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Abstract We study linear cosmological perturbations in
the most general teleparallel gravity setting, where gravity
is mediated by the torsion and nonmetricity of a flat con-
nection alongside the metric. For a general linear perturba-
tion of this geometry around a homogeneous and isotropic
background geometry, we derive the irreducible decompo-
sition of the perturbation variables, as well as their behav-
ior under gauge transformations, i.e., infinitesimal diffeo-
morphisms generated by a vector field. In addition, we also
study these properties for the most general set of matter
variables and gravitational field equations. We then make
use of these result to construct gauge-invariant perturbation
variables, using a general approach based on gauge condi-
tions. We further calculate these quantities also in the met-
ric and symmetric teleparallel geometries, where nonmetric-
ity or torsion is imposed to vanish. To illustrate our results,
we derive the energy-momentum–hypermomentum conser-
vation equations for both the cosmological background and
the linear perturbations. As another example, we study the
propagation of tensor perturbations in the f (G), f (T ) and
f (Q) class of theories.

1 Motivation

Numerous open questions in gravity theory become appar-
ent from observations in cosmology, such as the cosmic
microwave background radiation [1–6], the large scale struc-
ture [7,8], gravitational waves [9,10] and supernovae [11].
In order to describe these observations, one needs to study
the evolution of both the universe as a whole, modeled by a
homogeneous and isotropic background geometry and mat-
ter distribution, as well as perturbations of this background.
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A thorough understanding of such cosmological perturba-
tions and their dynamics imposed by the gravitational inter-
action is therefore an important necessity for describing and
explaining the modern observations in cosmology.

Cosmological perturbations in gravity have been studied
for a long time, starting with the case of (pseudo-)Riemannian
spacetime geometry, which is employed by the standard for-
mulation of general relativity and the most well-known class
of its extensions, in which the gravitational interaction is
attributed to the curvature of the metric-compatible, torsion-
free Levi-Civita connection [12–15]. This task is significantly
simplified by the fact by understanding how perturbations
transform under gauge transformations, i.e., infinitesimal dif-
feomorphisms which retain the nature of the spacetime geom-
etry as a small perturbation of a cosmologically symmet-
ric background. From these gauge transformations, one can
derive a set of gauge-invariant perturbation variables, which
describe the physical information contained in the metric
perturbations as well as the perturbations of the matter vari-
ables, so that they become independent of the arbitrary gauge
choice. The resulting gauge-invariant perturbation theory is
one of the cornerstones of modern cosmology [16–19].

Despite its overwhelming success in describing observa-
tions from laboratory scales up to galactic scales, general rel-
ativity is challenged by the aforementioned open questions,
as well as the open question how it can be reconciled with
quantum theory. This situation motivates the study of mod-
ified gravity theories [20]. While numerous theories depart
from the standard formulation of general relativity in terms of
the curvature of the Levi-Civita connection of a Riemannian
spacetime, also other formulations in terms of the torsion
or nonmetricity of a flat connection exist and can be used
as potential starting points for the construction of modified
gravity theories [21,22]. Focusing on general relativity alone,
one finds that these formulations are equivalent in the sense
that they lead to field equations which possess the same solu-
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tions for the metric irrespective of the geometric properties of
the connection under consideration. However, modifications
thereof lead to essentially inequivalent classes of theories,
whose field equations possess different solutions.

In order to make use of the cosmological perturbation the-
ory also in teleparallel gravity theories, one needs to under-
stand both the most general teleparallel background geome-
tries and their linear perturbations. While the former have
been thoroughly studied and completely classified [23–26],
perturbations have so far only been studied in the metric
teleparallel framework, in which only torsion is present, but
nonmetricity is imposed to vanish [27,28]. The aim of this
article is to complete this study by providing a comprehensive
overview of the perturbations of general teleparallel geome-
try, where both torsion and nonmetricity are present, as well
as the two more restricted cases of metric and symmetric
teleparallel geometries, which arise as particular sectors of
the more general geometries. For this purpose, we derive
the irreducible decomposition of the perturbations in their
scalar, vector and tensor components, and study their behav-
ior under gauge transformations. From these we derive a gen-
eral framework for constructing sets of gauge-invariant field
variables. While the main focus of this article is on the geom-
etry, we also exemplify its use by studying the general form of
the energy-momentum–hypermomentum conservation laws
and the propagation of tensor perturbations in a simple class
of teleparallel gravity theories.

The article is structured as follows. We start with a brief
review of general teleparallel gravity in Sect. 2, as well
as the homogeneous and isotropic background in Sect. 3.
We then define the perturbation variables and their irre-
ducible decomposition in Sect. 4. Gauge transformations
and gauge-invariant quantities are discussed in Sect. 5. As
a potential application, we derive the energy-momentum–
hypermomentum conservation in Sect. 6. As another exam-
ple, we derive the tensor propagation equations in Sect. 7.
We end with a conclusion in Sect. 8.

2 General teleparallel gravity

We start our discussion with a brief review of the differ-
ent flavors of teleparallel gravity theories and their underly-
ing geometry. Our conventions for the geometric quantities
appearing in this article are laid out in Sect. 2.1. The gen-
eral form of their first-order perturbations is discussed in
Sect. 2.2. Finally, in Sect. 2.3 we review the general struc-
ture of the action and field equations of teleparallel gravity
theories.

2.1 General teleparallel geometry

We start by giving a brief review of the general teleparallel
geometry, which constitutes the fundamental fields of general

teleparallel gravity theories. As a subclass of metric-affine
geometry, the dynamical fields are given by a Lorentzian
metric gμν and an affine connection with coefficients Γ μνρ ,
which is imposed to be flat,

Rρσμν = ∂μΓ ρσν − ∂νΓ ρσμ + Γ ρλμΓ λσν
−Γ ρλνΓ λσμ = 0. (1)

It is important to note that this connection is different from the
Levi-Civita connection, whose coefficients are the Christof-
fel symbols

◦
Γ μνρ = 1

2
gμσ (∂νgσρ + ∂ρgνσ − ∂σ gνρ), (2)

where we use an overset circle to denote any quantity related
to the Levi-Civita connection. The difference of the coeffi-
cients of the two connections constitutes a tensor field, which
can be written as

Γ μνρ − ◦
Γ μνρ = Mμ

νρ = Kμνρ + Lμνρ, (3)

where the distortion Mμ
νρ is composed of the contortion

Kμνρ = 1

2

(
Tν
μ
ρ + Tρ

μ
ν − Tμνρ

)
, (4)

as well as the disformation

Lμνρ = 1

2

(
Qμνρ − Qν

μ
ρ − Qρ

μ
ν

)
, (5)

and these are defined through the torsion

Tμνρ = Γ μρν − Γ μνρ, (6)

and the nonmetricity

Qμνρ = ∇μgνρ = ∂μgνρ − Γ σ νμgσρ − Γ σ ρμgνσ . (7)

In particular, it follows that the affine connection is fully
characterized by its torsion and nonmetricity. We will make
use of this fact when we specify the most general homoge-
neous and isotropic teleparallel geometry below. Note, how-
ever, that these two tensor fields cannot be chosen arbitrarily,
but their values are restricted by the condition (1) of van-
ishing curvature, which together with the decomposition (3)
becomes

Rμνρσ = ◦
Rμνρσ + ◦∇ρMμ

νσ − ◦∇σMμ
νρ

+Mμ
τρM

τ
νσ − Mμ

τσM
τ
νρ ≡ 0. (8)

This relation is particularly useful, as it allows relating the
curvature tensor

◦
Rμνρσ of the Levi-Civita connection to the

distortion and its covariant derivative. We will make use of
this relation when we discuss gravity theories in Sect. 7.
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2.2 Perturbation of teleparallel geometry

We start by introducing a convenient notation for the pertur-
bation of the fundamental fields, which we will use through-
out the remainder of this section. For the metric perturbation
we will write

δgμν = gμν − ḡμν = ςμν, (9)

while we write the perturbation of the teleparallel affine con-
nection as

δΓ μνρ = Γ μνρ − Γ̄ μνρ = ∇̄ρλμν, (10)

and we use a bar on top in order to denote background values
of tensor fields. The latter is the most general linear pertur-
bation of the affine connection which preserves its flatness.
This can be seen by calculating the curvature perturbation

δRμνρσ = ∇̄ρδΓ μνσ − ∇̄σ δΓ μνρ + T̄ τ ρσ δΓ
μ
ντ

= ∇̄ρ∇̄σ λμν − ∇̄σ ∇̄ρλμν + T̄ τ ρσ ∇̄τ λμν
= R̄μτρσ λ

τ
ν − R̄τ νρσ λ

μ
τ = 0, (11)

which vanishes, since the background curvature vanishes by
assumption. Similarly, one calculates the perturbation of the
torsion,

δTμνρ = 2δΓ μ[ρν] = 2∇̄[νλμρ], (12)

as well as the nonmetricity,

δQρμν = ∇̄ρδgμν − δΓ σ μρ ḡσν − δΓ σ νρ ḡμσ
= ∇̄ρςμν − ḡσν∇̄ρλσ μ − ḡμσ ∇̄ρλσ ν. (13)

From these formulas it is easy to derive a few special cases. In
the symmetric teleparallel case, we impose vanishing torsion
both for the background and the perturbation; this is achieved
by choosing the connection perturbation to be of the form

λμν = ∇̄νζμ. (14)

Similarly, for the metric teleparallel case, we have vanish-
ing nonmetricity for the background, and so we can pull the
metric under the derivative, contract and obtain the condition

ςμν = 2λ(μν) (15)

for the vanishing nonmetricity perturbation. In the following,
we prefer to keep the metric perturbation as a fundamen-
tal variable, as its components will be connected directly to
observables, and we split the connection perturbation λμν
into a symmetric and antisymmetric part, so that we can
replace the former with the metric perturbation when we
impose vanishing nonmetricity.

2.3 Generic action and field equations

In order to derive a perturbative expansion of the field equa-
tions of teleparallel gravity theories around a cosmologically

symmetric background, we start with a brief review of their
general structure, and introduce the relevant notation. For
this purpose we assume an action of the form

S[g, Γ, χ ] = Sg[g, Γ ] + Sm[g, Γ, χ ], (16)

where the gravitational part Sg of the action depends only on
the metric and the connection, while the matter part Sm also
depends on some set of matter fields χ I , whose components
we do not specify further and simply label them with an
index I . The variation of the gravitational part of the action
with respect to the metric and the connection then takes the
form [22,29]

δSg = −
∫

M

(
1

2
Wμνδgμν + Yμ

νρδΓ μνρ

) √−gd4x, (17)

where we introduced the tensor fields Wμν and Yμνρ . For the
matter action, the variation takes the form [30]

δSm =
∫

M

(
1

2
Θμνδgμν + Hμ

νρδΓ μνρ +UI δχ
I
)

×√−gd4x, (18)

where UI = 0 are the matter field equations, and we
introduced the energy-momentum Θμν and hypermomen-
tum Hμνρ . When deriving the gravitational equations from
this action, it must be taken into account that the connection
and hence also its variation is not arbitrary, but must satisfy
the flatness condition (1). This can be achieved equivalently
either by introducing Lagrange multipliers, or by perform-
ing a restricted variation [29]. Here we follow the latter, and
write the variations in the form

δgμν = ςμν, δΓ μνρ = ∇ρλμν, (19)

which are formally identical to the perturbations (9) and (10)
introduced earlier, and hence preserve the flatness of the con-
nection. In terms of these, the variation of the gravitational
part of the action reads

δSg = −
∫

M

(
1

2
Wμνςμν + Yμ

νρ∇ρλμν
)√−gd4x

= −
∫

M

[
1

2
Wμνςμν + (Mω

ρωYμ
νρ

−∇ρYμνρ)λμν
] √−gd4x, (20)

and analogously for the matter part of the action, where we
have performed integration by parts in the last step.

Performing either of these procedures, one finds the field
equations [22]

Wμν = Θμν, ∇ρYμνρ − Mω
ρωYμ

νρ

= ∇ρHμνρ − Mω
ρωHμ

νρ. (21)
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The second equation can also be rewritten by introducing the
tensor densities

Ỹμ
ντ = Yμ

ντ√−g, H̃μ
ντ = Hμ

ντ√−g. (22)

Expanding the distortion into the nonmetricity and the tor-
sion, and using the fact that the covariant derivative of the
density factor with respect to the teleparallel connection is
given by

∇μ√−g = 1

2
gνρ∇μgνρ√−g = 1

2
Qμν

ν√−g

= Mν
νμ

√−g, (23)

one finds that the connection equation can equivalently be
written as

∇τ Ỹμντ − T ωωτ Ỹμ
ντ = ∇τ H̃μντ − T ωωτ H̃μ

ντ . (24)

This latter form is particularly convenient if one considers a
symmetric teleparallel gravity theory instead of the general
teleparallel case. Imposing vanishing torsion, either by intro-
ducing another Lagrange multiplier into the action or further
restricting the variation, then yields the field equations

Wμν = Θμν, ∇ν∇ρ Ỹμνρ = ∇ν∇ρ H̃μνρ. (25)

Finally, we also mention the case of metric teleparallel grav-
ity, where imposing vanishing nonmetricity leads to a single
combined field equation given by

Wμν − ∇ρYμνρ + YμνρT τ τρ = Θμν − ∇ρHμνρ
+HμνρT τ τρ. (26)

It follows from the structure of the field equations, which in
turn follows from the flatness condition on the teleparallel
connection, that the variation with respect to the connection
enters only via the terms

Zμ
ν = Wμ

ν − ∇τYμντ + Mω
τωYμ

ντ ,

Iμ
ν = Θμν − ∇τHμντ + Mω

τωHμ
ντ , (27)

or equivalently their respective densities

Z̃μ
ν = W̃μ

ν − ∇τ Ỹμντ + T ωωτ Ỹμ
ντ ,

Ĩμ
ν = Θ̃μν − ∇τ H̃μντ + T ωωτ H̃μ

ντ , (28)

where we have also included the metric variation, as it turns
out to lead to a simpler linear combination of the field equa-
tions, as we will see below. Note in particular that in the com-
monly considered case of vanishing coupling of the matter
to the teleparallel connection, we have vanishing hypermo-
mentum Hμνρ = 0, and thus Iμν = Θμν . In terms of these
quantities, the general teleparallel field equations take the
form

Wμν = Θμν, Zμν = Iμν, (29)

the symmetric teleparallel field equations read

Wμν = Θμν, ∇ν Z̃μν = ∇ν Ĩμν, (30)

and finally the single metric teleparallel field equation
becomes

Zμν = Iμν. (31)

Note that indices of terms which appear under a covariant
derivative can be raised and lowered only in case of a metric
compatible connection. The full virtue of writing the telepar-
allel field equations and their corresponding matter sources
for the discussion of the cosmological background and per-
turbations lies in the fact that by studying their cosmological
perturbative expansion of Wμν, Zμν,Θμν, Iμν , we cover all
flavors of teleparallel gravity theories. This will be done in
the following sections.

3 Homogeneous and isotropic background

We now turn our focus to a brief review of the geometric
structure of the homogeneous and isotropic background cos-
mology in teleparallel gravity, and introduce the notation and
conventions we use in this article. We start with the metric
geometry, which is the well-known Friedmann–Lemaître–
Robertson–Walker geometry, in Sect. 3.1. We then display
the various teleparallel cosmologies in Sect. 3.2. The cosmo-
logically symmetric matter sector is discussed in Sect. 3.3. In
Sect. 3.4 we then come to the cosmologically symmetric field
equations. Finally, in Sect. 3.5 we discuss how to decompose
tensors into their time and space components by making use
of the homogeneous and isotropic background geometry.

3.1 Homogeneous and isotropic metric geometry

We now briefly review the most general teleparallel geometry
which obeys the cosmological symmetry. Using spherical
coordinates (xμ) = (t, r, ϑ, ϕ), this condition means that all
geometric objects introduced above are invariant under the
three generators of rotations

sin ϕ∂ϑ + cosϕ

tan ϑ
∂ϕ, − cosϕ∂ϑ + sin ϕ

tan ϑ
∂ϕ, −∂ϕ, (32)

as well as the three translation generators

χ sin ϑ cosϕ∂r + χ

r
cosϑ cosϕ∂ϑ − χ sin ϕ

r sin ϑ
∂ϕ, (33a)

χ sin ϑ sin ϕ∂r + χ

r
cosϑ sin ϕ∂ϑ + χ cosϕ

r sin ϑ
∂ϕ, (33b)

χ cosϑ∂r − χ

r
sin ϑ∂ϑ, (33c)

where χ = √
1 − r2u2 and u is a real or imaginary constant

which specifies the spatial curvature of the background met-
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ric. Imposing this symmetry on the metric leads to the well-
known result that it must be of the Friedmann–Lemaître–
Robertson–Walker form, which can be written as

ḡμν = −nμnν + hμν. (34)

Here we have introduced the unit normal covector field

nμdxμ = −Ndt (35)

and induced spatial metric

hμνdx
μ ⊗ dxν = A2γabdxa ⊗ dxb (36)

on the constant time hypersurfaces, where

γabdxa ⊗ dxb = dr ⊗ dr

χ2

+r2(dϑ ⊗ dϑ + sin2 ϑdϕ ⊗ dϕ) (37)

is the maximally symmetric metric on the spatial hypersur-
faces corresponding to the choice of the constant u. The
metric is thus fully determined by two functions of time,
which we call the lapse function N = N (t) and scale fac-
tor A = A(t), and the curvature parameter u. The back-
ground metric ḡμν further defines a totally antisymmetric
tensor ε̄μνρσ , which is normalized such that

ε̄0123 = √−ḡ = N A3r2 sin ϑ

χ
. (38)

We denote by ε̄μνρ its purely spatial part defined by

ε̄μνρ = nσ ε̄σμνρ, ε̄μνρσ = 4ε̄[μνρnσ ], (39)

which can also be expressed as

ε̄μνρdxμ ⊗ dxν ⊗ dxρ = A3υabcdx
a ⊗ dxb ⊗ dxc (40)

through the totally antisymmetric tensor υabc of the metric
γab. The latter is normalized such that

υ123 = √−γ = r2 sin ϑ

χ
. (41)

We will make use of these quantities in order to decompose
other tensor fields into temporal and spatial components in
the following sections.

3.2 Homogeneous and isotropic teleparallel backgrounds

In order to specify the cosmologically symmetric teleparallel
connection, we can make use of the decomposition (3), from
which we know that the connection is characterized through
its torsion and nonmetricity. Imposing the cosmological sym-
metry, we find that the most general teleparallel background
geometry is of the form

T̄μνρ = 2

A
(T1h

μ
[νnρ] + T2ε̄

μ
νρ), (42a)

Q̄ρμν = 2

A
(Q1nρnμnν + 2Q2nρhμν + 2Q3hρ(μnν)),

(42b)

and thus determined by five further functionsT1, T2,Q1,Q2,

Q3 of time. Note, however, that the five parameter functions
introduced above in the torsion and nonmetricity cannot be
chosen independently, but must further be restricted by the
condition (1) of vanishing curvature. It turns out that there are
five possible solutions to this condition [22,26]. For u �= 0,
we find the two branches

T2 = ±u, T1 − Q2 = H, Q3 = 0 (43)

and

T2 = 0, (H − T1 + Q2)(H − T1 + Q2 − Q3) = −u2,

Q1 + Q2 = −H′ − T ′
1 + Q′

2

H − T1 + Q2
, (44)

while for u = 0 there are the three solutions

T2 = 0, T1 − Q2 = H, Q3 = 0, (45)

T2 = 0, T1 − Q2 = H, Q1 + Q2 = Q′
3

Q3
. (46)

and

T2 = 0, T1 − Q2 + Q3 = H, Q1 + Q2 = −Q′
3

Q3
. (47)

Here, H denotes the conformal Hubble parameter

H = A′

A
= 1

N

dA

dt
, (48)

where a prime denotes the conformal time derivative

F ′ = A

N

dF

dt
(49)

for any function F = F(t) of time. We finally remark that the
special cases of symmetric teleparallel geometries and met-
ric teleparallel geometries can be obtained from the afore-
mentioned five solutions by restriction to either vanishing
torsion [25,31] or vanishing nonmetricity [24].

3.3 Energy-momentum–hypermomentum

Demanding that the background energy-momentum tensor
Θ̄μν satisfies the conditions of homogeneity and isotropy,
one finds that it must be of the familiar form

Θ̄μν = ρ̄nμnν + p̄hμν, (50)

where ρ̄ and p̄ are the background values of the density
and pressure. An analogous consideration can be applied
to the (reduced) hypermomentum, which we introduced in
Sect. 2.3, and we find that it must be of the form

Īμν = �̄nμnν + π̄hμν, (51)
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with two further background scalars �̄ and π̄ . By analogy, we
may call these quantities hyperdensity and hyperpressure.

3.4 Teleparallel gravity field equations

In full analogy with the energy-momentum variables dis-
cussed above, we can also express the cosmological back-
ground value of the terms Wμν and Zμν appearing on the
gravitational side of the field equations through the back-
ground geometry. These then take the form

W̄μν = Nnμnν + Hhμν, Z̄μν = Tnμnν + Shμν, (52)

where we have introduced four functionsN,H,T,S of time,
which must be derived from the gravitational part of the
action for any particular teleparallel gravity theory to be
studied. In terms of these, we can express the cosmological
background equations as follows. For the general teleparallel
case (29), we have the equations

N = ρ̄, H = p̄, T = �̄, S = π̄. (53)

For the symmetric teleparallel case (30), we find

N = ρ̄, H = p̄, T′ + 3H(T + S) = �̄′ + 3H(�̄ + π̄).
(54)

Finally, for the metric teleparallel case (31), we have

T = �̄, S = π̄. (55)

One of the fundamental principles of perturbation theory is
to solve the field equations by increasing order, starting from
the background field equations. When studying linear pertur-
bations, we therefore assume that the background geometry
satisfies the background field equations given above. This
will be discussed further when we arrive at the perturbed
field equations.

3.5 Tensor decomposition

In the following sections, we will frequently make use of the
decomposition of tensor fields into their temporal and spatial
parts as shown in [28]. For this purpose, it is convenient to
introduce the spatial tensor fields

Πa
μ∂a ⊗ dxμ = Aδab ∂a ⊗ dxb,

Πμa ∂μ ⊗ dxa = A−1δba ∂b ⊗ dxa . (56)

One can easily see that they are related to the unit conormal
nμ and induced spatial metric hμν by

nμΠ
μ
a = 0, nμΠa

μ = 0, hμνΠ
μ
a Π

ν
b = γab,

γabΠ
a
μΠ

b
ν = hμν. (57)

Using the spatial tensor fields and the unit conormal, we can
now decompose tensor fields of arbitrary rank. For a vector

field X = Xμ∂μ we introduce the notation

X = N−1 X̂0∂t + A−1 X̂a∂a, X̂0 = −nμX
μ = N X0,

X̂a = Πa
μX

μ = AXa (58)

for the temporal and spatial components. Conversely, for a
covector field α = αμdxμ we write

α = N α̂0 dt + Aα̂a dxa, α̂0 = nμαμ = N−1α0,

α̂a = Πμa αμ = A−1αa . (59)

These quantities are defined such that when spacetime indices
of the tensor fields Xμ and αμ are raised and lowered with
the background metric ḡμν , the temporal and spatial indices
of the decomposed fields are raised and lowered with the
background metric −dt ⊗ dt + γabdxa ⊗ dxb,

X̂0 = −X̂0, X̂a = γab X̂b,

α̂0 = −α̂0, α̂a = γ abα̂b. (60)

The advantage of this definition is that the metric used for
raising and lowering indices does not depend on the time
coordinate, and so raising and lowering of indices commutes
with taking time derivatives. Using this decomposition, we
can also decompose the covariant derivative of tensor fields.
For this purpose, we denote by da the Levi-Civita covariant
derivative of the spatial metric γab. One finds that its connec-
tion coefficients are given by

1

2
γ ad(∂bγdc + ∂cγbd − ∂dγbc)

= 1

2
ḡaμ(∂bḡμc + ∂cḡbμ − ∂μḡbc) =

◦
Γ̄ a

bc, (61)

since the spatial components of the two metric are confor-
mally related by the scale factor which depends only on time,
and is thus inert with respect to purely spatial derivatives.
Evaluating also the remaining connection coefficients of the
Levi-Civita connection, one finds that the covariant deriva-
tive of a vector field decomposes as
◦
∇̄μXν = −N−1nμ(n

ν∂t X̂
0 +Πνa ∂t X̂ a)

+A−1Πa
μ(n

νda X̂
0

+Πνb da X̂
b)+ H(hνμ X̂

0 + γabΠa
μn
ν X̂b), (62)

where the Hubble parameter is given by

H = 1

N A

dA

dt
= H

A
. (63)

Separated into time and space components, one thus has
◦
∇̄μXνdxμ ⊗ ∂ν

= N−1[∂t X̂0dt + (da X̂0 + HX̂a)dx
a] ⊗ ∂t

+A−1[∂t X̂ bdt + (da X̂b + HX̂0δba)dx
a] ⊗ ∂b. (64)

Similarly, one can decompose the covariant derivative ∇̄μ
with respect to the background of the teleparallel connection,
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by making use of the decomposition (3). These formulas
are useful to decompose the perturbations of the torsion and
nonmetricity tensors and their derivatives, which appear in
the perturbed cosmological field equations.

4 Cosmological perturbations

An important part of the theory of cosmological perturba-
tions is to decompose the perturbations of the fundamental
field variables into components which are irreducible under
the rotation group. This is done by first performing an alge-
braic decomposition into temporal and spatial parts, as well as
traces and trace-free parts, followed by a differential decom-
position into pure divergences and divergence-free tensors.
For the space-time decomposition, we make use of the pro-
cedure outlined in Sect. 3.5.

4.1 Metric

We start with the decomposition of the metric perturbations,
which we write in the form

ς̂00 = −2φ̂, ς̂0a = dab̂ + ŝa,

ς̂ab = −2ψ̂γab + 2dadbê + 2d(a f̂b) + q̂ab, (65)

into four scalars φ̂, ψ̂, b̂, ê, two divergence-free vectors
ŝa, f̂a and one trace-free, divergence-free, symmetric tensor
q̂ab. The latter thus satisfy the conditions

da ŝa = da f̂a = 0, daq̂ab = 0, q̂[ab] = 0, q̂aa = 0.

(66)

Note that this is simply the standard decomposition of the
metric perturbations known from cosmological perturbation
theory [16–19].

4.2 Connection

Similarly to the decomposition of the metric perturbations,
we can decompose the perturbation λμν of the teleparallel
connection, where we have lowered one index with the back-
ground metric ḡμν for convenience. Here it is helpful to con-
sider the symmetric and antisymmetric parts independently,
and thus to define

λ̂00 = −ϕ̂, λ̂a0 + λ̂0a = da ĵ + ĉa,

λ̂a0 − λ̂0a = da ŷ + v̂a,
λ̂ab = −�̂γab + dadbσ̂ + d(a ẑb)

+1

2
ûab + υabc(ŵc + dc ξ̂ ). (67)

Here, ϕ̂, �̂, ĵ, ŷ, σ̂ are scalars, ξ̂ is a pseudoscalar, ĉa, v̂a, ẑa
are divergence-free vectors, ŵa is a divergence-free pseu-
dovector and ûab is a symmetric, trace-free, divergence-free

tensor. The advantage of this choice of the decomposition
becomes clear when we consider the cases of metric and
symmetric teleparallel gravity. For the former, vanishing non-
metricity leads to the condition ςμν = 2λ(μν), which means
that we can find the conditions

ϕ̂ = φ̂, �̂ = ψ̂, σ̂ = ê, ĵ = b̂, ẑa = f̂a,

ĉa = ŝa, ûab = q̂ab (68)

on the connection perturbations, leaving only ŷ, ξ̂, v̂a, ŵa as
its independent components, while the remaining ones are
expressed through the metric perturbations. Finally, for the
symmetric teleparallel case, in which the connection pertur-
bation takes the form λμν = ∇νζμ, one can decompose ζμ

in the form

ζ̂0 = Aα̂, ζ̂a = A(da β̂ + �̂a), (69)

where we included another scale factor for convenience, as
it will cancel a corresponding factor incurred from the addi-
tional derivative. In this case the fundamental perturbation
variables are those originating from the metric perturbation,
as well as the scalar α̂, β̂ and the divergence-free vector �̂a .

4.3 Energy-momentum

We now come to the perturbation of the energy-momentum
tensor Θμν around its homogeneous and isotropic back-
ground (50). To define the irreducible components of the per-
turbation, we follow the method outlined in [19,32], which
we show here in detail, in order to generalize it for the hyper-
momentum in the next section. First note that the background
energy-momentum tensor (50) satisfies

Θ̄μνn
ν = −ρ̄nμ, (70)

and so nμ is a timelike eigenvector of Θ̄μνnν with eigenvalue
−ρ̄. Further, every vector Vμ which satisfies Vμnμ = 0, and
is thus tangent to the constant time spatial hypersurfaces,
satisfies

Θ̄μνV
ν = p̄Vμ, (71)

and is thus an eigenvector with eigenvalue p̄. The trace is

Θ̄μμ = 3 p̄ − ρ̄ . (72)

If we demand that the full, perturbed energy-momentum
tensor is given by a small perturbation of this background,
it retains the property that it has one timelike eigenvector.
Denoting this eigenvector by uμ, and demanding that it is
normalized as uμuνgμν = −1, its eigenvalue by −ρ and the
trace by 3p−ρ, it follows that the energy-momentum tensor
can be written as

Θμν = (ρ + p)uμuν + pgμν +Πμν, (73)
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where the last term is the anisotropic stress and satisfies

uμΠμν = 0, Πμμ = 0, Π[μν] = 0. (74)

Note that ρ and p are scalars which are uniquely defined
through the eigenvalue of the only timelike eigenvector and
the trace of the energy-momentum tensor, and so we can use
them to define the perturbations

ρ = ρ̄ + Ê, p = p̄ + P̂. (75)

Also the four-velocity is uniquely defined as the unique nor-
malized timelike eigenvector. The normalization condition
determines its time component as

u0 = N−1(1 − φ), u0 = −N (1 + φ). (76)

Its spatial components can be decomposed into a pure diver-
gence and a divergence-free vector as

ua = A−1(daL̂ + X̂ a), ua = A(daL̂ + X̂a + dab̂ + ŝa).

(77)

Finally, the anisotropic stress Πμν vanishes for the back-
ground energy-momentum tensor, and so it is already of lin-
ear perturbation order. We can thus replace uμ by nμ in the
condition (74), and conclude that

Π00 = 0, Πa0 = Π0a = 0, Π[ab] = 0. (78)

Further, since Πμν is trace-free, it follows that its spatial
components can be decomposed as

Πab = A2
(

dadbŜ − 1

3
	Ŝγab + d(aV̂b) + T̂ab

)
, (79)

where Ŝ is a scalar, V̂a is a divergence-free vector and T̂ab is
a symmetric, divergence-free, trace-free tensor. Defining

δΘμν = Θμν − Θ̄μν = θμν, (80)

we have thus decomposed the perturbation θμν into the irre-
ducible components

θ̂00 = Ê − ρ̄ς̂00, (81a)

θ̂0a = −ρ̄ς̂0a − (ρ̄ + p̄)(daL̂ + X̂a), (81b)

θ̂ab = p̄ς̂ab + P̂γab + dadbŜ − 1

3
	Ŝγab + d(aV̂b) + T̂ab,

(81c)

where the metric perturbations are further decomposed as
shown in Sect. 4.1.

4.4 Hypermomentum

In order to decompose the perturbation of the (reduced)
hypermomentum tensor around the cosmologically symmet-
ric background (51), we proceed in analogy to the pertur-
bation of the energy-momentum tensor. In contrast to the

former, however, the reduced hypermomentum is not sym-
metric in general, and so its left and right eigenvectors will in
general be different. For the background value (51), it follows
from the homogeneity and isotropy that it must be symmet-
ric, and that nμ is both a left and right timelike eigenvector
with

Īμνn
ν = nν Īν

μ = −�̄nμ, (82)

while the remaining eigenvectors are spacelike. Further, its
trace is given by

Īμμ = 3π̄ − �̄. (83)

For the general, perturbed reduced hypermomentum we can
thus make the ansatz

Iμν = −(� + π)vμwν
vρwρ

+ πgμν +Σμν, (84)

with

Σμνv
ν = 0, wμΣμν = 0, Σμμ = 0, (85)

and both vμ and wμ are normalized,

vμvνgμν = wμwνgμν = −1. (86)

If we demand that Iμν is a small perturbation of Īμν , it retains
one timelike and three spacelike eigenvectors, although left
and right eigenvectors will now differ in general. One finds
that

Iμνv
ν = −�vμ, wν Iν

μ = −�wμ, (87)

and so the timelike eigenvectors are given by vμ and wμ,
with the common eigenvalue −�, while π is defined via the
trace

Iμμ = 3π − �. (88)

For these two scalars we can thus define the linear perturba-
tions

� = �̄ + D̂, π = π̄ + Q̂. (89)

We then continue with the two timelike eigenvectors. The
normalization condition determines their time components

v0 = w0 = N−1(1 − φ), (90)

while the space components define two independent pertur-
bations

va = A−1(daM̂ + Ŷa), wa = A−1(daN̂ + Ẑa). (91)

Finally, we take a closer look at the anisotropic contribution
Σμν , which is already of linear perturbation order. Hence,
the conditions (85) imply

Σ00 = 0, Σa0 = Σ0a = 0. (92)
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We can thus expand it in the form

Σab = A2
[

dadbÂ − 1

3
	Âγab + d(aB̂b)

+Ĉab + υabc(dcÎ + Ĵ c)

]
, (93)

where we now also have an antisymmetric part. In sum-
mary, the hypermomentum perturbation splits into the scalars
D̂, Q̂,M̂, N̂ , Â, the pseudoscalar Î, the divergence-free
vectors Ŷa, Ẑa, B̂a , the divergence-free pseudovector Ĵa and
the trace-free, divergence-free, symmetric tensor Ĉab. Intro-
ducing the perturbation

δ Iμν = Iμν − Īμν = ιμν, (94)

we thus have the expansion

ι̂00 = D̂ − �̄ς̂00, (95a)

ι̂a0 = −�̄ς̂a0 − (�̄ + π̄)(daM̂ + Ŷa), (95b)

ι̂0a = −�̄ς̂0a − (�̄ + π̄)(daN̂ + Ẑa), (95c)

ι̂ab = π̄ ς̂ab + Q̂γab + dadbÂ − 1

3
	Âγab

+ d(aB̂b) + Ĉab + υabc(dcÎ + Ĵ c), (95d)

where also in this case the metric perturbations are further
decomposed as shown in Sect. 4.1.

4.5 Field equations

Finally, we also need to provide the perturbative expansion
of the terms Wμν and Zμν obtained from the variation of
the gravitational part of the action. Note that these two terms
exactly match the matter termsΘμν and Iμν in the field equa-
tions, which we have also used in Sect. 3.4 for the cosmo-
logically symmetric background field equations. Hence, it
turns out to be convenient to also exactly match their linear
perturbative expansion. Defining the perturbations as

δWμν = Wμν − W̄μν = Wμν,

δZμν = Zμν − Z̄μν = Zμν, (96)

we thus write their irreducible decomposition in the form

Ŵ00 = ê − Nς̂00, (97a)

Ŵ0a = −Nς̂0a − (N + H)(da l̂ + x̂a), (97b)

Ŵab = Hς̂ab + p̂γab + dadbŝ

− 1

3
	ŝγab + d(a v̂b) + t̂ab, (97c)

and

Ẑ00 = d̂ − Tς̂00, (98a)

Ẑa0 = −Tς̂a0 − (T + S)(dam̂ + ŷa), (98b)

Ẑ0a = −Tς̂0a − (T + S)(da n̂ + ẑa), (98c)

Ẑab = Sς̂ab + q̂γab + dadbâ − 1

3
	âγab + d(a b̂b)

+ ĉab + υabc(dc î + ĵc), (98d)

where ê, l̂, p̂, ŝ, d̂, m̂, n̂, q̂, â are scalars, î is a pseudoscalar,
x̂a, v̂a, ŷa, ẑa, b̂a are divergence-free vectors, ĵa is a
divergence-free pseudovector and t̂ab, ĉab are symmetric,
divergence-free, trace-free tensors. Assuming that the back-
ground field equations are already satisfied by the back-
ground geometry and matter variables, it is then straight-
forward to write down the linear perturbed field equations.

5 Gauge transformations and gauge-invariant
quantities

We now study the transformation of the perturbations under
infinitesimal coordinate changes of the form

x ′μ = xμ + Vμ(x), (99)

where the components of the vector field Vμ are assumed
to be sufficiently small that the metric and teleparallel con-
nection retain the character as small perturbations around a
fixed cosmological background, which is given by the same
expression in the new coordinates. In order to decompose
these relations into irreducible components, and thus obtain
the transformation of the irreducible perturbation compo-
nents, we decompose the transformation vector field as

V̂0 = AX̂, V̂a = A(daŶ + Ẑa), (100)

where we once again introduced the scale factor for conve-
nience.

5.1 Metric

Under this coordinate change, the metric perturbation under-
goes the transformation

δV ςμν = ςμν − ς ′
μν = (LV ḡ)μν = 2

◦
∇̄(μVν). (101)

Using this decomposition, one finds that the transforma-
tion (101) of the metric perturbation decomposes as

δV ς̂00 = 2(HX̂ + X̂ ′), (102a)

δV ς̂0a = da X̂ + (daŶ + Ẑa)
′, (102b)

δV ς̂ab = 2(dadbŶ + d(a Ẑb) − HX̂γab). (102c)

By comparison with the decomposition (65), we find that the
irreducible components of the perturbation transform as
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δV φ̂ = −HX̂ − X̂ ′, δV b̂ = X̂ + Ŷ ′, δV ê = Ŷ,

δV ψ̂ = HX̂, δV ŝa = Ẑ ′
a,

δV f̂a = Ẑa, δV q̂ab = 0. (103)

Note that only the tensor perturbation q̂ab is already gauge-
invariant, while the remaining components transform non-
trivially under gauge transformations. Nevertheless, one can
already see from the structure of these transformations that
it is possible to find linear combinations of the metric per-
turbation components which are gauge-invariant; this is the
classical approach used in gauge-invariant cosmological per-
turbation theory, which straightforwardly leads to the defi-
nition of the gauge-invariant variables in the spatially flat
gauge. Here we decide to consider a different, more general
approach, and so we defer the discussion of gauge-invariant
variables to Sect. 5.5.

5.2 Connection

while the connection perturbation transforms as

δV δΓ
μ
νρ = δΓ μνρ − δΓ ′μ

νρ = (LV Γ̄ )
μ
νρ. (104)

Here the Lie derivative of the connection coefficients is given
by

(LV Γ̄ )
μ
νρ = V σ ∂σ Γ̄

μ
νρ − ∂σVμΓ̄ σ νρ

+∂νV σ Γ̄ μσρ + ∂ρV σ Γ̄ μνσ + ∂ν∂ρVμ
= ∇̄ρ∇̄νVμ − V σ R̄μνρσ − ∇̄ρ(V σ T̄μνσ ),

(105)

where the last expression shows that the Lie derivative is
a tensor fields. Using the fact that the curvature vanishes
and that the teleparallel connection perturbation takes the
form (10), we find the transformation

δV λ
μ
ν = ∇̄νVμ − V ρ T̄μνρ (106)

of the fundamental perturbation variable. Two special cases
are worth noting. In the case of vanishing nonmetricity, we
can lower one index under the covariant derivative and write
the gauge transformation as

δV λμν = ∇̄νVμ − V ρ T̄μνρ =
◦
∇̄νVμ + V ρ K̄μνρ. (107)

Using the fact that the contortion is antisymmetric in its first
two indices, we find that the symmetric part of this expression
is given by

δV λ(μν) =
◦
∇̄(μVν) = 1

2
δV ςμν, (108)

which is consistent with the relation (15) in this case. In the
second special case of vanishing torsion, the relation (14)
implies

δV ζ
μ = Vμ. (109)

We then continue with the gauge transformation of the con-
nection perturbation. Lowering one index and decomposing
into space and time components, the transformation (106)
becomes

δV λ̂00 = (H − Q1)X̂ + X̂ ′, (110a)

δV λ̂a0 = (H + Q2 − T1)(daŶ + Ẑa)+ (daŶ + Ẑa)
′,
(110b)

δV λ̂0b = db X̂ − (H − Q3 + Q2 − T1)(dbŶ + Ẑb), (110c)

δV λ̂ab = dadbŶ + db Ẑa − (H + Q2)X̂γab

− T2υabc(d
cŶ + Ẑ c), (110d)

where we see that these depend on the scalar functions
T1, T2,Q1,Q2,Q3 introduced in the general background
form (42) for the torsion and nonmetricity, in addition to the
conformal Hubble parameter H. Before we can read of the
transformation of the irreducible components, we calculate
the symmetric and antisymmetric parts, which read

δV λ̂a0 + δV λ̂0a = da X̂ + Q3(daŶ + Ẑa)+ (daŶ + Ẑa)
′,

(111a)

δV λ̂a0 − δV λ̂0a = −da X̂ + (2H − Q3 + 2Q2 − 2T1)

× (daŶ + Ẑa)+ (daŶ + Ẑa)
′, (111b)

δV λ̂(ab) = dadbŶ + d(a Ẑb) − (H + Q2)X̂γab, (111c)

δV λ̂[ab] = −d[a Ẑb] − T2υabc(d
cŶ + Ẑ c). (111d)

Finally, we need to suitably transform the first term in the
last line. Here we use the property of the totally antisymmet-
ric tensor that its contraction with itself gives a generalized
(antisymmetric) Kronecker symbol, and so we can write

d[a Ẑb] = 1

2
υabcυ

decdd Ẑe. (112)

Now the expression υdecdd Ẑe is a pseudovector. We then
make use of the first Bianchi identity to calculate

dc(υ
decdd Ẑe) = υdecd[cdd] Ẑe = 1

2
υdec R f

ecd Ẑ f = 0,

(113)

and so we see that this pseudovector is divergence-free.
Hence, it contributes to the transformation of ŵa only. In
summary, we thus find the transformation of the irreducible
components

δV ϕ̂ = (Q1 − H)X̂ − X̂ ′, δV �̂ = (Q2 + H)X̂,
δV ĵ = X̂ + Q3Ŷ + Ŷ ′,
δV ŷ = −X̂ + (2H − Q3 + 2Q2 − 2T1)Ŷ + Ŷ ′,
δV σ̂ = Ŷ,

δV ξ̂ = −T2Ŷ, δV ûab = 0,

δV ĉa = Q3 Ẑa + Ẑ ′
a, δV v̂a = (2H
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−Q3 + 2Q2 − 2T1)Ẑa + Ẑ ′
a,

δV ẑa = Ẑa, δV ŵa = −T2 Ẑa − 1

2
υabcd

b Ẑ c. (114)

Finally, using the transformation (109) and the decomposi-
tion (69) of the symmetric teleparallel perturbation, we find
that its irreducible components transform as

δV α̂ = X̂, δV β̂ = Ŷ, δV �̂a = Ẑa . (115)

Hence, we have found the transformation of all irre-
ducible perturbation components under infinitesimal coor-
dinate transformations.

5.3 Energy-momentum and hypermomentum

We continue with the gauge transformation of the energy-
momentum tensor. By explicit calculation it follows that
the only non-trivial transformation of the irreducible com-
ponents is given by

δV Ê = −X̂ ρ̄′, δV P̂ = −X̂ p̄′, δV L̂ = −Ŷ ′,
δV X̂a = −Ẑ ′

a, (116)

while the components of the anisotropic stress are gauge-
invariant,

δV Ŝ = 0, δV V̂a = 0, δV T̂ab = 0. (117)

Analogously, one finds the transformation of the hypermo-
mentum perturbations given by

δV D̂ = −X̂ �̄′, δV Q̂ = −X̂ π̄ ′, δVM̂ = δV N̂ = −Ŷ ′,
δV Ŷa = δV Ẑa = −Ẑ ′

a, (118)

together with the gauge-invariant perturbation components

δV Â = δV Î = 0, δV B̂a = δV Ĵa = 0, δV Ĉab = 0. (119)

Also for the matter variables, it is possible to perform a transi-
tion to gauge-invariant variables, in analogy to the geometry
perturbations, as we will see below.

5.4 Field equations

Since we have defined the irreducible components of the
field equation variation in full analogy to the perturbation
of the matter variables, it follows immediately that also their
behavior under gauge transformations is identical. Hence, we
find that the perturbation Wμν of the metric variation term
Wμν undergoes the non-trivial gauge transformation

δV ê = −X̂N′, δV p̂ = −X̂H′, δV l̂ = −Ŷ ′,
δV x̂a = −Ẑ ′

a, (120)

while the remaining components transform as

δV ŝ = 0, δV v̂a = 0, δV t̂ab = 0, (121)

and are thus gauge-invariant. Similarly, the components of
the perturbation Zμν of the connection variation term Zμν
obey the transformation

δV d̂ = −X̂T′, δV q̂ = −X̂S′, δV m̂ = δV n̂ = −Ŷ ′,
δV ŷa = δV ẑa = −Ẑ ′

a, (122)

together with the gauge-invariant components

δV â = δV î = 0, δV b̂a = δV ĵa = 0, δV ĉab = 0. (123)

Note that if one imposes the background field equations dis-
played in Sect. 3.4, then both sides of the perturbative field
equations shown in Sect. 4.5 are subject to identical gauge
transformations. While each side of the field equations under-
goes a non-trivial change due to the gauge transformation,
the difference of both sides is a gauge-invariant quantity, i.e.,
it is the same in all gauges. Gauge-invariance of the field
equations thus means that this gauge-invariant quantity must
vanish if the field equations are imposed.

5.5 Gauge-invariant perturbations

In the preceding section we have seen that the irreducible
components of the metric and connection perturbations trans-
form non-trivially under infinitesimal coordinate transforma-
tions, and so their values depend on the choice of the coor-
dinate system. In order to obtain physical quantities, whose
values are independent of the choice of the coordinate sys-
tem, there are two conceptually different, but mathematically
and physically equivalent methods. One approach is to per-
form gauge fixing, i.e., to choose a fixed reference coordinate
system, which is determined by imposing the condition that
a chosen set of irreducible components takes particular val-
ues, and regarding the values of the remaining components as
physical quantities. Alternatively, one may construct gauge-
invariant variables by choosing linear combinations of the
irreducible components, such that their gauge transforma-
tions mutually cancel. To see that these two approaches are
mutually equivalent, note that we can write any of the irre-
ducible components, which we symbolically denote Q̂ here,
as a sum

Q̂ = Q̂ − δV Q̂, (124)

where Q̂ is the value of Q̂ in a particular, fixed coordi-
nate system, and V is the vector field which generates the
infinitesimal coordinate transformation from this fixed coor-
dinate system to the one in which Q̂ is expressed. Under an
infinitesimal coordinate transformation to a different coordi-
nate system, which is specified by V ′ instead of V , only the
second term on the right hand side changes, while the first
one is invariant. From this point of view, gauge fixing means
to impose conditions on the values Q̂i of a chosen set Q̂i of
quantities in the fixed coordinate system, such as demanding
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them to vanish. These conditions, which then read

0 ≡ Q̂i = Q̂i + δV Q̂i , (125)

then allow us to solve for the components of the vector field
V from the relation δV Q̂i = Q̂i . Hence, knowing the values
Q̂i in some arbitrary coordinate system, we can express V
in terms of these values, and hence find the transformation
from the fixed to the arbitrary coordinate system. We can
then apply the inverse of the same transformation to any other
quantity Q̂k , and thus calculate its value

Q̂k = Q̂k + δV Q̂k (126)

in the fixed coordinate system, where the second term on the
right hand side is a linear combination of the components of
V , and thus expressed through the values Q̂i . This equation
then expresses the left hand side Q̂k as a gauge-invariant
linear combination of Q̂k and Q̂i .

To illustrate the construction given above, we provide a
few practical examples. In the following, we will denote a
particular gauge choice by a letter under the quantities which
are expressed in this gauge. The first example, which is com-
mon in cosmological perturbation theory, is the Newtonian
gauge. It is defined by the conditions

N̂
b =

N̂
e = 0,

N̂
sa = 0. (127)

The components of the vector field V can then be obtained
from

0 = b̂ + δ
N
V̂ b̂ = b̂ +

N̂
X +

N̂
Y ′, (128a)

0 = ê + δ
N
V̂ ê = ê +

N̂
Y, (128b)

0 = ŝa + δ
N
V̂ ŝa = ŝa +

N̂
Z ′
a, (128c)

from which one finds

N̂
X = ê′ − b̂,

N̂
Y = −ê,

N̂
Z ′
a = −ŝa . (129)

Note that
N̂
Za is determined only up to an integration constant,

which determines its value at a fixed constant-time hypersur-
face. Another possible choice is the spatially flat gauge, in
which the spatial part of the metric perturbation contains only
the tensor part q̂ab, and so the scalar and vector parts vanish,

F
ψ̂ =

F̂
e = 0,

F
f̂ a = 0. (130)

Solving for the gauge-transforming vector field, one thus
finds

F̂
X = −H−1ψ̂,

F̂
Y = −ê,

F̂
Za = − f̂a . (131)

The synchronous gauge is defined by the conditions

S
φ̂ =

Ŝ
b = 0,

Ŝ
sa = 0, (132)

which yields

Ŝ
X ′ + H

Ŝ
X = φ̂,

Ŝ
Y ′ = −b̂ −

Ŝ
X,

Ŝ
Z ′
a = −ŝa . (133)

The aforementioned gauges are defined in terms of the metric
perturbations only. Another class of gauges can be defined by
imposing conditions on the matter perturbations. The comov-
ing gauge is defined by

Ĉ
b =

Ĉ
L = 0,

Ĉ
X a = 0, (134)

which leads to the transformation

Ĉ
X = −b̂ − L̂,

Ĉ
Y ′ = L̂,

Ĉ
Z ′
a = X̂a, (135)

while the total matter gauge is based on the conditions

T̂
b +

T̂
L =

T̂
e = 0,

T
f̂ a = 0, (136)

and thus satisfies

T̂
X = −b̂ − L̂,

T̂
Y = −ê,

T̂
Za = − f̂a . (137)

While these gauges are familiar from other gravity theories,
in the teleparallel class of gravity theories allows for fur-
ther gauges, in which certain components of the teleparallel
connection vanish, which allows to simplify the perturbed
teleparallel field equations. For example, a gauge choice
which turns out to be particularly useful in metric teleparal-
lel gravity theories, and which has therefore been employed
in [33], is in general (including also nonmetricity) defined by
imposing the conditions

0
ĵ =

0̂
σ = 0,

0̂
za = 0, (138)

and leads to the transformation

0̂
X = σ̂ ′ + Q3σ̂ − ĵ,

0̂
Y = −σ̂,

0̂
Za = −ẑa . (139)

In the special case of symmetric teleparallel gravity, it turns
out to be more convenient to use the homogeneous connec-
tion gauge, in which the connection perturbation (69) van-
ishes. This yields the condition

Ĥ
α =

H
β̂ = 0,

Ĥ
�a = 0, (140)

from which follows the gauge transformation

Ĥ
X⊥ = −α̂, (141a)

Ĥ
X‖ = −β̂, (141b)

Ĥ
Za = −�̂a . (141c)

For the remainder of this article, we will exemplify the use
of a convenient gauge choice.
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6 Energy-momentum–hypermomentum conservation

As a first application of the formalism we present in this
article, we study the conservation of energy-momentum and
reduced hypermomentum in the teleparallel geometry. We
first give an overview of the relevant conservation equations
for the three types of teleparallel geometries in Sect. 6.1.
We then discuss them in the context of cosmology, first for
the homogeneous and isotropic background in Sect. 6.2 and
finally for the perturbations in Sect. 6.3.

6.1 Conservation equations

We start by briefly recalling the derivation of the energy-
momentum–hypermomentum conservation from the general
form of the matter action, whose variation we have written in
the form (18). Under an infinitesimal diffeomorphism gen-
erated by a vector field Vμ, the variation of the action is then
given by

δV Sm =
∫

M

(
1

2
Θμν(LV g)μν + Hμ

νρ(LVΓ )
μ
νρ

+ΨI (LVψ)
I
) √−gd4x

=
∫

M

{
Θμν

◦∇μVν + Hμ
νρ

[∇ρ∇νVμ

−∇ρ(V σ Tμνσ )
] + ΨILVψ

I
} √−gd4x . (142)

Here ΨI = 0 are the matter field equations. Imposing that
these hold (i.e., considering the variation on-shell), and per-
forming integration by parts, the variation becomes

δV Sm= −
∫

M

[ ◦∇ν Iμν−Mμ
νρ(Iμ

ν−Θμν)
]
Vμ

√−gd4x,

(143)

making use of the definition (27). It thus follows that
the variation vanishes on-shell if and only if the energy-
momentum and hypermomentum tensors satisfy the conser-
vation law [22]

◦∇ν Iμν − Mρ
νμ(Iρ

ν −Θρν) = 0. (144)

In the derivation above we have not made any assumptions
on the connection besides its flatness, which enters the form
of the Lie derivative of the connection used in the varia-
tion (142), and so the result is valid for all types of teleparallel
geometries, including the general teleparallel geometry with
both torsion and nonmetricity. If either of these quantities,
we can replace the distortion tensor by either the contor-
tion or disformation, and then further expand into the tor-
sion or nonmetricity. In the metric teleparallel case, where
the nonmetricity and hence the disformation Lμνρ vanishes,

we can replace Mμ
νρ by Kμνρ , and then write the energy-

momentum–hypermomentum conservation as

∇ν Iμν + 2T ρν(μ Iρ)
ν = 0. (145)

For the symmetric teleparallel geometry, with vanishing tor-
sion and thus vanishing contortion Kμνρ , it is most conve-
nient to work with densities, and now replacing the distortion
Mμ

νρ by the disformation Lμνρ the conservation law can be
written as

∇ν Ĩμν − 1

2
QμνρΘ̃

νρ = 0. (146)

Note that in the case of vanishing hypermomentum, Hμνρ =
0, we have Iμν = Θμν , and thus all equations reduce to the
familiar conservation equation

◦∇νΘμν = 0. (147)

We will study these equations for the cosmological back-
ground and its perturbations.

6.2 Homogeneous and isotropic background

We now discuss the energy-momentum–hypermomentum
conservation laws derived in the previous section, where
we assume that the metric, the connection, the energy-
momentum and hypermomentum tensors take the homoge-
neous and isotropic background values given in Sect. 3. In
this case it follows that the only vanishing component of
these equations, which transform as a covector, is the time
component, since any spatial components must vanish iden-
tically due to the isotropy. In this case we find that the general
conservation equation (144) becomes

�̄′ + 3H(�̄ + π̄)+ Q1(�̄ − ρ̄)+ 3Q2(π̄ − p̄) = 0. (148)

Note in particular that any contributions from the torsion
cancel, and that only two of the three time-dependent func-
tions determining the nonmetricity enter the relation. It fol-
lows, and can also be shown by explicit calculation, that the
same result is obtained also for the symmetric teleparallel
case (146). In the metric teleparallel case (145), where the
nonmetricity vanishes, the equation reduces to

�̄′ + 3H(�̄ + π̄) = 0. (149)

Finally, we remark that for vanishing hypermomentum, i.e.,
matter which does not couple to the teleparallel connection,
so that �̄ = ρ̄ and π̄ = p̄, all cases reduce to the common
form

ρ̄′ + 3H(ρ̄ + p̄) = 0, (150)

which is the well-known cosmological energy-momentum
conservation relation.
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6.3 Perturbations

We finally come to the energy-momentum–hypermomentum
conservation at the linear perturbation order. To derive
these relations, we make use of the background energy-
momentum–hypermomentum conservation relations shown
in the previous section, and impose that these are already
satisfied. By making use of this assumption, we can express
the perturbed energy-momentum–hypermomentum conser-
vation in terms of gauge-invariant quantities. Here it turns
out to be most convenient to express these through the New-
tonian gauge defined in Sect. 5.5. In particular, we find the
time component

0 =
N̂
D′ + (3H + Q1)

N̂
D + 3(H + Q2)

N̂
Q

−Q1
N̂
E − 3Q2

N̂
P + (�̄ + π̄)	

N̂
N

+(�̄ − ρ̄)(
N
φ̂′ −

N̂
ϕ′)

−3(�̄ + p̄)
N
ψ̂ ′ + (π̄ − p̄)(	

N̂
σ ′ − 3

N̂
	 ′), (151)

while the spatial component decomposes into a scalar total
divergence

0 = [(�̄ + π̄)
N̂
M]′ + (�̄ + π̄)

[
(3H + T1 − Q2)

N̂
Ma

+(H − T1 + Q2 − Q3)
N̂
N

]
+ 2

3
	

N̂
A

+2u2
N̂
A + (ρ̄ + p̄)Q3

N̂
L + 2T2

N̂
I +

N̂
Q

−1

2
(�̄ − ρ̄ + π̄ − p̄)

×
[
Q3

N̂
y − (2H − 2T1 + 2Q2 − Q3)

N
ĵ
]

−(π̄ − p̄)(	
N̂
σ − 3

N̂
	 + 3

N
ψ̂)+ (�̄

−ρ̄)
N̂
ϕ + (ρ̄ + π̄)

N
φ̂ (152)

and a divergence-free vector part

0 = [(�̄ + π̄)
N̂
Ya]′ + (�̄ + π̄)

[
(3H + T1 − Q2)

N̂
Ya

+(H − T1 + Q2 − Q3)
N̂
Za

]
+ 1

2
	

N̂
Ba + u2

N̂
Ba

+(ρ̄ + p̄)Q3
N̂
X a + 2T2

N̂
J a + υabcdb

N̂
J c

−1

2
(�̄ − ρ̄ + π̄ − p̄)

×
[
Q3

N̂
va − (2H − 2T1 + 2Q2 − Q3)

N̂
ca

]
. (153)

As for the background quantities discussed in Sect. 6.2, these
equations constrain the time evolution of some of the per-
turbations as functions of the others. However, they do not
determine all components, and so the remaining components
must be determined from the given matter model. Yet any
matter model which satisfies diffeomorphism invariance will

obey the energy-momentum–hypermomentum conservation
equations given above.

7 Example: tensor perturbations in f (X) type theories

In order to illustrate the formalism presented in this article,
we derive the field equations for the tensorial perturbations
in a number of gravity theories, which cover all possible
flavors of teleparallel geometries. Each of these classes of
theories is defined by a gravitational Lagrangian, which is
a free function f of a scalar, which agrees with the Ricci
scalar of the Levi-Civita connection up to a boundary term.
In the metric teleparallel geometry, this leads to the class of
f (T ) theories, which we discuss in Sect. 7.1. Analogously,
in the symmetric teleparallel geometry we have the class
of f (Q) theories, discussed in Sect. 7.2. Finally, the general
teleparallel geometry yields the class of f (G) theories, which
we study in Sect. 7.3.

7.1 f (T ) gravity

For the first example, we study the metric teleparallel geom-
etry, in which the nonmetricity (7) is imposed to vanish. In
this case, also the disformation (5) vanishes, and it follows
from the connection decomposition (3) that the distortion and
contortion agree. Hence, using the curvature relation (8), we
can write the Ricci scalar of the Levi-Civita connection as
◦
R = −T + BT , (154)

where we have introduced the terms

T = 2Kμτ [μK τνν], BT = 2
◦∇μK [νμ]

ν . (155)

Clearly, BT is a total divergence, and would thus take the role
of a boundary term under an action integral, which does not
contribute to the field equations. Hence, replacing

◦
R by −T

in the Einstein–Hilbert action yields the same metric field
equations as the original action. Here we consider a modifi-
cation of this equivalent action, which takes the form [34–36]

Sg = − 1

2κ2

∫

M
f (T )

√−gd4x, (156)

with a free function f . Since we are interested in the dynam-
ics of the tensor perturbations only, it is sufficient to study
the metric field equation, obtained from the variation of this
action with respect to the metric tensor, together with the
matter contribution (18). The perturbed field equations have
been derived for a spatially flat background in [27] and for
all cosmologically symmetric branches in [33], where it has
been found that certain scalar modes become non-dynamical,
hinting towards a strong coupling problem in the scalar sec-
tor. Here we briefly review the tensor equations. Considering
first the case u �= 0, we have the branch (43) which exhibits
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axial torsion. In the metric teleparallel case, we set T1 = H
and T2 = u, and obtain

2κ2A2T̂ab = fT
(
	q̂ab − 2u2q̂ab − 2Hq̂ ′

ab − q̂ ′′
ab

)

+12
fT T
A2 H(H2 − u2 − H′)q̂ ′

ab. (157)

Note that we could equivalently have set T2 = −u. Similarly,
the branch (44) is achieved for T1 = H+ iu and T2 = 0, and
yields

2κ2A2T̂ab = fT
(
	q̂ab − 2u2q̂ab − 2Hq̂ ′

ab − q̂ ′′
ab

)

+12
fT T
A2 (H + iu)[H(H + iu)− H′] (

q̂ ′
ab − iuq̂ab

)
.

(158)

Again, changing the sign of u in does not give a qualitative
difference. Finally, for u = 0, both branches give the limit
T1 = H and T2 = 0, for which the tensor equations become

2κ2A2T̂ab = fT
(	q̂ab − 2Hq̂ ′

ab − q̂ ′′
ab

)

+12
fT T
A2 H(H2 − H′)q̂ ′

ab. (159)

We see that apart from the factor fT , which acts as an effective
gravitational constant, these equations reproduce the known
result from general relativity, with gravitational waves propa-
gating at the speed of light, while the additional terms propor-
tional to fT T contribute to the Hubble friction and curvature
terms only.

7.2 f (Q) gravity

We then continue with the symmetric teleparallel geometry,
where we impose vanishing torsion (6), and hence vanishing
contortion (4). From the curvature decomposition (8) and the
connection decomposition (3) then follows that we can write
the Ricci scalar in the form
◦
R = −Q + BQ, (160)

where the two terms on the right-hand side are given by

Q = 2Lμτ [μLτνν], BQ = 2
◦∇μL [νμ]

ν . (161)

Also here the second term BQ is a total divergence, and so its
contribution to the Einstein–Hilbert action is a pure boundary
term, which can be neglected without changing the metric
field equations, when we replace

◦
R by −Q in the action.

Here we generalize the action to [37]

Sg = − 1

2κ2

∫

M
f (Q)

√−gd4x . (162)

Also in this case the only relevant field equation for the ten-
sor perturbations is obtained by variation of the action with

respect to the metric, with the matter contribution originat-
ing from the variation (18). We study these tensor pertur-
bation equations for the different cosmologically symmetric
background geometries derived in [25,31]. For the spatially
curved case u �= 0, the branch (43) mandates a non-vanishing
axial torsion, and so this branch is not present in the sym-
metric teleparallel geometry. Hence, we are left with the only
spatially curved branch (44), where the nonmetricity can be
parametrized as

Q1 = H − K − K̇
K , Q2 = K − H, Q3 = K + u2

K .
(163)

The field equation for the tensor perturbations then becomes

2κ2A2T̂ab
= fQ

(
	q̂ab − 2u2q̂ab − 2Hq̂ ′

ab − q̂ ′′
ab

)
+ 3

fQQ

A2K4

×
{

4HK(H − K)(HK + u2)+ 2K[(K2 − 2HK

−u2)H′ + (u2 + K2)K′′]
}
(Kq̂ ′

ab − 2u2q̂ab). (164)

We see that similarly to the metric teleparallel case we obtain
a contribution to the Hubble friction and curvature terms,
while the speed of propagation remains equal to the speed of
light. We are left with the three spatially flat branches. In the
case (45), we can set

Q1 = K, Q2 = −H, Q3 = 0. (165)

The tensor field equation then becomes

2κ2A2T̂ab = fQ
(	q̂ab − 2Hq̂ ′

ab − q̂ ′′
ab

)

+12
fQQ

A2 H(H2 − H′)q̂ ′
ab, (166)

and thus qualitatively agrees with the metric teleparallel
case (158), with a modified Hubble friction only; note, how-
ever, that the different background evolution in these the-
ories still enters through the derivatives of the function f
appearing in this equation. For the branch (46), we choose
the parametrization

Q1 = H + K′

K , Q2 = −H, Q3 = K, (167)

and find that the tensor perturbation equations

2κ2A2T̂ab = fQ
(	q̂ab − 2Hq̂ ′

ab − q̂ ′′
ab

)

+3
fQQ

A2 [4H2(H − K)

−2(2H − K)K′ + K′′]q̂ ′
ab, (168)

where also here only the Hubble friction receives a modifi-
cation. Finally, in the branch (47), we can set

Q1 = H − K − K′

K , Q2 = K − H, Q3 = K, (169)

which yields the equation
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2κ2A2T̂ab = fQ
(	q̂ab − 2Hq̂ ′

ab − q̂ ′′
ab

)

+3
fQQ

A2 [4H2(H + K)− 2(2H

+K)K′ − K′′](q̂ ′
ab − 2Kq̂ab) (170)

for the tensor perturbations. Again we see modified Hubble
friction and curvature terms, while the speed of propagation
is unchanged. We finally remark that for the f (Q) class of
theories, perturbations have also been studied in [38], where
a strong coupling problem similar to the f (T ) case has been
found in the scalar perturbation sector for several branches of
cosmology, while another branch exhibits a ghost instability
either in the scalar or tensor sector, which would cause the
overall evolution of cosmological perturbations to be unsta-
ble, despite a well-defined wave equation for the tensor per-
turbations.

7.3 f (G) gravity

We finally come to the general teleparallel geometry, in which
both torsion and nonmetricity may be non-vanishing. In this
case the curvature decomposition (8) immediately yields
◦
R = −G + BG, (171)

where we defined the terms

G = 2Mμ
τ [μMτν

ν], BG = 2
◦∇μM [νμ]

ν . (172)

As discussed in the metric and symmetric teleparallel cases,
replacing

◦
R by −G in the Einstein–Hilbert action does not

change the metric field equations, since BG is a boundary
term and hence does not contribute. Applying an arbitrary
function, such that the action becomes [22,26]

Sg = − 1

2κ2

∫

M
f (G)

√−gd4x, (173)

however, breaks this equivalence. In the following, we will
study the dynamics of tensor perturbations around the dif-
ferent cosmological background geometries in this class of
theories. Note that in contrast to the previously discussed
cases, the general teleparallel geometry allows for a second
tensor perturbation ûab originating from the teleparallel con-
nection, in addition to the metric perturbation q̂ab, and also
the field equation obtained by variation with respect to the
connection contains a tensor component. However, in the
particular case of f (G) gravity, it turns out that ûab does
not enter the field equations, and that the tensor part of the
connection equations is satisfied identically. One therefore
finds a single equation for the perturbation q̂ab, which we
now show for the different branches of background geome-
tries derived in [26]. For the case (43), we can parametrize
the cosmologically symmetric teleparallel connection as

T1 = H + K, T2 = u, Q1 = L, Q2 = K, Q3 = 0.

(174)

In this case the dynamics of the tensor perturbations is gov-
erned by the equation

2κ2A2T̂ab = fG
(
	q̂ab − 2u2q̂ab − 2Hq̂ ′

ab − q̂ ′′
ab

)

+12
fGG

A2 H(H2 − u2 − H′)q̂ ′
ab, (175)

and so formally agrees with the dynamics (157) in the met-
ric teleparallel case, except for the background value of the
function f , which now also depends on the two additional
dynamical functions K and L. For the remaining spatially
curved branch (44), we choose the parametrization

T1 = H + K − L, T2 = 0, Q1 = −K − L′

L ,

Q2 = K, Q3 = L + u2

L . (176)

Here we find the tensor field equation

2κ2A2T̂ab = fG
(
	q̂ab − 2u2q̂ab − 2Hq̂ ′

ab − q̂ ′′
ab

)
,

(177)

which agrees with the known result from general relativity,
except for the factor fG modifying the effective gravitational
constant. The propagation of gravitational waves in vacuum,
however, is unaltered by this modification. We then continue
with the spatially flat cases. For the branch (45), we can
choose the parametrization

T1 = H + K, T2 = 0, Q1 = L, Q2 = K, Q3 = 0,

(178)

and find the tensor field equation

2κ2A2T̂ab = fG
(	q̂ab − 2Hq̂ ′

ab − q̂ ′′
ab

)

+12
fGG

A2 H(H2 − H′)q̂ ′
ab, (179)

which represents the limit u → 0 of the previously found
equation (175). Similarly, considering the branch (46) and
the parametrization

T1 = H + K − L, T2 = 0, Q1 = −K − L′

L ,
Q2 = K, Q3 = L, (180)

the dynamics of tensor perturbations is governed by the equa-
tion

2κ2A2T̂ab = fG
(	q̂ab − 2Hq̂ ′

ab − q̂ ′′
ab

)
. (181)

Also here we see only a modification of the effective grav-
itational constant in comparison to general relativity, as the
equation is obtained from (177) in the limit u → 0. The same
holds for the branch (47) parametrized by

T1 = H + K, T2 = 0, Q1 = −K + L′

L ,
Q2 = K, Q3 = L, (182)
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for which we find the same equation (181). Hence, we find
that the tensor perturbations in the f (G) class of gravity the-
ories are formally described by the same set of equations as
in general relativity and in f (T ) gravity, and observational
differences can appear only through a modified background
evolution influencing the cosmological background value of
the function f and its derivatives in the tensor field equa-
tions. However, recall that the second tensor perturbation
ûab derived from the general teleparallel connection pertur-
bation is absent from the perturbed field equations, which
hints towards the possibility of a strong coupling problem,
as in the f (T ) and f (Q) cases. Thus, a more detailed analy-
sis is required to study the viability of these theories and the
validity of the perturbation theory, which we defer to later
work, as it would exceed the scope of this article.

8 Conclusion

We have studied the most general perturbations of gen-
eral, metric and symmetric teleparallel geometries around a
cosmologically symmetric, i.e., homogeneous and isotropic
background. In particular, we have decomposed the perturba-
tions of the metric and the teleparallel connection, the matter
variables and the general form of the gravitational field equa-
tions into irreducible components, and studied their behav-
ior under gauge transformations. Making use of the latter,
we have shown how gauge-invariant quantities can be con-
structed from these components. To show their use, we have
derived the energy-momentum–hypermomentum conserva-
tion equations as a linear perturbation around the cosmolog-
ically symmetric background.

As a further example, we have studied the propagation of
tensor perturbations in the f (T ), f (Q) and f (G) classes of
gravity theories. Our findings have shown that these receive
only minimal corrections compared to the well-known case
of general relativity, affecting the effective mass and Hubble
friction terms. In particular, we find that for all of these theo-
ries only two tensor modes propagate, despite the fact that the
general teleparallel geometry perturbation contains another
tensor mode. The latter indicates that the second tensor mode
in f (G) may be strongly coupled, which would be a sign of
a strong coupling issue similar to what has been found for
f (T ) and f (Q) theories.

While in our work we have focused on the geometry of
perturbations and their gauge transformations, we leave the
study of the dynamics of these perturbations in different
teleparallel gravity theories, their viability and the physi-
cal implications for future work. As an example, we present
study the perturbative degrees of freedom in the f (T ), f (Q)
and f (G) classes of gravity theories with a minimally cou-
pled scalar field around cosmological backgrounds in [39].
As another line of research, we plan to generalize our work

to more general cosmological backgrounds, which are only
homogeneous, but not isotropic, such as Bianchi cosmolo-
gies [40].
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