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Abstract In the present study, we probe the geodesic
motion and accretion of particles around the spherically sym-
metric Dyonic ModMax black hole using isothermal fluid.
The geodesic motion of the particles around the black hole
leads to the formation of disk like structure during the accre-
tion process. We compute the radiant temperature, radioac-
tive efficiency, radiant flux energy, circular orbits and observe
the behavior of particles within stable circular orbits in the
equatorial plane. We examine how the particles are perturbed
during the process by using restoring forces and the oscilla-
tory behavior of the particles surrounding a compact object
and also investigate the fluid’s critical flow and maximum
accretion rate. Our findings demonstrate how the black hole
parameter γ and charge Q affect the circular geodesic of par-
ticles as well as the maximum accretion rate of the Dyonic
ModMax black hole.

1 Introduction

The theory of general relativity (GR) predicts the existence
of fascinating objects known as black holes (BHs). The
extremely strong gravitational field observed in the universe
is thought to have originated from BHs. Furthermore, it is
widely accepted that BHs are characterized by powerful mag-
netic fields and spin. Considering these characteristics, BHs
serve as an ideal astrophysical laboratory for investigating
the properties of gravity and matter. Based on an extensive
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examination of observational evidence, recent empirical data
has certainly verified the existence of BHs. The first achieve-
ment demonstrates the identification of gravitational waves
resulting from the collision of two BHs in a binary system,
as observed through the collaborative efforts of Ligo and
Virgo [1]. The Event Horizon Telescope plays a vital role
in utilizing baseline interferometry to capture the first image
of the BH shadow of M87∗ [2,3]. Additionally, it has also
revealed an image of Sgr A∗ [4]. It is widely accepted that
cosmic objects, such as BHs, experience mass accumulation
through the process known as accretion. Additionally, they
could be utilized for the analysis of modified gravity the-
ories. Whenever the fluid velocity is identical to the sound
speed, these particles must pass through the critical point.
The fluid is projected onto its central mass at supersonic
speed. The BH mass needs to be raised as a result of this
event [5]. It is fascinating to analyze numerous radii as a
consequence of examining the particles geodesic structure
near the BH, such as innermost stable circular orbit (I SCO)

and marginally bound orbit (rmb). In the examination of BH
accretion discs, the considered radii are the significant fac-
tors. The presence of the accretion disk is crucial for the
investigation of the accelerated accretion rate associated with
these compact objects. As a result of the presence of diffuse
matter, the accretion disk evolves into a centrally condensed
object that emits energy as it spirals progressively. Accre-
tion refers to the phenomenon in which nearby fluids attract
particles towards a compact object, such as BH.

The ISCO corresponds to the inner boundary of the disk.
Its radius can be utilized to calculate the energy emission effi-
ciency, which determines the rate at which energy from the
rest mass transforms into radiation. The locations of unsta-
ble or stable circular orbits are determined by the maximum
or minimum value of the effective potential, respectively.
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According to the principles of Newtonian theory, it is widely
accepted that the ISCO cannot have a minimum radius. The
ISCO has the ability to determine any radius in which the
effective potential has decreased to its minimum value for all
feasible angular momentum [6]. The effective potential in GR
and the behavior of particles rotating near the Schwarzschild
BH exhibit two distinct extremes, corresponding to the mini-
mum and maximum values of angular momentum. In r = 3rg
[6,7], one can investigate ISCO, where rg stands for the
Schwarzschild radius. In [8,9], researchers investigated the
effects of ISCO in the surrounding of Kerr BH introduced
these characteristics in GR. Thorne and Novikov [10] deter-
mined the Kerr and Schwarzschild BH accretion discs effi-
ciency. In [11] Johannsen created the accretion discs around
such BHs, while Johannsen and Psaltis [12] presented the
Kerr-like metric. The geodesic structure and spherical orbits
of charged particles near revolving, weakly magnetic BHs
have been identified by Tursunov et al. [13]. Based on the
stability of the particles within the accretion disk, it follows
that any perturbation will lead to oscillatory behavior in both
the radial and vertical dimensions, characterized by a rise
of epicyclic frequencies. As a consequence, the formation
of accretion discs around BHs depends on comprehending
orbital and epicyclic frequencies. Furthermore, the geodesic
form and accretion disk have been investigated in the litera-
ture for a variety of BHs [14–22].

One of the primary concerns in Einstein’s theory of GR
relates to the presence of singularities at the beginning of the
universe along with BH solutions. Maxwell’s theory of Elec-
trodynamics comprises similar singularities [23]. In order to
prevent the occurrence of these singularities, the Maxwell
theory of electrodynamics was modified in 1934 by Born–
Infeld (BI), which also comprises a relativistic and gauge
invariant theory called BI nonlinear electrodynamics (NED)
[24]. The self energy of charges is finite in BI NED. Addition-
ally, it is possible to determine the effective action of BI NED
on open superstrings occurring at low energy dynamics of
D-branes in the absence of any physical singularity [23,25].
Euler–Heisenberg (EH) NED is another illustration, which
happens as a result of vacuum polarization [26]. Both the BI
NED and EH NED, which possess SO(2) electric-magnetic
duality invariance, demonstrate a reduction to Maxwell elec-
trodynamics under the conditions of a weak field regime due
to the presence of fixed energy scale interactions that result
in the breaking of conformal invariance. Subsequently, uti-
lizing the Einstein-NED theories as the basis, regular BH
solutions using duality rotation freedom have been identified
[27–29]. The researchers in [30] have developed a ModMax
electrodynamics extension of Maxwell electrodynamics that
features a low-energy limit of a one-dimensionless parame-
ter refinement of BI, and lapses back to Maxwell equations
for γ = 0. In ModMax electrodynamics, Flores-Alfonso et
al. [31] recently determined the new BH solutions. In [32],

the researchers discuss various aspects like shadow, lens-
ing, quasinormal modes, greybody constraints, and neutrino
propagation of Dyonic ModMax BHs. Dynamic solutions
are obtained through SO(2) invariance for electric and mag-
netic fields. Actual charges are shielded by the screening
factor γ exerted by ModMax electrodynamics on BH space-
times. Many researchers subsequently examined ModMax
electrodynamics [33–53].

Based on the above motivation, we are particularly inter-
ested to investigate the impacts on particle dynamics and the
accretion process in the vicinity of the Dyonic ModMax BH.
This is the primary objective of the present article. The paper
will be completed according to the following manner. Section
2 explores the fundamental formulation for particle dynamics
in the provided subsections, like flux of radiant energy, cir-
cular motion, oscillations, and stable circular orbits. Section
4 and its subsections provide the generic formulas for vari-
ous dynamical parameters, including the critical flow speed,
accretion for an isothermal fluid, and the accretion rate. In
Sect. 5, we analyzed the solution of the Dyonic ModMax BH
by considering the circular geodesic in the equatorial plane.
In Sect. 6, we provide the summary of our findings.

2 Dyonic ModMax black hole

In this particular section, we examine the spherically sym-
metric metric associated with the Dyonic ModMax BH solu-
tions, which has been proposed in [31] as follows

ds2 = + f (r)dt2 − f −1(r)dr2 − r2(dθ2 + sin2θdφ2),

(1)

with

f (r) = 1 − 2M

r
+ Q2e−γ

r2 , (2)

where Q = √
Q2

e + Q2
m while Qe is the electric charge and

Qm is the magnetic charge. In order to analyze the accretion
disk surrounding the Dyonic ModMax BH, we determine the
BH horizons by considering f (r) = 0. So, the horizons of
BH are located at r± = M±√

M2 − Q2e−γ . Also, in Fig. 1,
we present the comparison of the metric functions f(r) for the
Schwarzschild, RN, and Dyonic ModMax BH. The horizon
radius of the Dyonic ModMax BH is greater than that of
the RN BH and smaller than that of the Schwarzschild BH.
The Dyonic ModMax BH exhibits singularity at the radial
coordinate r = 0.
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Fig. 1 The profile of metric
function f (r) along r

3 General formulation for the geodesic motion of test
particles

This section presents the fundamental expression for the
geodesic motion of the particles by analyzing the Dyonic
ModMax BH. We assume ξt = ∂t and ξφ = ∂φ as killing
vectors that correspond to fundamental constants L and E ,
which stand for conserved angular momentum and energy,
respectively, related to the given trajectory

E = −gμνξ
μ
t u

ν ≡ −ut , (3)

and

L = gμνξ
μ
φ u

ν ≡ uφ, (4)

furthermore, the four-velocity vector uμ = dxμ

dτ
= (ut , ur ,

uθ , uφ) satisfies uμuμ = 1 that gives us

[grr (ur )2 + gθθ (u
θ )2] = [1 − gtt (ut )

2 − gφφ(uφ)2], (5)

by using Eqs. (3), (4) and (5), in the equatorial plane (i.e.
θ = π

2 ), we obtained

ut = − E

f (r)
, (6)

uθ = 0, (7)

uφ = − L

r2 , (8)

ur =
√

− f (r)

(
1 − E2

f (r)
+ L2

r2

)
. (9)

From (9), we attain

(ur )2 + Vef f = E2, (10)

and

Vef f = f (r)

[
1 + L2

r2

]
. (11)

It is clear that the effective potential is determined by radial
distance r , the metric function f (r) and angular momentum
L . In the analysis of particle geodesic motion, the effective
potential is quite useful because it can be used to determine
the location of the ISCO by examining the local extrema of
the effective potential.

3.1 Circular motion of test particles

We investigate how test particles move in a circular orbit
in the vicinity of the equatorial plane by considering radial
component r constant, so ur = u̇r = 0. Using Eq. (10),
we found that Vef f = E2 and d

dr Vef f = 0. Also, we deter-
mine the angular velocity 
φ , angular momentum l, specific
energy E , and specific angular momentum L , which are given
by


2
φ = 1

2r
f ′(r), (12)

E2 = 2 f 2(r)

2 f (r) − r f ′(r)
, (13)

L2 = r3 f ′(r)
2 f (r) − r f ′(r)

, (14)

l2 = r3 f ′(r)
2 f 2(r)

. (15)

The Eqs. (13) and (14) must have real solutions if

2 f (r) − r f ′(r) > 0. (16)

The inequality (16) is necessary for the presence of circular
orbits because it is feasible to examine the certain area of the
circular orbit. Furthermore, in the case of marginally bound
and bound orbits, Eq. (13) must fulfill the given conditions of
E2 = 1 and E2 < 1, respectively. Furthermore, by utilizing
Eq. (13), we achieve

2[ f (r) − 1] f (r) + r f ′(r) = 0, (17)

the marginally bound orbit will be identified using Eq. (17).
The Eqs. (13) and (14) exhibit divergence if

− r f ′(r) + 2 f (r) = 0. (18)
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Equation (18) can be used to compute the radius of the photon
sphere, which is necessary for the investigation of gravita-
tional lensing.

3.2 Radiant energy flux and circular orbits

The existence of stable circular orbits depends on the local
minimum of the effective potential, which is found by
d2Vef f
dr2 > 0. Furthermore, the Eq. (11), gives us

d2

dr2 Vef f =
(

1 + L2

r2

)
f ′′(r) − 4L2

r3 f ′(r) + 6L2

r4 f (r).

(19)

By employing the requirements Vef f = 0,
dVef f
dr = 0 and

d2Vef f
dr2 = 0 we can calculate ISCO, i.e.,risco. Furthermore,

the process of accretion is possible when r < risco. When
particles transition from a state of rest to an infinite distance
and accumulate around compact objects, they emit gravita-
tional energy that is subsequently converted into radiation.
The angular speed 
φ , the specific energy E , and the spe-
cific angular momentum L are used to describe the radiation
energy flux across the accretion disk [54]

K = − Ṁ
φ,r

4π
√−g(E − L
φ)2

∫ r

risco
(E − L
φ)L ,r dr,

(20)

the radiant flux is indicated by K , the mass accretion rate can
be expressed as Ṁ , 
φ,r ≡ d
φ

dr , and the determinant of gμν

is denoted as g we acquired

g = det(gμν) = −r4sin2θ. (21)

To conduct the comprehensive analysis of our results within
the θ = π

2 , we determine the relationship as sin θ = sin π
2 =

1. By utilizing Eqs. (12-14), we obtain

K (r) = −Ṁ

4πr4

√
r

2 f ′(r)

×[r f ′(r) − 2 f (r)][r f ′′(r) − f ′(r)]
[2 f (r) + r f ′(r)]2

∫ r

risco
F(r)dr,

(22)

where

F(r) =
√

r

2 f ′(r)

×[r f ′(r)+2 f (r)][r f (r) f ′′(r)−2r f ′2(r)+3 f (r) f ′(r)]
[2 f (r) − r f ′(r)]2 .

(23)

The link between energy flux and temperature, represented as
K (r) = σT 4(r), is based on the assumption that the accre-
tion disk is in a state of thermal equilibrium. Therefore, it

is assumed that the radiation emitted from the disk demon-
strates characteristics that are comparable to black body radi-
ation. By taking into consideration the thermal black body
radiation, it is possible to calculate the temperature distri-
bution across the accretion disk by employing the provided
equation. This will allow us to determine the luminosity of
the disk, represented by L(v). The luminosity of the accre-
tion disk is defined by the inclination angle γ of the disk
[55]

L(ν) = 4πd2 I (ν) = 8

π
(cos γ )

∫ r f

ri

∫ 2π

0

ν3
e rdφdr

exp( νe
T ) − 1

.

(24)

Based on the previous outcome, it is evident that the flux
energy is represented by I (ν). The maximum efficiency, η∗,
can be achieved by

η∗ = 1 − Eisco. (25)

Here, the particle energy in ISCO is denoted by Eisco. When
all released photons are capable of escaping into infinity, then
the above relation is true. In the plane θ = π

2 , the motion of
the particles produced by a perturbation in a fluid element
corresponds to a circular orbit.

3.3 Oscillations

Throughout the accretion procedures, several kinds of oscil-
latory motion arise as a consequence of the presence of restor-
ing forces. The significant impact of restoring forces depends
on perturbations in the vicinity of accretion disks, which are
caused by the oscillation in both the horizontal and vertical
directions. The accretion disk produces numerous restoring
forces caused by its rotational motion within a vertical grav-
itational field. The presence of a restoring force in a fluid
element allows its return to a state of equilibrium, as the rota-
tional motion of the element counteracts its radial motion. It
is noteworthy to mention that the gravitational force acting
throughout accretion disks counteracts the centrifugal force
generated by central objects. The fluid element is displaced
either inward or outward and then restored to its original
radius using the epicyclic frequency 
r , lies on whether the
latter exceeds the former or vice versa. Because the gravita-
tional field pinches the perturbed elements, the fluid element
returns to its equilibrium state after experiencing a vertical
perturbation in the plane π

2 . Because of the existence of a
restoring force, the element of fluid produces harmonic oscil-
lations in plane π

2 , which corresponds to a vertical epicyclic
frequency 
θ . Three different types of motions, harmonic
vertical motion with a vertical frequency, circular motion
with an orbital frequency, and radial motion with a radial
frequency determine the movement of particles within the
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accretion disk. In this study, we will focus on the radial and
vertical motion near the circular orbits in the equatorial plane.

Motions in the radial and vertical directions can be charac-
terized by 1

2 ( drdt )
2 = V (r)

e f f , and 1
2 ( dθ

dt )
2 = V (θ)

e f f , so according

to Eq. (5) ur = 0, describes radial motion, while uθ = 0,
describes vertical motion. By considering ur = dr

dτ
= dr

dt u
t

and uθ = dθ
dτ

= dθ
dt u

t , we obtained

1

2

(dr
dt

)2 = −1

2

f 3(r)

E2

[
1 − E2

f (r)
+ L2

r2sin2(θ)

]
= V (r)

e f f ,

(26)

1

2

(dθ

dt

)2 = −1

2

f 2(r)

E2r2

[
1 − E2

f (r)
+ L2

r2sin2θ

]
= V (θ)

e f f .

(27)

We will examine the radial and vertical epicyclic frequencies
near circular orbits in the plane π

2 by assuming small pertur-
bations indicated by the δθ and δr . From Eqs. (26) and (27),
we have

d2r

dt2 = dV (r)
e f f

dr
. (28)

The resultant expression for a particle with a perturbation in
its original radius at r = r0 and a deviation δr = r − r0 can
be written as

d2

dt2 (δr) = d2V (r)
e f f

dr2 (δr) ⇒ (δr̈) + 
2
r (δr) = 0, (29)

where 
2
r ≡ − d2

dr2 V
(r)
e f f and dots represent time derivative.

By assuming a vertical perturbation δθ = θ − θ0, we obtain
the following outcome using analogous approach

d2(δθ)

dt2 = d2Vef f
(θ)

dr2 (δθ) ⇒ (δθ̈) + 
2
θ (δθ) = 0, (30)

and 
2
θ ≡ − d2

dθ2 V
(θ)
e f f . Equations (26) and (27), gives follow-

ing result in the plane π
2


2
r = 1

2E2r4 [((r2 + L2)3 f (r) − 2E2r2)r2 f (r) f ′′(r)

+2r2((r2 + L2)3 f (r) − E2r2) f ′2(r)
−6L2 f 2(r)(2r f ′(r) − f (r))], (31)

and


2
θ = f 2(r)L2

E2r4 . (32)

where prime indicates the derivative w.r.t r .
The study of the basic dynamical equations underlying

ModMax BH is given in the following section.

4 Basic dynamical equations

In this section,we explored the basic formalism for accretion
proposed by Babichev et al. [56,57] and also investigate the
ideal fluid defined by its energy–momentum tensor

Tμν = (ρ + p)uνuμ − gμν p, (33)

where ρ and p represent the energy density and pressure
of the fluid, respectively. The characterization of the four-
velocity uμ in the plane π

2 is given as

uμ = dxμ

dτ
= (ut , ur , 0, 0), (34)

here, τ represents the proper time. The previous expression
along with uμuμ = 1, gives us

ut =
√

f (r) + (ur )2

f (r)
, (35)

For forward fluid motion and accretion (inward flow) we
must have ut > 0 and ur < 0, respectively. The conservation
equations of energy momentum and particle number must be
computed in order to examine the accretion process. Energy–
momentum tensor conservation is provided by

Tμν

;μ = 0 ⇒ Tμν

;μ = 1√−g
(
√−gTμν),μ + �ν

αμT
αμ = 0,

(36)

where
√−g = r2sinθ , � represents Christoffel symbol of

2nd kind and (; ) indicates the covariant derivative. By using
the BH metric, Eq. (36) becomes

T 10
,r + 1√−g

T 10(
√−g),r + 2�0

01T
10 = 0, (37)

From Eq. (37), we obtain

d

dr
[(ρ + p)urr2

√
f (r) + (ur )2] = 0. (38)

We can obtain the following expression by integrating the
previous equation.

(ρ + p)urr2
√

f (r) + (ur )2 = C0, (39)

where C0 denoted the constant of integration. projecting the
energy-momentum conservation law onto the four-velocity,
we have

(ρ + p)uμ

;νuμu
ν + (ρ + p),νuμu

μuν

+(ρ + p)uμu
μuν

;ν + p,νg
μνuμ + puμg

μν

;ν = 0, (40)

since gμν

;ν = 0, by use of uμuμ = 1, we get

(p + ρ)uν
;ν + uνρ,ν = 0, (41)

because Ab
;a = ∂a Ab + �b

ac A
c, Eq. (41) takes the form
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urρ,r + [�0
0cu

c + ur,r + �1
1cu

c + �2
2cu

c + �3
3cu

c]
(ρ + p) = 0. (42)

Equation (42), produces the following expression

ρ′

(ρ + p)
+ u′

u
+ 2

r
= 0, (43)

which, after integrating, gives the following

r2ur exp

(∫
dρ

p + ρ

)
= −C1, (44)

where C1 represents the integration constant. Considering
the ur < 0, we compute the resulting expression

(p + ρ)

√
(ur )2 + f (r) exp

(
−

∫
dρ

p + ρ

)
= C2, (45)

where C2 is the integration constant.
The expression of flux mass is

(ρuμ);μ ≡ 1√−g
(
√−gρuμ),μ = 0, (46)

from Eq. (46), we have

1√−g
(
√−gρuμ),r + 1√−g

(
√−gρuθ ),θ = 0, (47)

because we are concentrating on the equatorial plane, the
second term in Eq. (47) vanishes. Hence the term

√−gρuμ

should be constant, that is

ρurr2 = C3, (48)

where C3 is constant of integration.

4.1 Dynamical parameters

In order to proceed further, we will assume an isothermal
fluid using the equation of state p = kρ, where k represents
the state parameter. For an isothermal fluid p ∝ ρ, it is
necessary that the speed of sound remain constant throughout
the accretion process. Also, by using Eqs. (44), (45) and (48),
we found
ρ + p

ρ

√
f (r) + (ur )2 = C4, (49)

while the integration constant is represented by C4. After
substituting p = kρ into Eq. (49), we obtain

u =
√
A2

4 − (k+1)2(r(r−2M)+e−γ Q2)
r2

k + 1
. (50)

Figure 2 depicts the radial velocity variation along radial
distance r . From Fig. 2a, we can see that the radial velocity
increases initially for smaller radii of the BH and attains its
largest value at Q = 0.4 and decreases with increasing the
BH radius. It is important to observe that the radial velocity
decreases with the increment in Q. Furthermore, the impact

of the BH parameter γ observed in Fig. 2b. We observe that
as the value of BH parameter γ increases the radial velocity
decreases.

Now, we calculate the density of the fluid from Eq. (48),
as

ρ = A3(k + 1)

r2
√
A2

4 − (k+1)2(r(r−2M)+e−γ Q2)
r2

. (51)

It is observed in Fig. 3, that fluid density decreases along
the radius r . Furthermore, in left panel we can see that as
the value of charge Q grows, the density of the fluid also
grows. The effect of BH parameter γ on density represented
in right panel. It is worthwhile to note that as the value of BH
parameter γ increases the density ρ decreases. Additionally,
we may calculate the pressure by using the equation p = kρ.

4.2 Mass evolution

According to astronomical studies, the mass of BH may
change significantly over time as a result of numerous
events, including mass accreting around the BH and the
emission of Hawking radiation. The following expressions
ds = √−gdθdφ and T r

t = (p + ρ)utur are utilized to
determine the mass accretion rate around the Dyonic Mod-
Max BH. Consequently, the Ṁ accretion rate is obtained by

Ṁ = −4πr2u(p + ρ)

√
u2 + f (r) ≡ −4πC0. (52)

By consideringC0 = −C1C2 andC2 = (p∞+ρ∞)
√

f (r∞),
we get

Ṁ = 4πC1(p∞ + ρ∞)
√

f (r∞)M2. (53)

So, it is feasible to determine the time evolution of the BH
mass having an initial mass of Mi by integrating Eq. (53),
we have

dM

M2 = F t, (54)

hereF ≡ 4πC1(p+ρ)
√

f (r∞). From Eq. (54), we obtained

Mt = Mi

1 − FMi t
≡ Mi

1 − t
tcr

, (55)

where time accretion tcr is computed by using the following
expression: tcr = [4πC1(p + ρ)

√
f (r∞)Mi ]−1. From Eq.

(55), we can see that the BH mass grows up to infinity within
a finite time at t = tcr . Consequently, the BH mass accretion
rate obtained by

Ṁ = 4πC1(p + ρ)M2. (56)

Figure 4 displays the profile of mass accretion rate along
the BH radius r . From Fig 4a, it is noticed that when
the charge parameter Q varies, the accretion rate initially
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Fig. 2 Radial velocity variation along r with the equation of state parameter k = 0.5 a for γ = 0.1 and numerous values of Q, b for Q = 0.2 and
various values of γ

Fig. 3 The graph of the fluid density ρ along r a for γ = 0.1 with different values of Q, b for Q = 1 and different values of γ

Fig. 4 The mass accretion rate Ṁ represented as a function of r a by assuming γ = 0.1 and different values of Q = 1, b for Q = 1 and various
values of γ

decreases along the BH radius r to some extent and sub-
sequently increases to its maximum. We also see that the
accretion rate Ṁ enhanced quickly as the charge parameter
Q increased. The effect of parameter γ on mass accretion
rate Ṁ as shown in Fig 4b. We can observe that the mass
accretion rate Ṁ decreases as the value of BH parameter γ

increases.

4.3 Critical accretion

The fluid experiences inward motion as a consequence of the
BH gravitational pull, but it remains static far from the BH.

As the fluid moves inward, it passes through the sonic point,
so at this point, the fluid velocity must be equivalent to sound
speed. From Eqs. (48) and (49), we have

ρ′

ρ
+ u′

u
+ 2

r
= 0, (57)

and

ρ′

ρ

[
d ln(p + ρ)

d ln ρ
− 1

]
+ uu′

u2 + f (r)
+ 1

2

f ′(r)
u2 + f (r)

= 0.

(58)

Using Eq. (58), we have
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d ln u

d ln r
= D1

D2
, (59)

where

D1 =
[

r f ′(r)
2(u2 + f (r))

− 2V 2
]

, (60)

and

D2 =
[
V 2 − u2

u2 + f (r)

]
. (61)

By utilizing Eqs. (59)–(61), we acquire

V 2 = d ln(p + ρ)

d ln ρ
− 1. (62)

The critical points are found by assuming D1 = D2 = 0, so
we can get

V 2
c = r f ′(r)

4 f (r) + r f ′(r)
, (63)

and

u2
c = 1

4
r f ′(r), (64)

where critical point is represented by the index c. The rhs of
Eq. (62), must be positive. The subsequent inequality estab-
lishes the range of the critical radius

4 f (r) + r f ′(r) > 0. (65)

From Eq. (50), we attain

c2
s = C4

√
[u2 + f (r)]−1 − 1, (66)

so, c2
s = dp

dρ is the necessary expression for the sound speed.

5 Circular equatorial geodesics

The effective potential, which can be determined from Eq.
(11), is essential to investigate circular geodesics in the plane
θ = π

2

Vef f =
(

1 − 2M

r
+ Q2e−γ

r2

)(
1 + L2

r2

)
. (67)

The condition
d2Vef f
dr2 > 0 is necessary for the existence of sta-

ble circular orbit and Eq. (18), locate the position of ISCO at

risco = e−2γ 3
√

8e6γ M6 − 9e5γ M4Q2 + 2e4γ M2Q4 + √
5e10γ M8Q4 − 9e9γ M6Q6 + 4e8γ M4Q8

M

− e−2γ
(
27e3γ M2Q2 − 36e4γ M4

)

9M 3
√

8e6γ M6 − 9e5γ M4Q2 + 2e4γ M2Q4 + √
5e10γ M8Q4 − 9e9γ M6Q6 + 4e8γ M4Q8

+ 2M, (68)

The profile of effective potential along radius r is rep-
resented in Fig. 5. From Fig. 5a, we observe that the first
extremum exists at L = 5 and none of the other extrema
exist before L < 5. Furthermore, we can see that the effec-
tive potential rises with the rise of angular momentum L . The
position of ISCO is represented by the black dot in Fig. 5a,
which lies at r = 5.94536. It is important to note that there are
two extrema observed for the larger value of L . The stable and
unstable circular orbits correspond to the minimum and max-
imum values of effective potential Vef f , respectively. More-
over, in Fig. 5b, we see how the BH charge Q impacts the
effective potential Vef f across r . It is evident that the effec-
tive potential increases according to the increase in the charge
parameter Q. Figure 5c represents that as the value of the BH
parameter γ increases, the effective potential decreases. It is
worthwhile to note that the ISCO is essential for the exami-
nation of accretion processes in the vicinity of the BH. Also,
for the completion of this procedure, some other particular
radii are essential. As it has been stated before, there exists a
circular orbit when r > rph . Assuming rph < r < risco, the
particle’s motion will exhibit instability for small perturba-
tions. This connection implies that particles are either pulled
into the BH or escape to infinity. The particle moves in stable
circular orbits if r > risco. In addition, the photon sphere rph
and marginally bound orbit rmb, are obtained as

rph = 1

2
e−γ

(
eγ /2

√
9eγ M2 − 8Q2 + 3eγ M

)
, (69)

rmb = e−2γ 3
√

128e6γ M6 − 144e5γ M4Q2 + 27e4γ M2Q4 + 3
√

3
√

27e8γ M4Q8 − 32e9γ M6Q6

3 3
√

2M

−
3
√

2e−2γ
(
12e3γ M2Q2 − 16e4γ M4

)

3M 3
√

128e6γ M6 − 144e5γ M4Q2 + 27e4γ M2Q4 + 3
√

3
√

27e8γ M4Q8 − 32e9γ M6Q6
+ 4M

3
. (70)
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Fig. 5 The illustration of Vef f is a function of r a for γ = 0.1, Q = 0.2, with different values of L , b for γ = 1, L = 10 and various values of
Q, c for Q = 0.2, L = 10 and different chosen values of γ

We now compute the specific angular momentum, spe-
cific energy, angular velocity, and angular momentum of the
motion of particles in circular orbits for the Dyonic ModMax
BH. Consequently

E2 = e−γ
(
eγ r(r − 2M) + Q2

)2

r2
(
eγ r(r − 3M) + 2Q2

) , (71)

L2 = r2
(
eγ Mr − Q2

)

eγ r(r − 3M) + 2Q2 , (72)


2
φ = Mr − e−γ Q2

r4 , (73)

l2 = eγ r4
(
eγ Mr − Q2

)

(
eγ r(r − 2M) + Q2

)2 . (74)

For ISCO the above expression are given in Appendix A.
The specific energy and specific angular momentum pro-

files along the radial direction r is illustrated in Fig. 6. Fur-
thermore, the impact of the charge Q and BH parameter γ

also observed. From left penal it is clear that specific energy
and specific angular momentum decreases with the incre-
ment of charge Q while in right penal it is observe that as
the value of BH parameter γ grows, the specific energy and
specific angular momentum increases.

5.1 Radiant energy flux

We study the flux radiation emitted by the outermost layer
of the disk in the plane θ = π

2 utilizing the quantities E , L ,
and 
φ . The investigation of the flux radiant energy related
to the accretion disk can be conducted using Eqs. (22) and
(23), which gives us

K (r)

= −
Ṁ

√
eγ r4

eγ Mr−Q2

(
3eγ Mr−4Q2

) (
eγ r

(
r2−M(2r+1)

)+Q2(r+1)
)

8πr5
(
eγ r

(−2Mr + M + r2
) + Q2(r − 1)

)2

×
∫ r

risco
F(r)dr, (75)

where

F(r) =
⎛

⎝e−γ

√
eγ r4

eγ Mr − Q2 (eγ r(−2Mr + M + r2)

+Q2(r − 1))(eγ MQ2r(r + 8)

−e2γ Mr2(2M(r + 2) − r2) − 4Q4)

⎞

⎠

×
(

2r3(eγ r(r2 − M(2r + 1)) + Q2(r + 1))2
)−1

.

(76)
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Fig. 6 The profile of energy and angular momentum is represented as a function of r . The left plots are drawn for γ = 0.1 and numerous values
of charge Q while right plots are drawn for Q = 1 and various values of BH parameter γ

Fig. 7 The profile of energy flux K along r , for different value of Q and γ

To analyze the radiation flux behavior of the accretion
disk surrounding the BH for various values of the charge
parameter Q, as represented in Fig. 7. In left panel we observe
that the increase in BH parameter Q leads to a higher flux
energy of the accretion disk while in right penal we can see
that as the value of BH parameter γ increases the radiation
energy flux decreases.

5.2 Radiant temperature

There is speculation that the accretion disk is in thermal equi-
librium, leading to the emission of radiation that follows the
principles of black body radiation. The Stefan–Boltzmann
law, indicated as K (r) = σT 4, establishes a fundamental
relationship between energy flux and temperature. In this

scenario, the symbol σ denotes the Stefan–Boltzmann con-
stant. The disk temperature is determined by evaluating the
BH parameter Q. In Fig. 8, the temperature distribution on
a disk is observed for various values of Q, with the param-
eter γ = 0.1 fixed. In left penal it has been noticed that the
temperature of the disk rises as the parameter Q grows. In
right penal we have observed that the temperature of the disk
decline as the value of BH parameter increases.

5.3 Radiative efficiency

The gravitational energy radiation is emitted as the material
of the disk gradually spirals towards the center. Determining
the specific energy in the ISCO radius allows us to calcu-
late the central object’s radiative efficiency, or its capacity to
convert rest mass into radiation. Radiative efficiency can be
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Fig. 8 The radiation temperature profile for various values of Q and BH parameter γ

Table 1 The numerical results of below mentioned quantities are given by considering Q = 1 with various values of BH parameter γ

γ ISCO E2
isco L2

isco 
2
isco l2isco Kmax (r) Tmax (r) η∗

0.4 5.98993 0.865822 9.53292 0.00765477 11.0103 1.1 × 1014 2.06 × 105 0.0695044

0.8 5.99325 0.875304 10.4096 0.00628288 11.8925 5.9 × 1013 1.78 × 104 0.0644233

1.2 5.99548 0.880431 10.9572 0.0056183 12.4452 4.3 × 1013 1.65 × 105 0.0616871

calculated by using the following formula

η∗ = 1 − Eisco (77)

The numerical result of ISCO, E2
isco, L2

isco, 
2
isco,l2isco, max-

imum energy flux and maximum temperature distribution are
provided in the given Table 1.

5.4 Epicyclic frequencies

When perturbations occur within the plane θ = π
2 , particles

moving along a circular orbit will experience small oscilla-
tions in both the vertical and radial directions. The radial and
vertical epicyclic frequencies are calculated by using Eqs.
(31) and (32), as provided


2
r

=
(
e−2γ (2e2γ Q6r2(−276M2 − 2Mr(75r2 + 106)

+ 3r2(7r2 + 24)) + 2e4γ Q2r4(−336M4 + 3(19M2 + 1)r4

− 18(10M2 + 3)Mr3 + (237M2 − 2)r2 + 6(1 − 32M2)Mr)

+ 2e3γ Q4r3(440M3 + 3M2r(83r2 + 107) − 6Mr2

× (10r2 + 39)+29r3 − 2r)−e5γ r5(−192M5+4(9M2 + 1)

× Mr4 + 6(26M2 − 1)Mr2 + (9 − 80M2)M2r + (1 − 48

× (2M4 + M2))r3) + 6eγ Q8r(28M + 11r3 + 16r)

− 20Q10)
)(

2r6(eγ r(r − 2M) + Q2)3
)−1

, (78)

and


2
θ = e−γ−2

(
Q2 − eγ Mr

)2 (
eγ r(r − 2M) + Q2

)

(
eγ r(r − 3M) + 2Q2

)2 . (79)

In Fig. 9, the profile of radial epicyclic frequency 
r can
be examined along the dimensionless radial coordinate r for

numerous values of BH parameter γ and charge Q. In Fig.
9, we observe that initially the radial epicyclic frequency
increases to its maximum value for small BH radius and then
decreases as BH radius r increases. Also, the effect of the BH
parameter γ and charge Q illustrated in Fig. 9. The behavior
of the vertical epicyclic frequency 
θ along radial coordi-
nates r is represented in Fig 10. In left penal we can see that
as the value of BH parameter charge Q rises the vertical fre-
quency decreases. Furthermore, the effect of BH parameter
γ observed in right penal. It can be easily seen that the ver-
tical epicyclic frequency 
θ increases with the increment of
BH parameter γ .

6 Conclusions

The procedures of accretion and particle geodesic motion
around the Dyonic ModMax BH in the equatorial plane are
investigated. The investigation of the stability and circular
geodesics of their orbits has allowed the formation of a funda-
mental formulation for examining the accretion flow around
the BH and analyzing the oscillations that arise from per-
turbations. The mass accretion rate, emission rate, effective
potential, typical radius, specific energy, epicyclic frequency,
specific angular momentum, and dynamical properties of the
BH are also determined. Some generic solutions for fluid
flow around Dyonic ModMax BH have been obtained by
considering the equation of state p = kρ for the isothermal
fluid. Based on our outcomes, it is evident that the influence
of the BH parameters Q, γ and the effective potential can
be linked to the distinct loci of unstable and stable circu-
lar orbits. By increasing the parameter Q, the value of Vef f
also rises, enabling the determination of the exact location
of the ISCO, as illustrated in Fig. 5a. The location of the
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Fig. 9 The profile of radial epicyclic frequency 
r along r for different chosen values of Q and γ

Fig. 10 The vertical epicyclic frequency 
θ along radial coordinate r for different chosen values of Q and γ

radii indicated as risco, rph , rsin within the spacetime devi-
ates considerably from the Schwarzschild solutions. In Fig.
6, one can see the impact of the BH parameters Q and γ on
the angular momentum and energy of the BH. Moreover, we
noted that as the value of Q rises, the efficiency of the accre-
tion process also rises. It is evident that as the BH parameter
γ increases, there is a corresponding increase in the flux of
radiation and the radiant temperature.

We studied the isothermal fluid and kept the equation of
state parameter k = 0.5 to analyze the fluid particle density,
radial velocity, and accretion processes. It has been noted
that the radial velocity reaches its highest value at small radii
for the minimum value of the charge Q = 0.4 and grad-
ually decrease by increasing the value of Q. However, the
fluid farthest from the BH does not have any radial velocity.
Accretion occurs when the fluid crosses the critical points
where its velocity is equal to the speed of sound. Before
reaching the critical point, the fluid’s flow is characterized
by a subsonic regime. However, once the fluid crosses the
critical point around the BH, it transform to a supersonic flow
due to the intense gravitational field. After analyzing the rate
of accretion, we concluded that its behavior is significantly
dependent on the fluid nature as well as the parameters Q and
γ of the BH. In the scenario of a normal fluid, the increase
in mass accretion occurs as a result of the strong gravita-
tional field, reaching its highest value in the vicinity of the

BH. Furthermore, the circular orbits, including their proper-
ties and epicyclic frequencies are investigated. It is evident
that the radial frequency reaches its highest value at a small
radius r of the BH. As the value of Q increases, the the ver-
tical epicyclic frequency exhibits a decreasing trend as the
radial distance r increases. The influence of the charge Q
on the radial frequency is also significant. Additionally, it
is observed that the vertical frequency reaches its maximum
value at Q = 3 and then decreases towards the equilibrium
position, while increase in the charge parameter Q leads to
a decrease in the vertical frequency.
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Appendix A


2
isco =

⎛

⎝M4(M(
e−2γ 3

√
8e6γ M6 − 9e5γ M4Q2 + 2e4γ M2Q4 + √

e8γ M4Q4(5e2γ M4 − 9eγ M2Q2 + 4Q4)

M

+ eγ M(4eγ M2 − 3Q2)

3
√

8e6γ M6 − 9e5γ M4Q2 + 2e4γ M2Q4 + √
e8γ M4Q4(5e2γ M4 − 9eγ M2Q2 + 4Q4)

+ 2M) − e−γ Q2)

⎞

⎠

×
((

2M2 + e−2γ 3
√

8e6γ M6 − 9e5γ M4Q2 + 2e4γ M2Q4 +
√
e8γ M4Q4(5e2γ M4 − 9eγ M2Q2 + 4Q4) + eγ M2

×
⎛

⎝ (4eγ M2 − 3Q2)

3
√

8e6γ M6 − 9e5γ M4Q2 + 2e4γ M2Q4 + √
e8γ M4Q4(5e2γ M4 − 9eγ M2Q2 + 4Q4)

⎞

⎠

⎞

⎠

4
⎞

⎟
⎠

−1

, (80)

E2
isco =

(
e−γ M2(Q2 +

(
e−3γ ((8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +

(
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

) 1
2
)2/3

+4e4γ M4 − 3e3γ M2Q2)(2e2γ M2
(

8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +
(
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2

+4Q4)
) 1

2
) 1

3 + (8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +
√
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4))2/3 + 4e4γ M4

−3e3γ M2Q2)
)(

M2(8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +
(
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2

+4Q4)
) 1

2
)2/3)−1)2)((

e−2γ
(

8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +
(
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

) 1
2
) 1

3

+2M2 + eγ M2(4eγ M2 − 3Q2)

3

√
8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +

(
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

)
)2(

2Q2 + eγ

⎛

⎜⎜
⎝
e−2γ

(
8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 + √

e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)
) 1

3

M
− M + eγ M

(4eγ M2 − 3Q2)

3
√

8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 + √
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

⎞

⎠
((

e−2γ
(

8e6γ M6 −

9e5γ Q2M4 + 2e4γ Q4M2 +
√
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

) 1
3
)
(M)−1 + 2M +

(
eγ M(4eγ M2 − 3Q2)

)

(
3
√

8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +
√
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

)−1)))−1
, (81)

L2
isco =

((
e−2γ 3

√
8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +

√
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4) + 2M2

+ eγ M2(4eγ M2 − 3Q2)
(

8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 + √
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

) 1
3

⎞

⎟⎟
⎠

2

(
eγ M

((
e−2γ
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(
8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +

√
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

) 1
3
)

(M)−1 + 2M + eγ M

( (4eγ M2 − 3Q2)

3
√

8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 + √
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

))
− Q2

))(
M2

(
2Q2 + eγ

⎛

⎝
e−2γ 3

√
8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 + √

e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

M
− M + Meγ

⎛

⎝ (4eγ M2 − 3Q2)

3
√

8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 + √
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

⎞

⎠

⎞

⎠

×
((

e−2γ
(

8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2

+
√
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

) 1
3
)
(M)−1 + 2M +

(
eγ M(4eγ M2 − 3Q2)

)

(
3
√

8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +
√
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

)−1)))−1
, (82)

l2isco =
(
eγ

(
e−2γ 3

√
8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +

√
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

+2M2 + eγ M2(4eγ M2 − 3Q2)

3
√

8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 + √
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

⎞

⎠

4

(eγ Me−2γ

⎛

⎝
3
√

8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 + √
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

M
+ 2M + eγ M

⎛

⎝ (4eγ M2 − 3Q2)

3
√

8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 + √
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

⎞

⎠

⎞

⎠ − Q2)
)(

M4
(
Q2

+
(
e−3γ ((8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +

√
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4))2/3

+4e4γ M4 − 3e3γ M2Q2)(2e2γ M2 3
√

8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +
√
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4)

+(8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +
√
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4))2/3 + 4e4γ M4 − 3e3γ M2Q2)

)

(
M2(8e6γ M6 − 9e5γ Q2M4 + 2e4γ Q4M2 +

√
e8γ M4Q4(5e2γ M4 − 9eγ Q2M2 + 4Q4))2/3

)−1)2)−1
. (83)
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52. A. Ballon Bordo, D. Kubiznňk, T.R. Perche, Phys. Lett. B 817,

136312 (2021)
53. H. Babaei-Aghbolagh, K.B. Velni, D.M. Yekta, H. Moham-

madzadeh, Phys. Lett. B 829, 137079 (2022)
54. S. Kato, J. Fukue, S. Mineshige, Black Hole Accretion Disks:

Towards a New Paradigm (Kyoto University Press, Kyoto, 2008)
55. D. Torres, Nucl. Phys. B 626, 377 (2002)
56. E. Babichev, V. Dokuchaev, Yu. Eroshenko, J. Exp. Theor. Phys.

100, 528–538 (2005)
57. E. Babichev, V. Dokuchaev, Yu. Eroshenko, Phys. -Usp. 56, 1155

(2013)

123

http://arxiv.org/abs/2206.11696

	Analysis of Dyonic ModMax black hole through accretion disk
	Abstract 
	1 Introduction
	2 Dyonic ModMax black hole
	3 General formulation for the geodesic motion of test particles
	3.1 Circular motion of test particles
	3.2 Radiant energy flux and circular orbits 
	3.3 Oscillations

	4 Basic dynamical equations
	4.1 Dynamical parameters
	4.2 Mass evolution
	4.3 Critical accretion

	5 Circular equatorial geodesics
	5.1 Radiant energy flux
	5.2 Radiant temperature
	5.3 Radiative efficiency
	5.4 Epicyclic frequencies

	6 Conclusions
	Appendix A
	References


