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Abstract We study a class of static spherically symmetric
vacuum solutions in modified teleparallel gravity solving the
field equations for a specific model Ansatz, requiring the
torsion scalar T to be constant. We discuss the models falling
in this class. After some general considerations, we provide
and investigate local solutions in the form of black holes
and traversable wormholes as well as configurations that can
match the anomalous rotation curves of galaxies.

1 Introduction

General Relativity (GR) has been tested for more than a cen-
tury and it represents the best theory of gravity available so
far. Nonetheless, it deals with problems in its infrared (IR)
and ultraviolet (UV) aspects and cannot be regarded as the
final theory of gravity. In the IR scales, at cosmological and
astrophysical scales, dark components need to be invoked to
describe the observed scenarios and at the UV scales, GR
presents challenges in its quantization due to the fact that it
is not a renormalizable theory. This scenario is a quest to go
beyond GR, as it has been widely done in recent decades.

A building block at the base of the current interpretation
of gravity is the Equivalence Principle (EP), an empirical and
well-measured fact forcing gravity to be a geometrical theory.
More specifically, the EP together with the requirement that
different observers need to describe nature with the same
physical laws led to the construction of the theory of gravity
as a metric-affine theory.

In this context, GR is a geometric theory of gravity
describing space-time as a manifold in which the affine con-
nection is metric-compatible and torsion-free and it is given
by the Levi-Civita connection totally defined by the metric.
Equivalently, one can say that GR is based on a Riemannian
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manifold on which the fundamental quantity is the scalar
Ricci curvature.

This choice although fruitful is arbitrary since three funda-
mental geometrical quantities characterize a general metric-
affine theory. Namely, the curvature R, the torsion T , and the
non-metricity Q [1,2].

Metric-affine manifold can be classified according to the
number of non-vanishing scalars defining its connection. If
none of R, T , or Q is vanishing the manifold is the most
general possible, and it is just dubbed as matric-affine. Sub-
classes are the torsion-free (T = 0), Riemann–Cartan (Q =
0), and teleparallel (R = 0) manifolds. Moreover, further
subsets are obtained if two scalars vanish simultaneously as
in the case of Riemannian (T = Q = 0), Weitzenböck or
teleparallel (R = Q = 0), and symmetric teleparallel (R =
T = 0) manifolds. Finally, when the three quantities vanish
together we are in the trivial subset of a merely Minkowskian
manifold.

It is now well understood that GR is just a vertex of a geo-
metrical trinity of dynamically equivalent gravity theories
in which the other vertexes are the Teleparallel Equivalent
to General Relativity (TEGR) [3–13], and the Symmetric
Teleparallel Equivalent of General Relativity (STEGR) [14–
21]. The former is characterized by vanishing curvature and
non-metricity and the connection reduces to the Weitzen-
böck connection, while in the latter, the curvature and the
torsion vanish. Both the equivalent theories are defined by
a lagrangian density coincident with the respective scalars
T and Q (similarly to the lagrangian density of GR charac-
terized by the scalar curvature R). These equivalent formu-
lations have recently been compared and reviewed in Refs.
[22–24].

Taking the non-relativistic limit of those theories one can
show that the equivalency is preserved in the non-relativistic
limit and it is possible to build equivalent non-relativistic
geometric models of gravity [25], namely Newtonian Grav-
ity theory, Newton–Cartan theory, and Symmetric Newton–
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Cartan theory. On the other hand, extended theories of gravity
f (R) [26,27], f (T ) [28–41], and f (Q) [19,20,42–48]where
the lagrangians are given by generic functions of R, T and Q,
respectively, do not generally display the same equivalence.
The main cause of this lack of equivalence dwells in the fact
that the Equations of Motion (EoMs) of f (R)-gravity are
fourth-order, while the other two theories are characterized
by second-order EoMs. Nonetheless, it was recently shown
[49] that by taking into account the boundary terms of TEGR
and STEGR (B̃ and B respectively) it is possible to promote
the extended theories from the second to the fourth order
by considering f (B̃ − T ) and f (Q − B) and restore the
dynamical equivalence.

The direct observation of the black hole (BH) shadows at
the center of the Milky Way [50] and of M87 [51] by Event
Horizon Telescope and the very many LIGO/Virgo/KAGRA
Collaboration merging events [52] motivate the research of
local solutions in the form of BHs, Wormholes (WHs), or
any ultra-compact object, the simplest description of which
is provided by static spherically symmetric (SSS) geome-
tries. Moreover, SSS geometries may also take into account
another well-studied problem in experimental physics: the
anomalous rotation of spiral galaxies. In those respect, SSS
local solutions have been already explored in f (R)-gravity
[53–57], in f (T )-gravity [58–65] and lately also in f (Q)-
gravity [66–79].

In this paper we will investigate SSS solutions in the
framework of f (T )-gravity and respecting a particular
Ansatz that solves on shell the EoMs.

In Refs. [57,79] we analyzed SSS space-time vacuum
solutions in the framework of f (R) and f (Q) gravity. We
considered an Ansatz solving identically the EoMs of spe-
cial classes of models when the respective scalar quantity is
constant (eventually vanishing). Here, we conclude the study
and exploit once again the Ansatz to find SSS vacuum solu-
tions in f (T )-gravity models respecting our Ansatz. In this
way, the EoMs are automatically satisfied in vacuum without
solving them explicitly and a wide class of new solutions can
be found. We discuss several possibilities and focus on solu-
tions capable of describing BHs, WHs, and rotational curves
of galaxies.

This paper is organized as follows. In Sect. 2 we revisit the
formalism of f (T )-gravity. In Sect. 3 we introduce an Ansatz
selecting a class of f (T )-models with exact SSS solutions for
constant torsion scalar. In this respect, we also provide some
examples of models. Sections 4, 5 and 6 are devoted to the
study of vacuum solutions describing BHs, WHs and resem-
bling the profile of rotation curves of galaxies, respectively.
Conclusions and final remarks are given in Sect. 7.

In this work, we use units of kB = c = h̄ = 1 and we
denote the gravitational constant κ2 = 8πGN .

2 f (T )-theories of gravity

We describe some general features of f (T )-theories of grav-
ity. Teleparallel gravity is a variant of Riemann–Cartan
geometry where a spin connection is present. In TEGR one
may use the notion of a proper frame in which the spin con-
nection is vanishing, since the term in the torsion scalar
depending on the spin connection can be rewritten as a
total derivative, and disappears from the equations of motion
derived from a Lagrangian which is still invariant under local
Lorentz transformations [80]. However, in f (T )-modified
theories of gravity, the variation of such term will be in gen-
eral not vanishing and this choice leads to a manifest breaking
of the local Lorentz invariance and makes the theory frame-
dependent. In this section we use the covariant formalism
presented in Ref. [64], using both the tetrad haμ and the spin
connection ωa

bμ as dynamical variables in order to avoid the
violation of local Lorentz invariance. For a comprehensive
discussion of the covariant formulation of f (T )-gravity we
recommend to the careful reader Refs. [64,65].

The tetrad is a set of four orthonormal vectors representing
a reference frame for the physical observer and is related to
the metric tensor through

gμν = ηabh
a
μh

b
ν, (1)

while for the spin connection, we have

ωa
bμ = ω̃a

bμ + Ka
bμ. (2)

Here, ηab = diag(−1, 1, 1, 1), and Ka
bμ takes the name of

contortion tensor,

Ka
bμ = 1

2
T a

bμ + T a
(b ν), (3)

where T a
bμ is the torsion tensor defined as

T a
bμ = ∂μh

a
ν − ∂νh

a
μ + ωa

bμh
b
ν − ωa

bνh
b
μ. (4)

Analogously to what is done for curvature where the Ricci
scalar R takes into account an amount of curvature, one can
define a scalar quantity taking into account the amount of
torsion, namely the torsion scalar

T = T a
μνS

μν
a , (5)

where.

Sμν
a = Kμν

a − hν
aT

αμ
α + hμ

a T
αν
α . (6)
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The general Lagrangian density of modified teleparallel grav-
ity is given by,

L = h

4κ2 f (T ), (7)

where h = det(haμ), and f (T ) is an arbitrary function of the
torsion scalar only.

The field equations are derived through variations with
respect to the tetrad and read

h−1 fT ∂ν(hS
μν
a ) + fT T S

μν
a ∂νT − fT T

b
νa S

νμ
b + fTωb

aνS
νμ
b

+1

4
f hμ

a = κT μ
a , (8)

where f ≡ f (T ), fT = d f (T )
dT , fT T = d2 f (T )

dT 2 , and

T μ
a = 1

h

δLm

δhμ
a

, (9)

with Lm the usual Lagrangian density of matter.

3 The model ansatz

We aim to focus on vacuum solutions, namely solutions with
T μ
a = 0. In this way the simple assumption

f (T0) = fT (T0) = 0, (10)

where T = T0 is a constant value (eventually vanishing)
of the torsion scalar, automatically satisfies the equations of
motion (8)–(9).

This Ansatz does not force the function f (T ) to assume
any specific functional shape which then is not uniquely
determined. Therefore, the Ansatz spans different possible
choices of specific modified teleparallel gravity of physical
interest. For example, polynomial models of the type

f (T ) = γ (T − T0)
n, n ≥ 2, (11)

where γ is a dimensional constant, fall in this class of theo-
ries. We can write,

f (T ) = γ

n∑

k=0

n!
k!(n − k)!T

n−k(−T0)
k,

= γ
n!

(n − 1)! (−T0)
n−1T + γ (−T0)

n

+γ

n−2∑

k=0

n!
k!(n − k)!T

n−k(−T0)
k, (12)

and by posing γ n!
(n−1)! (−T0)

n−1 = 1 at the leading order,
apart from a cosmological term, we find a power-law correc-

tion to TEGR which is relevant only for large values of the
scalar torsion T .

Moreover, some applications to dark energy phenomenol-
ogy can be obtained by considering the model,

f (T ) = T + 2�
(

1 − e
T

2�

)
, (13)

where � is the cosmological constant, which is equivalent to
the so-called one-step models of f (R)-gravity [81–87].

In this context, we are interested in SSS solutions whose
line element reads

ds2 = −h(r)dt2 + 1

g(r)
dr2 + r2d�2, (14)

where h(r), g(r) are generic functions of the radial coordi-
nate r and d�2 = (

dθ2 + sin θdφ2
)

represents the metric of
the two-dimensional sphere. Thus, the scalar torsion is given
by [63]

T = 4g(r)

r2

(
1√
g(r)

− 1

) (
1√
g(r)

− 1 − rh′(r)
h(r)

)
. (15)

The prime index corresponds to the derivative with respect
to r . We will look for solutions where

4g(r)

r2

(
1√
g(r)

− 1

) (
1√
g(r)

− 1 − rh′(r)
h(r)

)
= T0, (16)

with T0 constant, which are solutions of the class of models
previously discussed. As a special case, when T0 = 0, we
can choose g(r) = 1 (see §6) or, alternatively, we have to
impose the following condition

(
1√
g(r)

− 1 − rh′(r)
h(r)

)
= 0. (17)

4 Black hole solutions

In this section we are interested in black hole solutions in the
form of (14) and satisfying Eq. (16) for some value of T0,
which are exact solutions of f (T )-modified gravity models
introduced in §3 for which condition (10) holds true.

Let us start by considering the Schwarzshild gauge with
h(r) = g(r), namely

ds2 = −g(r)dt2 + 1

g(r)
dr2 + r2d�2. (18)

Thus, the zeros of g(r) correspond to BH horizons as soon
as g(r) > 0 in order to have a positive surface gravity.
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Therefore, Eq. (16) leads to

g(r) = h(r) = 1 − c1

r
+ r2T0

12
± 2

√

−c1

r
+ r2T0

12
, (19)

where c1 is an integration constant, while T0 is fixed by the
model. If T0 > 0 and c1 > 0 a minimal length scale for

the radial coordinate appears since r ≥ r0 =
(

12c1
T0

) 1
3

and

the singularity at r = 0 is avoided. On the other side, when
T0 < 0, c1 has to be negative, namely c1 < 0, and the metric
is still free of central singularity. In all these cases one expects
that r0 is a Plankian size, namely c1/T0 � 1.

Solution (19) can be written as

g(r) = h(r) = (1 ± X (r))2

X (r) =
√

−c1

r
+ r2T0

12
, (20)

and the interesting case for the formation of an event horizon
is the one with the negative sign for which g(r) and h(r)
vanish when X (r) = 1, namely

r3T0 − 12r − 12c1 = 0. (21)

This equation may possess one positive root when T0 > 0
and c1 > 0 or when T0 < 0 and c1 < 0 and two posi-
tive roots when T0 > 0 and c1 < 0 (Descartes’rule). In the
second case, we are in the presence of a black hole with an
additional internal Cauchy horizon (for the issues related to
the instability of the Cauchy horizon see Refs. [88,89]). In
any case, g(r) and therefore h(r) are positively defined, even-
tually vanishing, and they never take negative values. Thus,
the solution does not show the usual inversion of the Killing
vectors through the horizon. Moreover, g′(r) = 0 on the BH
horizon when X (r) = 1 and the Hayward surface gravity κH
[90] vanishes therefore the temperature associated to the BH
horizon T = κH

2π
= g′(r)

4π
is null as in an extremal black hole

[91]. Finally, when T0 �= 0, in the external region far from
the horizon, the solution turns out to coincide with de Sitter
(dS) or an Anti-De Sitter (AdS) space-time, depending on
the sign of T0.

To better understand the causal structure of the solution,
let us consider the change of coordinates,

ds2 = −h(r)du2 − 2

√
h(r)

g(r)
dudr + r2d�2, u = t + r∗

ds2 = −h(r)dv2 + 2

√
h(r)

g(r)
dvdr + r2d�2, v = t − r∗,

(22)

where the null coordinates u, v are determined by the tortoise
coordinate r∗ which is given by,

dr∗ = dr√
h(r)g(r)

. (23)

We recall that the light cone is defined as the surface for
which the incoming and outgoing null geodesic du and dv

vanish, namely when dv = 0 and dv = −2/
√
h(r)g(r)dr or

when du = 0 and du = 2/
√
h(r)g(r)dr . Thus, introducing

the new coordinate t∗ = u−r or t∗ = v−r , one can describe
the light-cone with

dt∗

dr
= −1 and

dt∗

dr
= ±

(
2√

h(r)g(r)
− 1

)
. (24)

To move forward, we can investigate the special case
T0 = 0 in (19), such that we deal with an asymptotically
Minkowskian solution having

g(r) = h(r) = 1 − c1

r
± 2

√
−c1

r
=

(
1 ±

√
−c1

r

)2

, (25)

with c1 < 0. Once again, the BH solution is the one with a
negative sign and the event horizon is located at

r = −c1. (26)

As we already discussed, the metric functions g(r) and h(r)
are positively defined inside and outside the horizon, and
integrating the two equations in (24) one has,

t∗1 = −r + k1,

t∗2 = r − 6c1

(
log

(∣∣∣∣1 +
√

r

c1

∣∣∣∣

))

− log

((∣∣∣∣1 −
√

r

c1

∣∣∣∣

)
− log(|c1 − r |)

)

+−8
√
c1r3 + 12

√
c1

3r + 4c1
2

c1 − r
+ k2, (27)

where k1,2 are arbitrary constants. Now, the intersection of
the functions t∗1 ≡ t∗1 (r) and t∗2 ≡ t∗2 (r) define the structure
of the light cone in the (t∗, r)-plane. This set of coordinates
displays an outstanding advantage with respect to the usual
set of coordinates (t, r): the horizon singularity is removed
and the light cone does not degenerate into a straight line. We
notice that in the far away region we have t∗1 = −r + k1 and
t∗2 ∼ r + k2, therefore for different values of k1,2 the light
cone is described by lines with 45◦ tilt in the (t∗, r)-plane
with the future cone pointing upward toward positive values
of t∗, as one expects for Minkowski space-time.

To better grasp the causal structure of the solution
approaching the horizon, we look at Fig. 1a in which it is
reported t∗1 (r) for different values of k1 (solid blue lines) and
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t∗2 (r) for k2 = 0 (solid red line), respectively, and, for the sake
of simplicity and without loss of generality, we took c1 = 1.
The red dotted line at r = 1 corresponds to the horizon and
there t∗2 (r) diverges and changes its sign crossing the horizon.
Coming from radial infinity and approaching the horizon, the
light cone tilts on the left and then the right-hand side of the
light cone becomes vertical at the horizon. However, differ-
ently to what happens in the Schwarzschild solution, where,
inside the horizon, the light cone rotates of 90◦ at r = 0, here,
the causal structure re-approach its configuration at 45◦ for a
finite and non-vanishing radial value (see Fig. 1b) and there-
fore tilts on the right side. At r = 0 the red and blue lines
coincide and in that point, there exists no space-like region,
namely, in that point space-time is Euclidean and can only be
reached by light rays. Such a BH still possesses an unremov-
able singularity at r = 0, but it cures the unphysical feature
of having all the matter and radiation accumulated in one
point with infinite density.

As a consequence, the structure internal to the event hori-
zon is causally disconnected from the external world, no par-
ticle can escape and no particle can reach the point r = 0.

Some other BH solutions that lead to T = T0 can be
obtained by posing g(r) = h(r)2 in (14). Thanks to this
choice Eq. (16) simply reads,

4

r2 (1 − h(r))
(
1 − h(r) − rh′(r)

) = T0, (28)

whose solutions are,

h(r) = 1 ±
√
r4 T0

2 − c1

2r
, (29)

with c1 integration constant. The BH solutions correspond to
the ones with the minus sign. Moreover, if T0 > 0 and c1 > 0

or T0 < 0 and therefore c1 < 0 we have r > r0 =
(

8c1
T0

) 1
4

and the central singularity at r = 0 is avoided.
If T0 = 0 and c1 < 0 the solution h(r) = √

g(r) =
1 ±

√−c1
2r is asymptotic flat and one finds

h(r) = 1 ± c0

r
, (30)

where c0 =
√−c1

2 is a positive constant. The solution with
the minus sign describes a black hole whose event horizon is
located at r = c0.

We also can generalize the previous solution by taking
h(r) = g(r)z , with z �= 0,− 1

2 a generic number. Then solv-
ing Eq. (16) we get,

g(r) = h(r)
1
z = 1 − c1r−1/z

2z
+ r2T0

4(2z + 1)

±
r−2/z

√
r3/z

(
z T0

2 r
1
z +2 − 2c1z − c1

)

√
z2 + z

2

, (31)

with c1 constant, and various BH configurations for different
values of T0 are allowed. Note that for z = 1/2 we recover
solution (29) with c1 → 4c1.

5 Wormhole solutions

In this section we will investigate exact wormhole solutions
[92] which lead to a constant torsion scalar T = T0 and
which belong to the class of models satisfying the Ansatz in
(10).

It is worth recalling that in GR, one can realize a
traversable wormhole only by invoking the presence of an
exotic matter source that violates the null energy condition
[93–104]. However, in the framework of a modified the-
ory, wormholes may be realized as vacuum solutions, since
the unpleasant role of the anti-gravitational matter could be
played by the modification of gravity itself [105–108].

By making the choice h(r) = e2�(r), the line element in
(14) reads,

ds2 = −e2�(r)dt2 + 1

g(r)
dr2 + r2d�2, (32)

where �(r) is the so-called red-shift function and it depends
on the radial coordinate only.

A traversable wormhole is a space-time configuration
characterized by a minimal radius or “throat” localized at
r = r0 �= 0 such that g(r0) = 0, while the function �(r) is
finite and regular everywhere along the throat. In the specific,
the following conditions must be satisfied [109–111]:

• �(r) and g(r) are regular and well defined for all r ≥ r0;
• �′+(r0) = �′−(r0);
• g(r0) = 0 and g(r) > 0 for all r ≥ r0;
• g′+(r0) = g′−(r0) > 0.

The radial distance is given by l(r) = ± ∫ r
r0

dr̃
g(r̃) , and is well

defined everywhere [92]. In particular, its minimal value is
reached when r = r0 where l(r0) = 0 and its positive and
negative values correspond to the lower and upper parts of
the manyfold connected by the throat. Thus, the traveling
time necessary to cross the wormhole between l(r1) < 0
and l(r2) > 0 is �t = ∫ l(r2)

−l(r1)
dl

ve�(l) , where v = dl
e�(l)dt

is the radial velocity of the traveler when passing a given
radius r . The magnitude of �′(r) is associated with the tidal
force experimented crossing the throat and big values of its
modulus may make it difficult for an observer to complete
the journey from one side to the other of the wormhole.

123



  476 Page 6 of 10 Eur. Phys. J. C           (2024) 84:476 

Fig. 1 Here we considered c1 = 1 and report t∗1 (r) for different values
of k1 (solid blue lines) and t∗2 (r) at k2 = 0 (solid red line). The red
dotted line at r = 1 corresponds to the horizon and there t∗2 (r) has an

asymptotic behavior and changes sign crossing the horizon. b is a zoom
of the same plot regarding the internal structure of the BH

Given (32), the torsion scalar reads:

T =
4

(√
1

g(r) − 1
)
g(r)

(√
1

g(r) − 2r�′(r) − 1
)

r2 , (33)

and Eq. (16) corresponds to,

4
(√

1
g(r) − 1

)
g(r)

(√
1

g(r) − 2r�′(r) − 1
)

r2 = T0. (34)

It is now possible to make a general assumption for the metric
function g(r), namely

g(r) = 1 − c1

r z
, (35)

where z > 0 and c1 > 0 are generic numbers chosen to
be positive in order to satisfy the third and fourth above-
mentioned conditions allowing the solution to be a wormhole.
In this case, metric (32) may represent a wormhole whose

throat is located at r = c
1
z
1 . From Eq. (34) we get,

�(r) = c2 − 1

4c1z(z + 2)

√
r z

r z−c1
(r z − c1) 3/2

×
(
c1

T0

2
zr z+2

√

1 − r z

c1

√
r z − c1

× 2F1

(
1

2
,

1

2
+ 2

z
; 3

2
+ 2

z
; r

z

c1

)

+ (
r z − c1

)
(√

r z − c1

(
2c1(z + 2)

√
r z

r z − c1

× log

(
1 − r z

c1

)
+ T0

2
zr z+2

(
1 +

√
r z

r z − c1

)

−2c1(z + 2)

√
r z

r z − c1
log

(
1 − c1r

−z)
)

+2c1(z + 2)r z/2 log

(
1 − r z/2

√
r z − c1

)

−2c1(z + 2)r z/2 log

(
1 + r z/2

√
r z − c1

)))
, (36)

where F1(a, b; c; d) is the hypergeometric function. Here,
c2 is a constant that only brings to a shift of the cosmological
time, such that, without loss of generality, we can assume
c2 = 0.

The expression above is quite involved and in what fol-
lows we will analyze the case T0 = 0. After doing some
calculations:

�(r) = 1

2
log

⎛

⎝
(

2 − c1

r z
+ 2

√
1 − c1

r z

) 1
z

⎞

⎠ , (37)
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or, equivalently, by reintroducing the metric function h(r),

h(r) =
(

2 − c1

r z
+ 2

√
1 − c1

r z

) 1
z

. (38)

If z > 0 and c1 > 0, equation (37) describes a regular well-
defined function of all r ≥ r0 = c1/z

1 and for r = r0 we
get �(r0) = 0 while �′(r) > 0 when r > r0. However,
we should note that �′(r0) diverges on the throat making
it impossible to traverse the wormhole for extended bod-
ies. Nonetheless, light can travel and carry information from
one side to the other. According to the distinction reported
in [110] we should classify this wormhole as traversable in
principle and not traversable in practice.

In order to find a wormhole that is traversable in practice,
we would like to consider the following choice for �(r),

�(r) = 1

2
log

((r
r̃

)z)
, (39)

with r̃ a positive length parameter and z > 0. In this case

h(r) =
(

r
c1

)z
and �′(r) > 0 for any value of r . From Eq.

(34) we get

g(r) =
2 + 2z + z2 + r2 T0

2 (z + 1) ±
√

(z + 2)2
(
r2T0(z + 1) + z2

)

2(z + 1)2 .

(40)

By assuming T0 > 0 and therefore by taking the solution
with the minus sign we have

g(r0) = 0 ←→ r0 =
√

4

T0
, (41)

and g′(r0) > 0. We note that the radial value of the throat r0

does not depend on the parameter z and it is fixed by T0. It
means that the class of models satisfying (10) for some value
of T0 �= 0 admits traversable wormhole solutions whose
throat is determined by the model parameter T0 only.

6 Rotation curves of galaxies

The analysis of the rotation curves of galaxies provides
another playground where SSS metrics have useful appli-
cations. Galaxies are characterized by two ingredients: the
visible baryonic matter forming a rotating disk, and some
electromagnetic invisible matter, the so-called dark matter,
forming a spherical halo that encloses the baryonic matter
disk. The dark matter halo is required to explain the observed
flattening of the rotation curve of the baryonic matter at a
large distance from the galactic center (see Refs. [112,113]

for a review on such topics). Phenomenologically, they result
in a Newtonian potential of the form [114–123],

gtt (r) = −h(r) = −(1 + 2ϕtot (r))

= −(1 + 2ϕBM (r) + 2ϕDM (r))

= −
(

1 − c0

r
+ c1r

)
, (42)

where c0, c1 are positive dimensional constants, ϕtot (r) is the
total potential and ϕBM (r) and ϕDM (r) are its baryonic and
dark matter components, respectively. The baryonic matter
potential is in the form of the classical Newtonian potential
scaling according to the radial distance, while the dark matter
potential is linear with respect to the radial distance, in order
to reproduce the observed flattening of the rotation curves.

By neglecting the behavior for small values of r , it is
possible to derive an interpolating form as, [124]

h(r) = 1 + c2 log r, (43)

where c2 is a positive constant. On the other hand, for large
values of r we get,

h(r) = 1 + c1r. (44)

In the framework of a modified theory of gravity, the effects of
dark matter can be played by modification of gravity without
invoking any exotic form of matter. In this section, we will
analyze exact SSS solutions in the form of (14) and whose
metric function h(r) is given by (43) or (44) and which lead
to a constant torsion scalar T0, namely they are solutions of
the class of models for which Eq. (10) holds true.

First of all, we remind that, when T0 = 0, the picture is
significantly simplified. In this case, as we already observed
in §3, a solution of Eq. (16) is given by g(r) = 1. It means
that the space-time described by

ds2 = −h(r)dt2 + dr2 + r2d�2, (45)

with h(r) given by (43) or (44) and which reproduces the
phenomenology of dark matter is an exact solution of all the
modified teleparallel gravity models satisfying Eq. (10) with
T0 = 0. Beyond this choice, other possibilities are allowed
for the metric function g(r) according to (43) or (44). In the
first case, when T0 = 0, we have,

g(r) = c2
2 log2(r)

(c2 log(r) + 1 + c2)2 + 2c2 log(r)

(c2 log(r) + 1 + c2)2

+ 1

(c2 log(r) + 1 + c2)2 , (46)

which tends to 1 for large values of r .

123
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In the second case, one finds a general solution for T0 �= 0,
namely,

g(r) = c1
2r4T0

2(1 + 2c1r)2 + 3c1r3T0

4(1 + 2c1r)2 + r2T0

4(1 + 2c1r)2

+ 5c1
2r2

2(1 + 2c1r)2 + 3c1r

(1 + 2c1r)2 (47)

+ 1

(1 + 2c1r)2

±
√
r2(2 + 3c1r)2

(
T0

(
2c1

2r2 + 3c1r + 1
) + c1

2
)

2(1 + 2c1r)2 ,

(48)

which for T0 = 0 reduces to

g(r) = 5c1
2r2 + 6c1r + 2 ± √

c1
2r2(2 + 3c1r)2

2(1 + 2c1r)2 , (49)

such that by taking the plus sign for large values of r we still
have g(r) → 1.

7 Conclusions

In this paper, we analytically studied exact solutions of f (T )-
gravity having a static and spherical symmetry.

In TEGR the gravitational lagrangian corresponds to the
torsion scalar T , while f (T )-gravity is an extension of the
theory where the gravitational lagrangian is a generic func-
tion of the torsion scalar. The SSS solutions we found are
characterized by a constant (eventually vanishing) torsion
scalar and belong to models satisfying a general Ansatz for
which the equations of motion are trivially satisfied. SSS
solutions may describe compact objects such as black holes
and wormholes as well as take into account the anomalous
rotation curve typical of spiral galaxies.

We investigated several metrics describing black hole
solutions that differ from the Schwarzschild metric thus
opening the possibility of comparing the results with Solar
System tests, gravitational waves coming from black hole
mergers, and black hole shadow to constrain the parameter
space.

The wormhole solutions we found have configurations
leading to wormholes that are traversable in principle and
in practice. Such solutions display a conceptual advantage,
in fact, they are not in need of odd matter sources violat-
ing the null energy condition and preventing the throat from
pinching off. This exotic matter source is needed in the con-
text of GR and can be made of additional new fields or by
the anomalous trace of standard fields [104]. For what con-
cerns the wormhole solutions we proposed in this paper, this

unpleasant role is played by the gravitational sector which is
modified and no additional exotic matter is invoked.

The last offspring of our Ansatz consists of solutions capa-
ble of mimicking the influence of the dark matter halo in the
rotational behavior of spiral galaxies. As for the other cases,
there exists the potentiality of exploiting the rotation curves
of a large number of galaxies for fixing the parameters.
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