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Abstract The Dirac equation is one of the most fundamen-
tal equations of modern physics. It is a spinor equation, but
some tensor equivalents of the equation were proposed pre-
viously. Those equivalents were either nonlinear or involved
several components of the Dirac field. On the other hand,
the author showed previously that the Dirac equation in elec-
tromagnetic field is equivalent to a fourth-order equation for
one component of the Dirac spinor. The equivalency is used
in this work to derive a linear tensor equivalent of the Dirac
equation for just one component. This surprising result can
be used in applications of the Dirac equation, for example,
in general relativity or for lattice approximation of the Dirac
field, and can improve our understanding of the Dirac equa-
tion.

1 Introduction

“Of all the equations of physics, perhaps the most ‘magi-
cal’ is the Dirac equation. It is the most freely invented, the
least conditioned by experiment, the one with the strangest
and most startling consequences” [1]. The Dirac equation is
a spinor equation, but previously, some authors offered ten-
sor equations equivalent to the Dirac equation. Those equa-
tions were either nonlinear [2] or, in the case of the Dirac–
Kähler equation [3–5], had a large number of components.
The approach of [6] allows to significantly reduce the num-
ber of components, but still requires several components.

The surprising result of this work is that it is possible to
derive a linear tensor equation for just one component that is
generally equivalent to the Dirac equation. This result builds
on the previous work [7–9] (see also [10], pp. 24–25, [11]),
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where it was shown that, in a general case, three out of four
complex components of the Dirac spinor can be algebraically
eliminated from the Dirac equation in an arbitrary electro-
magnetic field. Therefore, the Dirac equation is generally
equivalent to a fourth-order partial differential equation for
just one component, which can be made real (at least locally)
by a gauge transformation. Some applications of this result
are discussed in [12].

One usually emphasizes the advantages of tensor, rather
than spinor, equations for applications in general relativity
[2] and lattice approximation of Dirac fields [13], but there
can be other applications of the fundamental result of this
work in the future. As Feynman said in his Nobel lecture,
“a good theoretical physicist today might find it useful to
have a wide range of physical viewpoints and mathematical
expressions of the same theory” [14].

Section 2 summarizes the results of the prevous work [7–
9] used in the present article.

Section 3 contains the general derivation of the linear ten-
sor equation for one component that is equivalent to the Dirac
equation.

Formulations of the linear tensor equation in terms of anti-
symmetric second-rank tensors and 3D vectors are provided,
respectively, in Sects. 4 and 5.

The supplementary file includes a Mathematica notebook
(see it also at [15]). The notebook contains the proofs of sev-
eral algebraic statements (usually indicated by phrases “One
can check that…”) in Sects. 3, 4, and 5, using the chiral repre-
sentation of gamma-matrices, which is sufficient for our pur-
pose. Proofs of the statements in Sect. 2 can be found in [8,9].

2 The Dirac equation as a fourth-order linear equation
for one component

To make this article reasonably self-contained, let us pro-
vide some notation and results from [8,9] (the more tra-
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ditional four-component spinor formalism is used in this
work, although the two-component spinor formalism has
some important strengths [16]).

We use the Dirac equation in the form:

(i /∂ − /A)ψ = ψ, (1)

where, e.g., /A = Aμγ μ (the Feynman slash notation). A
system of units h̄ = c = m = 1 is used, and the electric
charge e is included in Aμ (eAμ → Aμ). The metric tensor
is

g = (
gμν

) =

⎛

⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟
⎠ . (2)

Multiplying both sides of (1) by (i /∂ − /A) from the left and
using notation

σμν = i

2
[γ μ, γ ν], (3)

Fμν = Aν,μ − Aμ,ν =

⎛

⎜⎜
⎝

0 −E1 −E2 −E3

E1 0 −H3 H2

E2 H3 0 −H1

E3 −H2 H1 0

⎞

⎟⎟
⎠ , (4)

F = 1

2
Fνμσ νμ, (5)

we obtain:

(�′ + F)ψ = 0, (6)

where the modified d’Alembertian �′ is defined as follows:

�′ = ∂μ∂μ + 2i Aμ∂μ + i Aμ
,μ − AμAμ + 1

= −(i∂μ − Aμ)(i∂μ − Aμ) + 1. (7)

We assume that the set of γ -matrices satisfies the standard
hermiticity conditions [17]:

γ μ† = γ 0γ μγ 0, γ 5† = γ 5 = iγ 0γ 1γ 2γ 3. (8)

Then a charge conjugation matrix C can be chosen in such a
way [18,19] that

Cγ μC−1 = −γ μT ,Cγ 5C−1 = γ 5T ,

CσμνC−1 = −σμνT , (9)

CT = C† = −C,CC† = C†C = I,

C2 = −I, (10)

where the superscript T denotes transposition, and I is the
unit matrix. The properties of the charge conjugation matrix
(9,10) are extensively used in the following.

We choose constant Dirac spinors ξ and η (they do not
depend on the spacetime coordinates x = (x0, x1, x2, x3),
so, e. g., ∂μξ ≡ 0) in such a way that they are both eigen-
vectors of γ 5 with the same eigenvalue +1 or −1, and the
normalization condition

ξ̄ηc = 1 (11)

is satisfied, where ηc is the charge conjugated spinor

ηc = C η̄T . (12)

Due to the normalization condition, the spinors ξ and η are
linearly independent. If they are eigenvectors of γ 5 with the
same eigenvalue ±1, the Dirac conjugated spinors ξ̄ and η̄

are linearly independent left eigenvectors of γ 5 with the same
eigenvalue ∓1. One can check that spinors ξ̄F and η̄F are
also left eigenvectors of γ 5 with the same eigenvalue ∓1, so,
as the space of left eigenvectors of γ 5 with eigenvalue ∓1
is two-dimensional, ξ̄F and η̄F are linear combinations of ξ̄

and η̄. One can calculate the coefficients and obtain:

ξ̄F = (ξ̄Fηc)ξ̄ − (ξ̄Fξ c)η̄ = fξηξ̄ − fξξ η̄, (13)

η̄F = (η̄Fηc)ξ̄ − (η̄Fξ c)η̄ = fηηξ̄ − fηξ η̄, (14)

where the following notation for components of the electro-
magnetic field is used:

fαβ = ᾱFβc. (15)

Here α and β are some Dirac spinors.
Multiplying (6) by ξ̄ and η̄ from the left and using (13)

and (14), we obtain:

�′(ξ̄ψ) + fξη(ξ̄ψ) − fξξ (η̄ψ) = 0,

�′(η̄ψ) + fηη(ξ̄ψ) − fηξ (η̄ψ) = 0, (16)

so

η̄ψ = f −1
ξξ (�′(ξ̄ψ) + fξη(ξ̄ψ)) (17)

and

((�′ − fξη) f
−1
ξξ (�′ + fξη) + fηη)(ξ̄ψ) = 0 (18)

(one can show that fξη = fηξ ). Thus, it is possible to alge-
braically eliminate three out of four components of the Dirac
equation from (6) and derive an equation for the remaining
component ξ̄ψ .

One can derive the recipes for calculation of the other
components of the Dirac spinor. If ξ̄ψ is known, another
component, η̄ψ , can be determined using equation (17). Then
ψ can be expressed as a sum of a right-handed and a left-
handed spinors ψ+ and ψ−, where γ 5ψ± = ±ψ±:
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ψ = ψ+ + ψ−, (19)

ψ± = 1

2
(1 ± γ 5)ψ. (20)

Then one can check that

ψ∓ = (ξ̄ψ)ηc − (η̄ψ)ξ c. (21)

When ψ∓ is found in this way, ψ± can be found using the
Dirac equation (1):

(i /∂ − /A)ψ∓ = 1

2
(i /∂ − /A)(1 ∓ γ 5)ψ

= 1

2
(1 ± γ 5)(i /∂ − /A)ψ = ψ±, (22)

thus, the Dirac spinor can be fully restored if the component
ξ̄ψ is known. Equation (18), together with the recipes for cal-
culation of the other components of the Dirac spinor, is gener-
ally equivalent to the Dirac equation. Some “non-transversal”
cases where there is no equivalency, for example, if fξξ ≡ 0,
do not seem to be important from the experimental point of
view. For example, fξξ ≡ 0 for a free Dirac particle, and it is
an important case theoretically, but an arbitrarily weak elec-
tromagnetic field, for example, the Coulomb field of a single
charged particle in the Universe, restores the equivalency.

The denominator fξξ in (18) may look inaesthetic. One
can get rid of it by multiplying (18) by ( fξξ )

3, but this is a
matter of preference.

3 Derivation of the linear tensor equivalent of the Dirac
equation

3.1 Antisymmetric second-rank tensors built from pairs of
chiral spinors

Let us consider a Dirac spinor χ . It can be presented as a sum
of two chiral spinors χ+ and χ− that are eigenvectors of γ 5

with eigenvalues of +1 and −1, respectively:

χ = χ+ + χ−, γ 5χ+ = χ+, γ 5χ− = −χ−. (23)

In the chiral representation of γ -matrices [17],

γ 0 =
(

0 −I
−I 0

)
, γ i =

(
0 σ i

−σ i 0

)
,

γ 5 =
(
I 0
0 −I

)
,C =

(−iσ 2 0
0 iσ 2

)
, (24)

where index i runs from 1 to 3, and σ i are the Pauli matrices.
Then χ , χ+, and χ− have the following components:

χ =

⎛

⎜⎜
⎝

χ1

χ2

χ3

χ4

⎞

⎟⎟
⎠ , χ+ =

⎛

⎜⎜
⎝

χ1

χ2

0
0

⎞

⎟⎟
⎠ , χ− =

⎛

⎜⎜
⎝

0
0
χ3

χ4

⎞

⎟⎟
⎠ . (25)

Similarly, let us introduce spinors ζ , ζ+, and ζ−. It is possible
to build antisymmetric second-rank tensors from pairs of chi-
ral spinors [20, Section 153]. Let us consider the following
matrices θ+ and θ−:

(
θ

μν
+

) = (
χ+σμνζ c+

) =

⎛

⎜
⎜
⎝

0 i(χ∗
1 ζ ∗

1 − χ∗
2 ζ ∗

2 ) χ∗
1 ζ ∗

1 + χ∗
2 ζ ∗

2 −i(χ∗
2 ζ ∗

1 + χ∗
1 ζ ∗

2 )

−i(χ∗
1 ζ ∗

1 − χ∗
2 ζ ∗

2 ) 0 χ∗
2 ζ ∗

1 + χ∗
1 ζ ∗

2 −i(χ∗
1 ζ ∗

1 + χ∗
2 ζ ∗

2 )

−χ∗
1 ζ ∗

1 − χ∗
2 ζ ∗

2 −χ∗
2 ζ ∗

1 − χ∗
1 ζ ∗

2 0 −χ∗
1 ζ ∗

1 + χ∗
2 ζ ∗

2
i(χ∗

2 ζ ∗
1 + χ∗

1 ζ ∗
2 ) i(χ∗

1 ζ ∗
1 + χ∗

2 ζ ∗
2 ) χ∗

1 ζ ∗
1 − χ∗

2 ζ ∗
2 0

⎞

⎟
⎟
⎠ (26)

and

(
θ

μν
−

) = (
χ−σμνζ c−

) =

⎛

⎜⎜
⎝

0 i(χ∗
3 ζ ∗

3 − χ∗
4 ζ ∗

4 ) χ∗
3 ζ ∗

3 + χ∗
4 ζ ∗

4 −i(χ∗
4 ζ ∗

3 + χ∗
3 ζ ∗

4 )

−i(χ∗
3 ζ ∗

3 − χ∗
4 ζ ∗

4 ) 0 −χ∗
4 ζ ∗

3 − χ∗
3 ζ ∗

4 i(χ∗
3 ζ ∗

3 + χ∗
4 ζ ∗

4 )

−χ∗
3 ζ ∗

3 − χ∗
4 ζ ∗

4 χ∗
4 ζ ∗

3 + χ∗
3 ζ ∗

4 0 χ∗
3 ζ ∗

3 − χ∗
4 ζ ∗

4
i(χ∗

4 ζ ∗
3 + χ∗

3 ζ ∗
4 ) −i(χ∗

3 ζ ∗
3 + χ∗

4 ζ ∗
4 ) −χ∗

3 ζ ∗
3 + χ∗

4 ζ ∗
4 0

⎞

⎟⎟
⎠ . (27)
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Proper ortochronous Lorentz transformations acting on
Dirac spinors in the chiral representation have the following
form [21]:

(
s

(s†)−1

)
, (28)

where

s =
(
s11 s12

s21 s22

)
,

(s†)−1 =
(

s∗
22 −s∗

21
−s∗

12 s∗
11

)
, (29)

and the determinant |s| = 1. The relevant Lorentz transfor-
mation acting on tensors is

� = (
�μ

ν

) = 1

2

⎛

⎜⎜
⎝

s11 s12 s21 s22

s21 s22 s11 s12

−is21 −is22 is11 is12

s11 s12 −s21 −s22

⎞

⎟⎟
⎠

×

⎛

⎜
⎜
⎝

s∗
11 s∗

12 −is∗
12 s∗

11
s∗

12 s∗
11 is∗

11 −s∗
12

s∗
21 s∗

22 −is∗
22 s∗

21
s∗

22 s∗
21 is∗

21 −s∗
22

⎞

⎟
⎟
⎠ . (30)

The derivation of (30) is similar to that in [21]. Our (25)
differs from equation (62) of [21], ultimately, because of
a different choice of the sign of γ 0. One can check that
gμν�

μ
ρ�ν

λ = gρλ [21], or �T gl� = gl , where the metric
tensor with lower indices gl = (gμν), and that replacement
of χ1, χ2, ζ1, ζ2 in θ+ with χ ′

1, χ
′
2, ζ

′
1, ζ

′
2 in accordance with

formulas
(

χ ′
1

χ ′
2

)
= s

(
χ1

χ2

)
,

(
ζ ′

1
ζ ′

2

)
= s

(
ζ1

ζ2

)
(31)

gives the same result as �
μ
ρ�ν

λθ
ρλ
+ , or �θ+�T , so θ+ trans-

forms as an antisymmetric second-rank tensor. Also, replace-
ment of χ3, χ4, ζ3, ζ4 in θ− with χ ′

3, χ
′
4, ζ

′
3, ζ

′
4 in accordance

with formulas
(

χ ′
3

χ ′
4

)
= (s†)−1

(
χ3

χ4

)
,

(
ζ ′

3
ζ ′

4

)
= (s†)−1

(
ζ1

ζ2

)
(32)

gives the same result as �
μ
ρ�ν

λθ
ρλ
− , or �θ−�T , so θ− trans-

forms as an antisymmetric second-rank tensor. Similarly, θ∗±
(complex conjugates of θ±) also transform as antisymmetric
second-rank tensors.

One can check that

(
θ

μν
±

) = (∓i�θμν
±

)
,
(
θ

∗μν
±

) = (±i�θ∗μν
±

)
, (33)

where the Hodge dual of a second-rank antisymmetric tensor
is defined as [22]

�Fαβ = 1

2
εαβγ δFγ δ, (34)

and εαβγ δ is the totally antisymmetric Levi-Civita tensor
(ε0123 = 1). That means that tensors θ

μν
± are fully defined by

3D vectors θ0i± , and vice versa, similar to how the Weber vec-
tor (Riemann–Silberstein vector) E + iH [23] fully defines
the real antisymmetric second-rank electromagnetic field ten-
sor Fμν . Four-dimensional rotations in the 4D Minkowski
space for the tensors correspond to rotations through com-
plex angles in a 3D complex space for the 3D vectors [24,
§25]. The following could be presented in terms of 3D vec-
tors, but the author will mostly use tensors and add a short
section on 3D vectors. No distinction is drawn between ten-
sors and pseudotensors in this work.

Chiral spinors ψ± can be represented by antisymmetric
second-rank tensors ([2], [20, Section 154]):

(
ψ

μν
±

) =
(
ψc±σμνψ±

)
=

(
ψT±Cσμνψ±

)
. (35)

One can see that these are tensors as
(
ψ

μν
±

)
coincide with(

θ
μν
∓

)
if χ = ψc and ζ = ψc (one can check that (ψc)c = ψ

and ψc = ψTC). One can check that

ψ
μν
± ψ±μν = 0. (36)

3.2 Constant tensors and some scalar functions to replace
the elements of the Dirac equation

So is it possible to replace the spinor elements of (18) by
tensor ones while preserving linearity? Note that we want to
avoid the following: while chiral spinors can be represented
by antisymmetric second-rank tensors satisfying (33, 36),
such tensors define spinors only up to a sign, so we need to
avoid the ambiguity related to square roots.

It seems natural to start with the tensors corresponding
to the spinors ξ c and ηc, however such an approach creates
the above-mentioned ambiguity. Therefore, we start with a
tensor

uμν = (ξ c)TCσμνξ c = (C ξ̄ T )TCσμνξ c

= ξ̄CTCσμνξ c = ξ̄σμνξ c, (37)

corresponding to ξ c, and a tensor vμν = (ξ c)TCσμνηc =
ξ̄σμνηc. These tensors satisfy (33), where the signs are cho-
sen depending on whether ξ and η are eigenvectors of γ 5

with eigenvalue +1 or −1. Taking into account the normal-
ization condition (11), one can show for the tensor wμν =
(ηc)TCσμνηc = η̄σμνηc corresponding to the chiral spinor
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ηc that

uμνwμν = −8, vμνwμν = 0, wμνwμν = 0. (38)

We also have

uμνuμν = 0, uμνvμν = 0, vμνvμν = 4. (39)

There is only one solution for wμν satisfying (38) and (33) if
uμν and vμν satisfy (39) and uμν �= 0. To find it, one can first
choose any tensor kμν (satisfying (33)) such that kμνkμν = 0
and uμνkμν �= 0. Let us prove it.

First, let us consider an antisymmetric second-rank tensor
aμν satisfying (33), so

(
aμν

) =

⎛

⎜⎜
⎝

0 a01 a02 a03

−a01 0 ±ia03 ∓ia02

−a02 ∓ia03 0 ±ia01

−a03 ±ia02 ∓ia01 0

⎞

⎟⎟
⎠ . (40)

Such tensor is fully defined by the 3D vector a = (a1, a2, a3)

= (a01, a02, a03). Let us define the scalar product of (com-
plex) 3D vectors a and b = (b1, b2, b3) as (a · b) = aibi =
a1b1 + a2b2 + a3b3 (no conjugation). One can check that
aμνbμν = −4(a · b), where aμν and bμν are antisymmetric
second-rank tensors corresponding to a and b and satisfying
(33).

The space of antisymetric tensors satisfying (33) is 3-
dimensional, so one can choose such an antisymmetric tensor
tμν satisfying (33) that uμν , vμν , and tμν are linearly inde-
pendent.

Let us prove that uμν tμν �= 0. Indeed, otherwise (u · t) =
0, so let us consider the following matrix (similar to the Gram
matrix, where, however, a different scalar product is used for
complex vectors):

M =
⎛

⎝
(u · u) (u · v) (u · t)
(v · u) (v · v) (v · t)
(t · u) (t · v) (t · t)

⎞

⎠ = QT Q, (41)

where

Q =
⎛

⎝
u1 v1 t1

u2 v2 t2

u3 v3 t3

⎞

⎠ . (42)

From (39), we have (u · u) = (u · v) = 0, and we assumed
(u · t) = 0, so we have for the determinants:

0 = |M | = |Q|2. (43)

So |Q| = 0, although we assumed that uμν , vμν , and tμν ,
and, therefore,u,v, and t are linearly independent. Therefore,

the assumption (u · t) = 0 leads to a contradiction. Thus, we
proved that uμν tμν �= 0.

Let us seek kμν in the form (αuμν + vμν + tμν). Then we
have:

0 = (αuμν + vμν + tμν) × (αuμν + vμν + tμν)

= vμνvμν + tμν tμν + 2αuμν tμν + 2vμν tμν, (44)

so we have exactly one solution for α:

α = −vμνvμν + tμν tμν + 2vμν tμν

2uμν tμν

, (45)

and for kμν = αuμν + vμν + tμν we have kμνkμν = 0 and
uμνkμν �= 0, as otherwise uμν tμν = 0.

The tensors uμν, vμν, tμν are linearly independent, so the
tensors uμν, vμν, kμν are also linearly independent, so one
can seek the solution for wμν in the form

wμν = α1u
μν + α2v

μν + α3k
μν. (46)

Contracting (46) with uμν , we obtain

α3uμνk
μν = −8. (47)

Contracting (46) with vμν , we obtain

4α2 + α3vμνk
μν = 0. (48)

Contracting (46) with wμν = α1uμν + α2vμν + α3kμν , we
obtain

0 = (α2)
2vμνv

μν + 2α1α3uμνk
μν +

2α2α3vμνk
μν. (49)

One can obtain from (47, 48, 49):

α1 = − (vμνkμν)
2

(uμνkμν)2 , α2 = 2
vμνkμν

uμνkμν

,

α3 = − 8

uμνkμν

. (50)

The above is a coordinate-free solution. A more explicit
solution (where a specific tensor kμν is chosen) can be written
in coordinates.

If ξ and η are eigenvectors of γ 5 with eigenvalue ±1,

u =

⎛

⎜⎜
⎝

0 u1 u2 u3

−u1 0 ±iu3 ∓iu2

−u2 ∓iu3 0 ±iu1

−u3 ±iu2 ∓iu1 0

⎞

⎟⎟
⎠ ,

v =

⎛

⎜⎜
⎝

0 v1 v2 v3

−v1 0 ±iv3 ∓iv2

−v2 ∓iv3 0 ±iv1

−v3 ±iv2 ∓iv1 0

⎞

⎟⎟
⎠ , (51)
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and

uμνuμν = −4((u1)2 + (u2)2 + (u3)2) = 0,

uμνvμν = −4(u1v1 + u2v2 + u3v3) = 0,

vμνvμν = −4((v1)2 + (v2)2 + (v3)2) = 4, (52)

tensor kμν can be chosen in the following form:

k =

⎛

⎜⎜
⎝

0 u1∗ u2∗ u3∗
−u1∗ 0 ±iu3∗ ∓iu2∗
−u2∗ ∓iu3∗ 0 ±iu1∗
−u3∗ ±iu2∗ ∓iu1∗ 0

⎞

⎟⎟
⎠ , (53)

then

uμνkμν = −4(|u1|2 + |u2|2 + |u3|2). (54)

This value does not vanish unless u = 0. When tensors
uμν, vμν,wμν are known, it is possible to calculate the com-
ponents of the electromagnetic field from (18):

fξξ = 1

2
Fμνu

μν, fξη = 1

2
Fμνv

μν,

fηη = 1

2
Fμνw

μν. (55)

To rewrite (18) in terms of tensors completely, one needs to
find an appropriate form for ξ̄ψ .

If ξ is an eigenvector of γ 5 with eigenvalue +1,

ξ̄ψ = ξ̄ψ− = −ψ3ξ
∗
1 − ψ4ξ

∗
2 . (56)

The tensor corresponding to ψ− is

ψ
μν
− = ψT−Cσμνψ−. (57)

One can check that

ψ
μν
− uμν = −8(ξ̄ψ)2. (58)

If ξ is an eigenvector of γ 5 with eigenvalue −1,

ξ̄ψ = ξ̄ψ+ = −ψ1ξ
∗
3 − ψ2ξ

∗
4 . (59)

The tensor corresponding to ψ+ is

ψ
μν
+ = ψT+Cσμνψ+. (60)

One can check that

ψ
μν
+ uμν = −8(ξ̄ψ)2. (61)

Thus, if ξ is an eigenvector of γ 5 with eigenvalue ±1,

ξ̄ψ =
(

−ψ
μν
∓ uμν

8

) 1
2

. (62)

So ξ̄ψ can be expressed using tensors as a square root of a
scalar, but as (18) is a linear equation with respect to ξ̄ψ ,
this does not create any ambiguities related to the sign of the
square root (when the sign of the square root is chosen in
one point, the choice can be expanded by continuity, at least
locally). Thus, (18) can be expressed using tensors only.

3.3 Restoration of the Dirac current

One can also show that the Dirac current can be found using
tensors only. Up to a constant factor, the current is

jμ = ψ̄γ μψ = jμ+ + jμ−, (63)

where

jμ± = ψ̄±γ μψ±. (64)

One can check that for tensors ψ
μν
± (defined by (57) and (60))

the following is true:

jμν
± = gσλψ

σμ
±

(
ψλν±

)∗ = −2 jμ± jν±. (65)

Thus, if we know tensors ψ
μν
± , we know tensors jμ± jν±, and,

if we know the latter tensors, we can find vectors jμ± , as

jμ± = jμ± j0±√
( j0±)2

. (66)

The non-negative value of the square root should be chosen
in (66) as we know that j0± ≥ 0. It is not clear whether
the option to choose the negative value of the square root
and therefore obtain negative charge density for the tensor
equivalent of the Dirac equation can be advantageous, e. g.,
to better describe the antiparticles.

Thus, to prove that one can find out jμ from one of the
scalars ψ

μν
∓ uμν , it is sufficient to prove that one can find both

tensors ψ
μν
± from the scalar. If ξ and η are eigenvectors of

γ 5 with eigenvalue ±1, then ξ̄ψ = ξ̄ψ∓. We have (21), and

ψ
μν
∓ = ψT∓Cσμνψ∓

= ((ξ̄ψ)(ηc)T−(η̄ψ)(ξ c)T )Cσμν((ξ̄ψ)ηc−(η̄ψ)ξ c)

= (ξ̄ψ)2(η̄σμνηc) − (η̄ψ)(ξ̄ψ)(ξ̄σμνηc)

−(ξ̄ψ)(η̄ψ)(η̄σμνξ c) + (η̄ψ)2(ξ̄σμνξ c)

= (ξ̄ψ)2wμν − 2(η̄ψ)(ξ̄ψ)vμν + (η̄ψ)2uμν, (67)

as

η̄σμνξ c = (η̄σμνξ c)T = (ξ c)T (σμν)T (η̄)T

= (C ξ̄ T )T (−CσμνC−1)(−C)ηc

= ξ̄CT (CσμνC)(−C)ηc = ξ̄σμνηc. (68)
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Using (17) and (55), we obtain

η̄ψ = (Fμνu
μν)−1(2�′ + Fμνv

μν)(ξ̄ψ). (69)

Using (62) and (69), we can express products (ξ̄ψ)2,
(η̄ψ)(ξ̄ψ), and (η̄ψ)2 in (67) via ψ

μν
∓ uμν , and the results

do not depend on the choice of the value of the square root in
(62). Therefore, we can express ψ

μν
∓ via the scalar function

ψ
μν
∓ uμν (and its derivatives).
Let us now express ψ

μν
± via the same scalar function.

Using (22) and (21), we obtain:

ψ± = γ μ(i∂μ − Aμ)ψ∓
= γ μ(i∂μ − Aμ)((ξ̄ψ)ηc − (η̄ψ)ξ c)

= γ μ(Bμξ c + Cμηc), (70)

where

Bμ = −(i∂μ − Aμ)(η̄ψ),

Cμ = (i∂μ − Aμ)(ξ̄ψ). (71)

We have

ψ T± C = (γ μ(Bμξ c + Cμηc)) TC

= (Bμ(ξ c) T + Cμ(ηc) T )(−Cγ μC−1)C

= (Bμξ̄C T+Cμη̄C T )(−Cγ μ)= − (Bμξ̄+Cμη̄)γ μ.

(72)

Then

ψνσ± = ψ T± Cσνσ ψ±
= −(Bμξ̄ + Cμη̄)γ μσ νσ γ λ(Bλξ

c + Cλη
c)

= −BμBλξ̄γ μσ νσ γ λξ c − CμBλη̄γ μσ νσ γ λξ c

−BμCλξ̄γ μσ νσ γ ληc − CμCλη̄γ μσ νσ γ ληc. (73)

Let us use the following formula for the product of four γ -
matrices [25, p. 17]:

γ μγ νγ σ γ λ = gμνgσλ − gμσ gνλ + gμλgνσ

+gμνγ σλ − gμσ γ νλ + gμλγ νσ + gνσ γ μλ

−gνλγ μσ + gσλγ μν + γ μνσλ, (74)

where the antisymmetrized products of γ -matrices are

γ μν =
{

γ μγ ν if μ �= ν,

0 otherwise
,

γ μνσλ =

⎧
⎪⎨

⎪⎩

γ μγ νγ σ γ λ if {μ, ν, σ, λ}
is a permutation of {0, 1, 2, 3},

0 otherwise,

(75)

so, if ν �= σ ,

γ μσνσ γ λ = i

2
γ μ(γ νγ σ − γ σ γ ν)γ λ = i(gμνgσλ

−gμσ gνλ + gμνγ σλ − gμσ γ νλ + gμλγ νσ

−gνλγ μσ + gσλγ μν + γ μνσλ). (76)

Let us also note that

η̄γ μσ νσ γ λξ c

= (η̄γ μσ νσ γ λξ c)T = ξ cT γ λT σνσT γ μT η̄T

= −ξ̄C(−Cγ λC−1)(−CσνσC−1)(−Cγ μC−1)(−Cηc)

= ξ̄ γ λσ νσ γ μηc, (77)

so

− CμBλη̄γ μσ νσ γ λξ c = −CμBλξ̄γ λσ νσ γ μηc

= −BμCλξ̄γ μσ νσ γ ληc, (78)

and (73) becomes

ψνσ± = −BμBλξ̄γ μσ νσ γ λξ c − 2BμCλξ̄γ μσ νσ γ ληc

−CμCλη̄γ μσ νσ γ ληc. (79)

Now we need to substitute (76) in (79). Let us show how
some of the terms can be calculated. For example (one can
check that ξ̄ ξ c = η̄ηc = 0),

ξ̄gμνgσληc = gμνgσλ,

ξ̄gμνgσλξ c = η̄gμνgσληc = 0, (80)

ξ̄gμνγ σληc = gμν 1

i
vσλ,

ξ̄gμνγ σλξ c = gμν 1

i
uσλ,

η̄gμνγ σληc = gμν 1

i
wσλ, (81)

ξ̄ γ μνσληc = ξ̄ εμνσλγ 0γ 1γ 2γ 3ηc

= εμνσλξ̄
1

i
γ 5ηc = ∓εμνσλ 1

i
, ξ̄γ μνσλξ c

= η̄γ μνσληc = 0. (82)

Thus. we have, if ν �= σ ,

ψνσ± = −BμBλ(g
μνuσλ − gμσuνλ + gμλuνσ

−gνλuμσ + gσλuμν)

−2BμCλ(ig
μνgσλ − igμσ gνλ + gμνvσλ − gμσ vνλ

+gμλvνσ − gνλvμσ + gσλvμν ∓ εμνσλ)

−CμCλ(g
μνwσλ − gμσ wνλ + gμλwνσ

−gνλwμσ + gσλwμν)

= −BνBλu
σλ + Bσ Bλu

νλ − BλBλu
νσ

+BμB
νuμσ − BμB

σuμν − 2i BνCσ + 2i BσCν

−2BνCλv
σλ + 2BσCλv

νλ − 2BλCλv
νσ

+2BμC
νvμσ − 2BμC

σ vμν ± 2BμCλε
μνσλ

−CνCλw
σλ + CσCλw

νλ − CλCλw
νσ

+CμC
νwμσ − CμC

σ wμν

= −2BνBλu
σλ + 2Bσ Bλu

νλ − BλBλu
νσ

−2i BνCσ + 2i BσCν
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−2BνCλv
σλ + 2BσCλv

νλ − 2BλCλv
νσ

+2BμC
νvμσ − 2BμC

σ vμν ± 2BμCλε
μνσλ

−2CνCλw
σλ + 2CσCλw

νλ − CλCλw
νσ , (83)

as, for example,

−BνBλu
σλ + BμB

νuμσ = −BνBλu
σλ

+BνBλu
λσ = −2BνBλu

σλ. (84)

Thus, we can express ψ
μν
± (and, finally, the current) via the

scalar function ψ
μν
∓ uμν (and its derivatives), and the results

do not depend on the choice of the value of the square root in
(62), as, for example, products BνCλ do not depend on the
choice of the square root.

4 Formulation in terms of antisymmetric second-rank
tensors

4.1 Formulation

Let us now formulate the tensor equivalent of the Dirac equa-
tion. First, we choose a constant non-zero antisymmetric
second-rank tensor uμν satisfying the following conditions:

(
uμν

) = (∓i�uμν
)
, uμνuμν = 0. (85)

Let us then denote the unknown scalar function of the tensor
equation ϕu (instead of ξ̄ψ). Then let us choose any constant
antisymmetric second-rank tensor vμν satisfying the follow-
ing conditions:
(
vμν

) = (∓i�vμν
)
, vμνuμν = 0,

uμ
σ vσν = −iuμν. (86)

If we use again 3D vectors u, v,w, corresponding to the
antisymmetric second-rank tensors uμν, vμν,wμν , such that,
for example, u = (u1, u2, u3) = (u01, u02, u03), one can
check that (85) implies (u ·u) = 0 and (86) implies (v ·u) =
0. One can also check that the last equality in (86) implies

u = ∓u × v

= ∓(u2v3 − u3v2,−u1v3 + u3v1, u1v2 − u2v1), (87)

so

u = ±v × u = v × (v × u)

= (v · u)v − (v · v)u = −(v · v)u, (88)

yielding (v · v) = −1 and vμνvμν = 4. One can check that
the last equality in (86) is generally (if u01 �= 0) equivalent
to

u03v02 − u02v03 = ±u01. (89)

Then, using the procedure from Sect. 3, we can calculate
a constant antisymmetric second-rank tensor wμν satisfying
the following conditions:
(
wμν

) = (∓i�wμν
)
, vμνwμν = 0,

wμνwμν = 0, uμνwμν = −8. (90)

Using (18) and (55), we obtain the following linear tensor
equivalent of the Dirac equation:

((2�′ − Fμνv
μν)(Fμνu

μν)−1(2�′ + Fμνv
μν)

+Fμνw
μν)ϕu = 0. (91)

The current can be restored using the procedure from
Sect. 3. In particular, based on (62), we should use the fol-
lowing:

ϕu =
(

−ψ
μν
∓ uμν

8

) 1
2

. (92)

Let us provide examples of the tensors uμν, vμν,wμν , which
play a role similar to that of γ -matrices in the spinor formula-
tion of the Dirac equation. One of the choices for the tensors
to be used with the upper signs in the equations like (85) are:

(
uμν

) =

⎛

⎜⎜
⎝

0 i 1 0
−i 0 0 −i
−1 0 0 −1
0 i 1 0

⎞

⎟⎟
⎠ ,

(
vμν

) =

⎛

⎜⎜
⎝

0 0 0 −i
0 0 1 0
0 −1 0 0
i 0 0 0

⎞

⎟⎟
⎠ ,

(
wμν

) =

⎛

⎜⎜
⎝

0 −i 1 0
i 0 0 −i

−1 0 0 1
0 i −1 0

⎞

⎟⎟
⎠ . (93)

One of the choices for the tensors to be used with the lower
signs in the equations like (85) are:

(
uμν

) =

⎛

⎜⎜
⎝

0 i 1 0
−i 0 0 i
−1 0 0 1
0 −i −1 0

⎞

⎟⎟
⎠ ,

(
vμν

) =

⎛

⎜⎜
⎝

0 0 0 i
0 0 1 0
0 −1 0 0
−i 0 0 0

⎞

⎟⎟
⎠ ,

(
wμν

) =

⎛

⎜
⎜
⎝

0 −i 1 0
i 0 0 i

−1 0 0 −1
0 −i 1 0

⎞

⎟
⎟
⎠ . (94)

4.2 Proof of equivalency

Let us prove that (91) is equivalent to the Dirac equation. For
example, if we use the upper signs in (85, 86, 90),
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(
uμν

) =

⎛

⎜⎜
⎝

0 u01 u02 u03

−u01 0 iu03 −iu02

−u02 −iu03 0 iu01

−u03 iu02 −iu01 0

⎞

⎟⎟
⎠

=

⎛

⎜⎜
⎝

0 u1 u2 u3

−u1 0 iu3 −iu2

−u2 −iu3 0 iu1

−u3 iu2 −iu1 0

⎞

⎟⎟
⎠ , (95)

let us find such spinor

ξ =

⎛

⎜⎜
⎝

ξ1

ξ2

0
0

⎞

⎟⎟
⎠ (96)

that

(
uμν

) = (
ξ̄σμνξ c

) =

⎛

⎜⎜
⎝

0 i((ξ∗
1 )2 − (ξ∗

2 )2) (ξ∗
1 )2 + (ξ∗

2 )2 −2iξ∗
1 ξ∗

2
−i((ξ∗

1 )2 − (ξ∗
2 )2) 0 2ξ∗

1 ξ∗
2 −i((ξ∗

1 )2 + (ξ∗
2 )2)

−(ξ∗
1 )2 − (ξ∗

2 )2 −2ξ∗
1 ξ∗

2 0 −(ξ∗
1 )2 + (ξ∗

2 )2

2iξ∗
1 ξ∗

2 i((ξ∗
1 )2 + (ξ∗

2 )2) (ξ∗
1 )2 − (ξ∗

2 )2 0

⎞

⎟⎟
⎠ . (97)

This is equivalent to the following system of equations for
ξ∗

1 and ξ∗
2 :

u1 = i((ξ∗
1 )2 − (ξ∗

2 )2), u2 = (ξ∗
1 )2 + (ξ∗

2 )2,

u3 = −2iξ∗
1 ξ∗

2 . (98)

As (u1)2 + (u2)2 + (u3)2 = 0, this system always has solu-
tions and defines the spinor ξ up to a factor ±1:

ξ∗
1 =

(−iu1 + u2

2

) 1
2

, ξ∗
2 = u3

(−2iξ∗
1 )

, (99)

or, if −iu1 + u2 = 0,

ξ∗
2 =

(
iu1 + u2

2

) 1
2

, ξ∗
1 = u3

(−2iξ∗
2 )

. (100)

Let us choose one of the solutions and find such spinor

η =

⎛

⎜⎜
⎝

η1

η2

0
0

⎞

⎟⎟
⎠ (101)

that

(
vμν

) =

⎛

⎜⎜
⎝

0 v01 v02 v03

−v01 0 iv03 −iv02

−v02 −iv03 0 iv01

−v03 iv02 −iv01 0

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0 v1 v2 v3

−v1 0 iv3 −iv2

−v2 −iv3 0 iv1

−v3 iv2 −iv1 0

⎞

⎟⎟
⎠

= (
ξ̄σμνηc

) =

⎛

⎜⎜
⎝

0 i(η∗
1ξ∗

1 − η∗
2ξ∗

2 ) η∗
1ξ∗

1 + η∗
2ξ∗

2 −i(η∗
2ξ∗

1 + η∗
1ξ∗

2 )

−i(η∗
1ξ∗

1 − η∗
2ξ∗

2 ) 0 η∗
2ξ∗

1 + η∗
1ξ∗

2 −i(η∗
1ξ∗

1 + η∗
2ξ∗

2 )

−η∗
1ξ∗

1 − η∗
2ξ∗

2 −η∗
2ξ∗

1 − η∗
1ξ∗

2 0 −η∗
1ξ∗

1 + η∗
2ξ∗

2
i(η∗

2ξ∗
1 + η∗

1ξ∗
2 ) i(η∗

1ξ∗
1 + η∗

2ξ∗
2 ) η∗

1ξ∗
1 − η∗

2ξ∗
2 0

⎞

⎟⎟
⎠ . (102)

This is equivalent to the following system of equations for
η∗

1 and η∗
2:

v1 = i(η∗
1ξ∗

1 − η∗
2ξ∗

2 ), v2 = η∗
1ξ∗

1 + η∗
2ξ∗

2 ,

v3 = −i(η∗
2ξ∗

1 + η∗
1ξ∗

2 ). (103)

One can check that, due to the properties of u and v, these
equations are compatible and have one solution for the spinor
η:

η∗
1 = −iv1 + v2

2ξ∗
1

, η∗
2 = iv1 + v2

2ξ∗
2

, (104)

or, if ξ∗
1 = 0,

η∗
1 = v3

−iξ∗
2

, η∗
2 = v1

−iξ∗
2

, (105)

or, if ξ∗
2 = 0,

η∗
1 = v1

iξ∗
1

, η∗
2 = v3

−iξ∗
1

. (106)

Then
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ξ̄ ηc = η∗
2ξ∗

1 − η∗
1ξ∗

2 = iv1 + v2

2ξ∗
2

ξ∗
1 − −iv1 + v2

2ξ∗
1

ξ∗
2

= (iv1 + v2)(ξ∗
1 )2 − (−iv1 + v2)(ξ∗

2 )2

2ξ1ξ
∗
2

=
(iv1 + v2)−iu1+u2

2 − (−iv1 + v2)
(u3)2

(−2i)2 −iu1+u2
2

iu3

=
(iv1 + v2)−iu1+u2

2 − (−iv1 + v2)
−(u1)2−(u2)2

−2(−iu1+u2)

iu3 =

= (iv1 + v2)(−iu1 + u2) + (−iv1 + v2)(−iu1 − u2)

2iu3

= v1u2 − v2u1

u3 = 1, (107)

due to (87).
As was shown in Sect. 3, if antisymmetric tensors uμν

and vμν satisfy (39) and (33), and uμν �= 0, there is only
one antisymmetric tensor wμν satisfying (38) and (33). On
the other hand, the tensor ξ̄σμνηc satisfies (38) and (33), so
ξ̄σμνηc = wμν . Using this and (5, 15, 97, 102), we obtain
from (91):

((�′ − fξη) f
−1
ξξ (�′ + fξη) + fηη)ϕu = 0, (108)

which coincides with the equivalent (18) of the Dirac equa-
tion after we identify ϕu with ξ̄ψ .

5 Formulation in terms of 3D vectors

Now let us rewrite the Dirac equation in terms of complex 3D
vectors. For example, instead of the antisymmetric second-
rank tensors uμν, vμν,wμν , we are going to use 3D vectors,
such as u = (u1, u2, u3), where ui = u0i . Lorentz transfor-
mations correspond to 3D rotations of such vectors through
complex angles.

We require

(u · u) = 0, (u · v) = 0, u = ∓u × v. (109)

One can check that the last equality of (109) generally yields

u03v02 − u02v03 = ±u01 (110)

and

(v · v) = −1. (111)

We also require

(u · w) = 2, (v · w) = 0, (w · w) = 0. (112)

Adapting the calculation of wμν in Sect. 3, we can obtain,
using (46, 50, 51, 52, 53):

w = − (v · u∗)2

(u · u∗)2 u +

2
(v · u∗)
(u · u∗)

v + 2

(u · u∗)
u∗, (113)

where u∗ = (u1∗, u2∗, u3∗).Then, using (4), one can check
that, e.g., Fμνuμν = 2(u · (E ∓ iH)), where E =
(E1, E2, E3), H = (H1, H2, H3), introduce vector F =
E ∓ iH , and use (91) to obtain

((�′ − (F · v))(F · u)−1(�′ + (F · v)) + (F · w))ϕu = 0.

(114)

Again, the current can be restored using the procedure
similar to that in Sect. 3. In particular, based on (62), we
should use the following:

ϕu =
(

(ψ∓ · u)

2

) 1
2

, (115)

where vector ψ∓ = (ψ01∓ , ψ02∓ , ψ03∓ ).
Let us provide examples of the vectors u, v,w, which play

a role similar to that of γ -matrices in the spinor formulation
of the Dirac equation. One of the choices for the vectors are
(cf. (93,94)):

u = (i, 1, 0), v = (0, 0,∓i),w = (−i, 1, 0). (116)

6 Conclusion

Previously [7–9], the author showed that the Dirac equation
is generally equivalent to a fourth-order linear equation for
juct one component. On the other hand, chiral spinors can
be represented by antisymmetric second-rank tensors [2].
Thus, for a Dirac spinor ψ , one can build tensors ψ

μν
± corre-

sponding to chiral spinors ψ±, such that ψ = ψ+ + ψ− and
γ 5ψ± = ±ψ±. Then we introduce constant antisymmetric
second-rank tensors uμν, vμν satisfying certain tensor con-
ditions. The choice of uμν determines the component for
which we obtain the linear equivalent of the Dirac equation,
and different choices of vμν lead to equivalent equations.
The choice of uμν and vμν determines the choice of another
constant antisymmetric second-rank tensor wμν satisfying
certain tensor conditions. Eventually, we derive a linear ten-
sor equivalent of the Dirac equation for just one component

ϕu =
(

−ψ
μν
∓ uμν

8

) 1
2

.
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There is a popular phrase: “A spinor is a square root of a
vector” [26, Chapter II, para. 4]. In our case, one can say that
a square root of a scalar is a scalar.

Let us make some comments.

• There are two slightly different versions of the formalism
depending on whether we start with ψ

μν
+ or ψ

μν
− .

• When we have a solution of the linear tensor equivalent
of the Dirac equation, there is an unequivocal recipe for
calculation of the Dirac current.

• The linear tensor equivalent of the Dirac equation is an
equation for one component, which component is (in gen-
eral) complex, but it can be made real by a gauge trans-
formation (at least locally).

The author hopes that the linear tensor equivalent of the Dirac
equation for one component will be useful for some appli-
cations and for better understanding of the Dirac equation’s
“magic”.

Supplementary information
The supplementary file includes a Mathematica notebook.

The notebook contains the proofs of several algebraic state-
ments.
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