
1 . 32 12 2 32 *\2 2‘i:l 2%-2
u =i((§)" —()),u” =&+ (6)7,
W= 2iEES 98)  or,if£F =0,
As (u")? + (u?)? + (?)? = 0, this system always has solu- . V3 . vl
tions and defines the spinor & up to a factor 1: m= —iéz*’ M = —ié;" (105)
1 o
. —iu' +ut\? ud or,if & =0,
E=\———) &% == (99)
2 (—2i&]) ) .3
n = 15_* n = e (106)
e ) 1 1
or, if —iu' +u” =0,
Then
1
. 2\ 2 3
£ = (u) L (100)
2 (—2i&3)

@ Springer
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- ivl 4+ v? —ivl +0?

En" =mé& — & = 25; £ — 25? 13
) ED? - (—iv' o) (ED?
B 28183

.1 2 —iul4u® . 2 w®?
(lU +U) 2 ( v +U )(_Zi)Zfiuleruz

3

iu
ol 4 o2y —iu! u? 2y =)= @?)?
B (iv! +v?) = — (—ip! 4o )m
ju3
v o) (—in +u?) + (—iv' o) (—iu' —u?)
- 2iu3
1,2 .21
:vu 3vu — 1. (107)
u
due to (87).

As was shown in Sect.3, if antisymmetric tensors u"”
and v*¥ satisfy (39) and (33), and u’*V # 0, there is only
one antisymmetric tensor w*V satisfying (38) and (33). On
the other hand, the tensor £ #Vn° satisfies (38) and (33), so
EoMVn = wh. Using this and (5, 15, 97, 102), we obtain
from (91):

(O = fe) iz @ + fen) + Fa)ou =0, (108)
which coincides with the equivalent (18) of the Dirac equa-
tion after we identify ¢, with £.

5 Formulation in terms of 3D vectors

Now let us rewrite the Dirac equation in terms of complex 3D
vectors. For example, instead of the antisymmetric second-
rank tensors u”¥, v*¥, w*, we are going to use 3D vectors,
such as u = (ul, u2, u3), where 1! = u% . Lorentz transfor-
mations correspond to 3D rotations of such vectors through
complex angles.

We require

(u-u)y=0,u-v)=0,u = Fu x v. (109)

One can check that the last equality of (109) generally yields

403,02 _ 02,03 _ 4 01 (110)
and

v-v)=—1. (111)
We also require

uw-w)y=2,v-w)=0,(w-w)=0. (112)
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Adapting the calculation of w" in Sect.3, we can obtain,
using (46, 50, 51, 52, 53):

(v-u*)?
T w2
(v-u*) 2
@-un " weury

+

*, (113)

where u* = (u'*, u**, u3*).Then, using (4), one can check
that, e.g., Fu*' = 2w - (E ¥ iH)), where E =
(E', E2, E®), H = (H!, H%, H?), introduce vector F =
E FiH, and use (91) to obtain

(O = (F-0)(F-u) ' (@ + (F-v)) + (F - w)g, =0.
(114)

Again, the current can be restored using the procedure
similar to that in Sect.3. In particular, based on (62), we
should use the following:

1
_ ('/’; . u) 2
Pu = (—2 ) )

where vector ¥ = (wg], 1,0%2, wJOS).

Let us provide examples of the vectors u, v, w, which play
arole similar to that of y-matrices in the spinor formulation
of the Dirac equation. One of the choices for the vectors are
(cf. (93,94)):

(115)

u=(10),v=(0,0F) w=(-i10). (116)

6 Conclusion

Previously [7-9], the author showed that the Dirac equation
is generally equivalent to a fourth-order linear equation for
juct one component. On the other hand, chiral spinors can
be represented by antisymmetric second-rank tensors [2].
Thus, for a Dirac spinor i, one can build tensors Wﬁv corre-
sponding to chiral spinors 1+, such that ¢ = ¢ + ¥_ and
y ¥+ = ++. Then we introduce constant antisymmetric
second-rank tensors u", v*V satisfying certain tensor con-
ditions. The choice of u*" determines the component for
which we obtain the linear equivalent of the Dirac equation,
and different choices of v*" lead to equivalent equations.
The choice of u"¥ and v"*¥ determines the choice of another
constant antisymmetric second-rank tensor w*V satisfying
certain tensor conditions. Eventually, we derive a linear ten-
sor equivalent of the Dirac equation for just one component

1
Pu = Yruw))?
u 8 .
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There is a popular phrase: “A spinor is a square root of a
vector” [26, Chapter II, para. 4]. In our case, one can say that
a square root of a scalar is a scalar.

Let us make some comments.

e There are two slightly different versions of the formalism
depending on whether we start with w_’ﬁ” or Y.

e When we have a solution of the linear tensor equivalent
of the Dirac equation, there is an unequivocal recipe for
calculation of the Dirac current.

e The linear tensor equivalent of the Dirac equation is an
equation for one component, which component is (in gen-
eral) complex, but it can be made real by a gauge trans-

formation (at least locally).

The author hopes that the linear tensor equivalent of the Dirac
equation for one component will be useful for some appli-
cations and for better understanding of the Dirac equation’s
“magic”.

Supplementary information

The supplementary file includes a Mathematica notebook.
The notebook contains the proofs of several algebraic state-
ments.
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