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Abstract Inspired by the generalization of scalar field grav-
itational models with a minimum length we study the equiv-
alent theory in modified theories of gravity. The quadratic
generalized uncertainty principle (GUP) gives rise to a
deformed Heisenberg algebra in the application, resulting in
the emergence of additional degrees of freedom described by
higher-order derivatives. The new degrees of freedom can be
attributed to the introduction of a new scalar field, transform-
ing the resulting theory into a two-scalar field theory. Thus,
in order to describe all the degrees of freedom we investigate
special forms of the sixth-order modify f (R,�R) −theory
of gravity, where the gravitational Lagrangian has similar
properties to that of the GUP scalar field theory. Finally, the
cosmological applications are discussed, and we show that
the de Sitter universe can be recovered without introducing
a cosmological constant.

1 Introduction

Dark energy is an exotic matter source introduced in Ein-
stein’s field equations of General Relativity in order to
explain the cosmic acceleration as it is observed by the
cosmological data [1–5]. Currently, there are no observ-
able phenomena directly linked to the nature and charac-
teristics of dark energy. As a result, the physical nature
and the origin of dark energy it is up for debate in the
scientific community. Introducing the cosmological con-
stant in the Einstein–Hilbert action integral represents one
of the simplest approaches to address the issue of dark
energy. The �CDM cosmology is an analytic solution of
the field equations of General Relativity for a spatially flat
Friedmann–Lemaître–Robertson–Walker (FLRW) geometry
with a nonzero cosmological constant term and a pressure-
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less dust fluid. �CDM has achieved considerable success
in describing a large span of astronomical and cosmological
data. Nevertheless, the cosmological constant can not explain
the complete evolution of the cosmic history [6,7], we refer
the reader to the recent discussion [8].

In order to overcome the problems of the cosmological
constant and to explain the late-time cosmic acceleration,
in recent years, cosmologists have proposed various mod-
els which can categorized to two large families of theories,
the dark energy theories and the modified theories of gravity.
For the dark energy models, an energy-momentum tensor that
attributes the new degrees of freedom is introduced in field
equations of General Relativity. The dynamics driven by the
newly introduced degrees of freedom provide an explana-
tion for various cosmological phenomena. Some of the most
common dark energy models are the quintessence scalar field
[9–12], phantom scalar field [13,14], chameleon mechanism
[15], scalar-tensor models [16–18], Galileons [19,20]; multi-
scalar field models [21–23], Chaplygin gas-like fluids [24–
28], k-essence [29,30], tachyons [31–33]. On the other hand,
in modified theories of gravity the Einstein–Hilbert action
integral is modified with the introduction of geometric invari-
ants [34–36]. As a result, the gravitational field equations
are modified such that new geometrodynamical components
to be introduced and provide an effective geometric matter
source to explain the acceleration of the universe [37]. The
“zoology” of modified theories of gravity can be categorized
based on the geometric invariant used to modify the gravita-
tional Action Integral and the order of derivatives involved.
Within the realm of modified theories of gravity, a particu-
lar family of interest comprises the so-called f (X)-theories,
where the gravitational Action Integral is a function f of the
geometric invariant X . The latter can be the Ricci scalar leads
to f (R)-gravity [38], the torsion scalar T of the Weitzenböck
connection in teleparallelism [39], the non-metricity scalar
Q in symmetric teleparallel theory [40], the Gauss–Bonnet
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term [41], for other proposed theories see for instance [42–
47] and references therein.

f (R)-gravity [48,49] has been widely studied in the lit-
erature with many interesting results in cosmological stud-
ies [50–52] as also important results in the description of
astrophysical objects [53–55]. The quadratic theory of grav-
ity f (R) = R + qR2 [56–58], has been used successfully
[59] for the description of another inflationary epoch of our
universe. Specifically, the quadratic f (R)-gravity has been
used as a mechanism for acceleration in the early stages of
the universe [60]. The quadratic term R2 follows from the
analytic expressions for the quantum-gravitational effects in
the one-loop approximation. Indeed the origin of the R2 term
is the vacuum polarization of the physical space [61,62].

The existence of a minimum length, i.e. maximum energy
in nature, is supported by various approaches to quantum
gravity, like string theory, doubly special relativity and the
black hole physics. The incorporation of a minimum length
necessitates a modification of Heisenberg’s uncertainty prin-
ciple, giving rise to the generalized uncertainty principle
(GUP) [63]. By modifying the uncertainty principle govern-
ing quantum observables, we arrive at a revised definition of
the Heisenberg algebra, which in turn leads to adjustments
in the Poisson brackets in the classical limits [64–66]. The
modified Poisson brackets revise the equations of motion
such that new degrees of freedom to be introduced. There
is a plethora of studies of GUP in gravitational physics, see
for instance [67–69]. As far as the cosmological constant is
concerned, it has been found that it is related to the GUP
and the minimum length [70,71]. Another extension of the
uncertainty principle in the extended uncertainty principle
(EUP) [72,73], however in this work we are focus in GUP.
We refer the reader to the recent review [74].

The quintessence model, employed to describe dark
energy in [75] incorporates modifications to the scalar field
Lagrangian through the application of the quadratic GUP,
that is, in the equation of motion for the scalar field, i.e. the
Klein–Gordon equation, new higher-order derivatives have
been introduced, as a result of the deformed Heisenberg alge-
bra. These new terms are related to the existence of the min-
imum length. The higher-order derivatives can be described
by a second-scalar field and this modified quintessence model
is equivalent to a multi-scalar field cosmological model with
interaction between the two scalar fields. It was found that
the GUP components affect the cosmological evolution of a
FLRW geometry not only in the early stages of the universe
but also in the late-universe, while the effects for the exis-
tence of the deformed Heisenberg algebra are observable in
the cosmological perturbations [76]. The case where a matter
source is included in the field equations coupled to the scalar
field was the subject of study in [77]. Furthermore, in [78]
the deformed Heisenberg algebra for the quadratic GUP was
considered to study the effects of the minimum length in the

case of a gravitational theory, which satisfies Mach’s princi-
ple. Specifically, the case of the Bran–Dicke scalar field was
considered modified by the quadratic GUP. It was found that
the modified theory is a multi-scalar field theory with differ-
ent dynamics and evolution from the unmodified theory. An
important result is that the nature of the asymptotic solutions
does not depend on the value of the Brans–Dicke parameter,
which is different from the case of the unmodified theory.
Last but not least, the effects of the GUP modification in
the Brans–Dicke theory are observable not only in the early
stages of the universe but also in the late-time.

There exists a unique connection between some modified
theories of gravity and scalar field models. Indeed, the new
degrees of freedom provided by the geometric scalars in mod-
ified theories of gravity can be attributed to scalar fields. For
instance f (R)-gravity [48] is equivalent with the so-called
O’Hanlon theory [79] which belongs to the family of scalar-
tensor theories [80] and specifically to the Brans–Dicke grav-
ity [81]. Recall that f (R)-gravity is fourth-order theory for
a nonlinear function f , while it reduces to a second-order
theory in the limit of general relativity when f is a linear
function. Thus, with the introduction of a Lagrange multi-
plier the field equations can be written in the equivalent order
of second-order derivatives but in the same time the number
of the dependent variables increases. In general, Lagrange
multipliers are applied for the introduction of constraints for
the cosmological model. There are various studies in the lit-
erature for the application of Lagrange multipliers in gravi-
tational theories, see for instance [82–84].

In this study, we investigate if there exists a modified the-
ory of gravity where we can recover the quadratic GUP cor-
rections that follow from the deformation of the Heisenberg
algebra in scalar field theories. With such analysis, we will be
able to find the geometric equivalent of GUP in modified the-
ories of gravity. The GUP scalar field models studied before,
in the Einstein and Jordan frames [75,78], are second-order
multi-scalar field models, specifically the matter source is
attributed to two-scalar fields. Hence, in order to be able to
recover a two scalar field theory in modified theories of grav-
ity we shall consider a sixth-order theory. F (R,�R)-theory
has been introduced before [85,86] as a sixth-order gravity
and extension of f (R) theory, where � is the Laplace opera-
tor. The introduction of higher-order derivatives in the gravi-
tational Action Integral is in agreement with quantum gravity
[85]. The effects of the �R terms in F (R,�R) −theory has
been widely studied before in the description of inflation
[87–89]. A detailed analysis of the cosmological dynamics
in F (R,�R) performed recently in [90] where it was found
that higher-order terms can dominate the evolution of the uni-
verse. For more applications of F (R,�R)-theory in gravi-
tational physics we refer the reader to [91–95] and references
therein. The structure of the paper is as follows.
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In Sect. 2 we present the basic properties and definitions of
GUP and we focus on the case of quadratic GUP. We define
the deformed Heisenberg algebra, and we derive the modified
Klein–Gordon equation for a spin-0 particle. The latter mod-
ified Lagrangian is used in Sect. 3 in order to introduce the
effects of the deformed Heisenberg algebra in scalar field cos-
mological models. The modified quintessence and modified
Brans–Dicke models are presented. In Sect. 4 we consider
the F (R,�R)-gravity which is a theory of gravity of sixth-
order. We introduce Lagrange multipliers in order to increase
the number of the dependent variables with the introduction
of scalar fields, and at the same time reduce the theory into a
second-order gravitational model. We found that a separable
function F (R,�R) is equivalent to two-scalar field theory
with similar properties to that of GUP scalar field models. In
Sect. 5 we focus in the case of F (R,�R) = R + K (�R)

gravity, where the term K (�R) introduces similar correc-
tions terms in the field equations as that of the minimum
length of GUP. Indeed, the K (�R) we can say that fol-
lows from the deformation algebra of the Einstein–Hilbert
action integral. For a spatially flat FLRW background geom-
etry in Sect. 5 it was found that the de Sitter universe is a
unique attractor for the cosmological solution without nec-
essary introduce a cosmological constant term. Thus, the
existence of a minim length in the early universe leads
to an accelerated universe. Finally, in Sect. 6 we draw our
conclusions.

2 Generalized uncertainty principle

The existence of a minimum length leads to the modification
of the Heisenberg’s uncertainty principle as

�Xi�Pj � h̄

2
[δi j (1 + βP2) + 2βPi Pj ], (1)

where parameter β is the deformed parameter defined as β =
β0/M2

Plc
2, where MPl is the Planck mass and MPlc2 is the

Planck energy, or equivalently β = β0�
2
Pl/h̄

2 where �Pl
(≈ 10−35 m) is the Planck length. Parameter β0 usually is
selected to be positive and equal to one, however in order to
have observable quantum effects, the parameter β0 can have
different values [96].

The usual choice of the parameter β0 is β0 = 1, how-
ever, such a choice could lead do not observable quan-
tum effects; however in [96], it has been shown that
the dimensionless parameter β0 could has upper bound
such as β0 >> 1. However, there are studies where
shown that the deformation parameter β0 can be negative
[97–100].

Therefore, the modified uncertainty principle (1) leads to
the deformed Heisenberg algebra [101,102]

[Xi , Pj ] = i h̄

[
δαβ

(
1 + β0

�2
Pl

2h̄2 P
2

)
+ β0

�2
Pl

h̄2 PαPβ

]
. (2)

Hence, the coordinate representation of the momentum oper-
ator, which satisfies the commutation relation (2), can be
defined as Pi = pi (1+βp2), where we have selected to keep
underformed the position underformed, that is, Xi = xi . Rep-
resentation (x, p) is the canonical representation satisfying
[xi , p j ] = i h̄δi j .

In the relativistic limit the commutation relation (2) reads
[103]

[Xμ, Pν ] = −i h̄

[(
1 + β0

�2
Pl

2h̄2 (ημν PμPν)

)
ημν + β0

�2
Pl

h̄2 PμPν

]
,

(3)

where ημν is the flat metric. Therefore, the corresponding
deformed operators for (3) are Pμ = pμ(1 − β(ηαγ pα pγ )),

Xν = xν .

In the relativistic limit the equation of motion for a spin-0
particle with rest mass zero is

[
ημν PμPν − (mc)2

]
� = 0, (4)

that is,

�� − 2βh̄2� (��) +
(
mc

h̄

)2

� + O
(
β2

)
= 0. (5)

where the Laplace operator for the metric ημν is marked
with the symbol �. For a generic metric tensor gμν the
Laplace operator is defined as � = �, where � =

1√−g
∂μ

(
gμν√−g∂μ

)
. In Eq. (5) term 2βh̄2� (��) is the

quantum correction term which follows from the existence of
the minimum length. Because the quantum correction terms
introduce the fourth-order derivatives in the Klein–Gordon
equation, the β2 → 0, Eq. (5) is a singular perturbative sys-
tem which means that there is a solution where the term
2βh̄2� (��) dominates and drives the dynamics. For the
discussion of inner and outer solutions of singular perturba-
tive differential equations we refer the reader in [104].

The modified Klein–Gordon Eq. (5) is a fourth-order par-
tial differential equation. It can be written in the equivalent
form of two second-order differential equations by introduc-
ing the new scalar field 
 = ��. Hence, Eq. (5) in the limit
β2 → 0 becomes,

�� − 
 = 0, (6)

2βh̄2�
 + (mc)2 � + 
 = 0. (7)

Let us now derive the Lagrangian for the two scalar field
model with equations of motion (6) and (7).
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We consider the action integral of the Eq. (5)

Smod
KG =

∫
dx4

(
1

2
ημνDμ�Dν� − 1

2

(
mc

h̄

)2

�2

)
, (8)

where now Dμ is the deformed operator defined as

Dμ = ∇μ + βh̄2∇μ�. (9)

Hence, expression (8) becomes

Smod
KG =

∫
dx4

(
1

2
ημν

(
∇μ�∇ν� + 2βh̄2 (∇ν∇μ�

)
�

)

−1

2

(
mc

h̄
�

)2
)

, (10)

We include the Lagrange multiplier λ into the dynamical
system and the second scalar field 
 with constraint 
 =
��, therefore the latter Action Integral after integration by
parts is written as follows

Smod
KG

=
∫

dx4√−g

(
1

2
ημν∇μ�∇ν� + 2βh̄2ημν∇μ�∇ν


+βh̄2
2 − 1

2

(
mc

h̄

)2

�2

)
. (11)

3 Scalar field theories modified by GUP

We review previous results on the application of the quadratic
GUP in scalar field theories.

Consider the scalar–tensor action integral [80]

S =
∫

dx4√−g

[
1

2
F (φ)2 R − Lφ

]
, (12)

where F (φ) is the coupling function and Lφ is the Lagrangian
for the scalar field, that is

Lφ

(
xμ, φ,∇μφ

) = ω

2
gμν∇μφ∇νφ + V (φ) (13)

where ω is a parameter which defines the nature of the
scalar field. Lagrangian function (13) is that of the under-
formed Heisenberg algebra. Hence, after the application of
the quadratic GUP, we end with Lagrangian function (11)
which reads

LGU P
φ

(
xμ, φ,ψ,∇μφ,∇μψ

)
= ω

2
gμν∇μφ∇νφ + V (φ) + β

(
2gμν∇μφ∇νψ + ψ2

)
(14)

where ψ is the second scalar field which follows from the
higher-order derivatives.

We replace in (12), (14) and we end with the Action Inte-
gral

S =
∫

dx4√−g

[
1

2
F (φ) R − ω

2
gμν∇μφ∇νφ − V (φ)

−β
(

2gμν∇μφ∇νψ + ψ2
) ]

. (15)

3.1 Quintessence and phantom cosmologies

In the case of a spatially flat FLRW geometry

ds2 = −dt2 + a2 (t)
(
dx2 + dy2 + dz2

)
, (16)

and for a minimally coupled scalar field, that is F (φ) = 1,
the cosmological field equations are

3H2 − 1

2
φ̇2 − 2βφ̇ψ̇ − V (φ) + βψ2 = 0, (17)

2Ḣ + 3H2 + 1

2
φ̇2 + 2βφ̇ψ̇ −

(
V (φ) − βψ2

)
= 0, (18)

φ̈ + 3H φ̇ − ψ = 0, (19)

β
(
ψ̈ + 3H ψ̇

) + 1

2

(
ψ + V,φ

) = 0. (20)

where H = ȧ
a is the Hubble function.

For ω = 1, the scalar field is a quintessence while for
ω = −1 scalar field ψ is a phantom field. However, as it was
found before in [75], the equation of state parameter for the
effective parameter can cross the phantom divide line and for
the case of a quintessence field, that is, because the second
scalar field ψ can dominates such that we f f < −1. Last
but not least, from the analysis of the dynamics in [76] it was
found that the de Sitter universe is always a late-time attractor
independent from the nature of the scalar field potential.

Furthermore, the field Eqs. (17)–(20) can derive from the
variation of the point-like Lagrangian

LQ = 3aȧ2 − 1

2
a3φ̇2 −2βa3φ̇ψ̇ +a3V (φ)−βa3ψ2. (21)

3.2 Brans–Dicke cosmology

Brans–Dicke model is recovered when F (φ) = φ2, where
ω = ω̄BD is now the Brans–Dicke parameter. In this case the
cosmological field equations in the case of a FLRW space-
time

6H2 + 12H

(
φ̇

φ

)
+ ω̄BD

2

(
φ̇2 + 2β h̄2

(
φ̇

φ

)(
ψ̇

φ

)
− ψ2

φ2

)

+V (φ)

φ2 = 0, (22)
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2Ḣ + 3H2 + 4

(
φ̇

φ

)
H +

(
ω̄BD

4
− 2

) (
φ̇

φ

)2

+ V (φ)

2φ2

+β
ω̄BD

4φ2

(
ψ2 − 2ψ̇φ̇

)
= 0, (23)

ω̄BD
(
βψ̈ + φ̈

) + 3ω̄BDH
(
βψ̇ + φ̇

)
+V,φ + 12φ

(
Ḣ + 2H2

)
= 0. (24)

φ̈ + 3H φ̇ + ψ = 0, (25)

Similarly as before the Lagrangian function which repro-
duces the field equations reads

L
(
a, ȧ, φ, φ̇, ψ, ψ̇

) = −6aφ2ȧ2 − 12φa2ȧφ̇

− ω̄BD

2
a3

(
φ̇2 + 2βh̄2φ̇ψ̇ − ψ2

)
+ a3V (φ) . (26)

In [78] it was found that the modified field equations pro-
vide a different cosmological history. The GUP introduces
significant changes to the dynamics and asymptotic solu-
tions of the field equations, resulting in newfound degrees
of freedom. These modifications diverge from those of the
unmodified model. Moreover, the physical characteristics of
the asymptotic solutions are contingent upon the exponent
of the potential function rather than the value of the Brans–
Dicke parameter, which is the case in the unmodified model.

4 F (R,�R)-gravity

In this section we incoporate Lagrange multipliers in order
to study the scalar-tensor description of F (R,�R)-gravity.
In our study, we focus into the scenario where scalar field
models with GUP are derived from F (R,�R)-gravity.

4.1 f (R)-gravity

The Ricciscalar R is defined by second-order derivatives of
the metric tensor; hence a Lagrangian which is an arbitrary
function of R leads to fourth-order equations of motions.
Indeed, f (R)-gravity is a fourth-order theory and equivalent
with a special case of the scalar-tensor theory.

Consider a Riemannian manifold with metric gμν and Ric-
ciscalar R. The Action Integral of the f (R)-gravity is as
follows

S =
∫

dx4√−g f (R) (27)

when f (R) = R − 2� the limit of general relativity is
recovered.

We make use of the Lagrange multiplier λ, thus the action
integral (27) reads

S =
∫

dx4√−g ( f (χ) + λ (χ − R)) . (28)

The equation of motion for λ is ∂S
∂χ

= 0, that is, λ = − f,χ .
By replacing λ in (28) we find

S =
∫

dx4 [
f,χ R + (

f − χ f,χ
)]

, (29)

or equivalently

S =
∫

dx4 [ϕR + V (ϕ)] , ϕ = f,χ , (30)

and potential function V (ϕ) = (
f − χ f,χ

)
.

4.2 F (R,�R)-gravity

We consider the sixth-order theory of gravity with action
integral

S =
∫

dx4√−gF (R,�R) (31)

where �R = gμνR;μν .
We consider the new variables χ, ζ and we introduce the

Lagrange multipliers λ1, λ2. Therefore, the action integral
(31) is expressed as follows

S =
∫

dx4√−g [F (χ, ζ ) + λ1 (χ − R) + λ2 (ζ − �R)] .

(32)

Variation with respect to the Lagrange multipliers provide
the equations of motions λ1 + F,χ = 0 and λ2 + F,ζ = 0.

We replace in the gravitational action integral (32) and we
find

S =
∫

dx4√−g
[(
F,χ + F,ζ �

)
R + (

F − χF,χ − ζ F,ζ

)]
(33)

Integration by parts of the second term of (33) gives∫
dx4√−g

(
F,ζ �R

) = −
∫

dx4√−g
(
F,ζ ζ g

μνχ;μζ;ν
)
.

Consequently we end with the gravitational action integral

S =
∫

dx4√−g

[
F,χ R − F,ζ ζ g

μν∇μχ∇νζ

+ (
F − χF,χ − ζ F,ζ

) ]
(34)

As we expected we have two scalar fields, the {χ, ζ },
because F (R,�R)-gravity is a sixth-order gravity. The field
χ is a non-minimally coupled field and the field ζ is an extra
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field which can be seen as perturbation effects. What is of spe-
cial interest is the non-diagonal term F,ζ ζ gμνχ;μζ;ν which
has similarities with the non-diagonal term in (15).

4.2.1 F (R,�R) = f (R) + K (�R)

Assume now the case where F (R,�R) is a separable func-
tion, i.e. F,χζ = 0. Hence, by replacing F (R,�R) =
f (R) + K (�R) in (34) we derive

S =
∫

dx4√−g
[
M (χ) R − gμνχ;μψ;ν +V (χ)+V̂ (ψ)

]
(35)

where ψ = K,ζ , M (χ) = f,χ (χ), V (χ) = f (χ) −
χ f,χ (χ) and V̂ (ψ) = K (ζ ) − ζK,ζ (ζ ).

We observe that the action integral (35) is of the form of
the GUP scalar-tensor theory (15) for zero value of parameter
ω, that is, ω = 0. Moreover, for K (�R) = 1

2β̂
(�R)2, we

find V̂ (ψ) = − β̂
2 ψ2, which means that that the separable

F (R,�R) = f (R)+ 1
2β̂

(�R)2 introduce new geometrody-

namical terms in the field equations which can be attributed
to the corrections provided by the quadratic GUP in scalar-
tensor theory. In our case, the quantum corrections of f (R)-
gravity are on the limit of O’Hanlon theory where ω = 0.
Parameter β̂ is the analogue of the deformed parameter β of
GUP.

In the special case where f (R) is a linear function and
for the F (R,�R) = R − 2� + 1

2α
(�R)2 theory, from (35)

it follows

S =
∫

dx4√−g

[
R − 2� − β̂gμνχ;μψ;ν − β̂

2
ψ2

]
. (36)

5 Cosmological solutions

We proceed with the analysis of cosmological evolution for
the physical parameters for the gravitational action integral
(35) with background geometry the FLRW spacetime (16).

For the spatially flat FLRW geometry, the field equations
can be derived from the variation of the point-like Lagrangian
function

L
(
a, ȧ, χ, χ̇, ψ, ψ̇

) = 6aM (χ) ȧ2

+6a2M,φ (χ) ȧχ̇ + a3χ̇ ψ̇ + a3
(
V (χ) + V̂ (ψ)

)
,

(37)

in which the first modified Friedmann equation is the con-
straint equation

6M (χ) H2 +6M,χ (χ) H χ̇ +χ̇ ψ̇ −
(
V (χ) + V̂ (ψ)

)
= 0,

(38)

which can be seen as the conservation laws of energy for the
three-dimensional dynamical system described by the point-
like Lagrangian (37). The rest of the field equations are the

Euler–Lagrange equations
(

d
dt

∂
∂ ẏ − ∂

∂y

)
L (y,ẏ) = 0, where

now y = (a, χ, ψ).
Consequently, the second-order differential equations are

2M
(

2Ḣ + 3H2
)

+ 2M,χ (2H χ̇ + χ̈)

+2χ̇2M,χχ − χ̇ ψ̇ −
(
V (χ) + V̂ (ψ)

)
= 0, (39)

χ̈ + 3H χ̇ − V̂ (ψ),ψ = 0, (40)

ψ̈ + 3H ψ̇ + 6M,χ

(
Ḣ + 2H2

)
− V,χ = 0. (41)

Let us focus in the case where M (χ) = 1 and V (χ) = 0.
Then the latter gravitational field equations read

3H2 + 1

2

(
χ̇ ψ̇ − V̂ (ψ)

)
= 0, (42)

2Ḣ + 3H2 − 1

2

(
χ̇ ψ̇ + V̂ (ψ)

)
= 0, (43)

χ̈ + 3H χ̇ − V̂ (ψ),ψ = 0, (44)

ψ̈ + 3H ψ̇ + 6
(
Ḣ + 2H2

)
= 0. (45)

Therefore, the effective energy density and pressure com-
ponents are defined as

ρe f f = 1

2

(
−χ̇ ψ̇ + V̂ (ψ)

)
, (46)

pef f = −1

2

(
χ̇ ψ̇ + V̂ (ψ)

)
, (47)

where the effective equation of state parameter is written

we f f =
(
χ̇ ψ̇ + V̂ (ψ)

)
(
χ̇ ψ̇ − V̂ (ψ)

) . (48)

Indeed, when the potential function V̂ (ψ) dominates the
asymptotic solution is that of the de Sitter universe with
we f f = −1.

If we define the new scalar fields χ = φ+�, ψ̇ = φ−� ,
then Eq. (42) reads

3H2 + 1

2

((
φ̇2 − �̇ 2

)
− V̂ (φ − �)

)
= 0, (49)

which means that the model is equivalent to the quintom
cosmological model with a mixed potential term, which is
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different from the analysis presented in [105]. For a complete
analysis of the dynamics in quintom cosmology we refer the
reader in [106].

Below we present the phase-space analysis for the field
equations (42)–(45) by using dimensionless variables in the
H -normalization approach [10].

5.1 Phase-space analysis

We define the new dimensionless variables

x = χ̇

H
, z = ψ̇

6H
, w = V̂ (ψ)

6H2 , λ = V̂,ψ

V̂
, τ = ln a (50)

and we rewrite the field equations (42)–(45) in the form of
the subsequent algebraic-differential system

dx

dτ
= 3

2
(w (4λ − x) − x (1 + x + z)) , (51)

dz

dτ
= −3

2
z (1 + w + xz) , (52)

dw

dτ
= 3w (1 − w − (x − 2λ) z) , (53)

dλ

dτ
= 6λ2z (� (λ) − 1) , � (λ) = VψψV(

V,ψ

)2 , (54)

with constraint

1 + xz − w = 0. (55)

By utilizing the constraint equation, we can effectively
reduce the dimension of the aforementioned dynamical sys-
tem by one.

Hence, we arrive at the three-dimensional system

dx

dτ
= 3 (2λ − x) (1 + xz) , (56)

dz

dτ
= −3z (1 + xz) , (57)

dλ

dτ
= 6λ2z (� (λ) − 1) . (58)

At each stationary point P = (x (P) , z (P) , λ (P))of the
dynamical system (56 )-(58) describes an asymptotic solution
where the effective fluid source has the equation of state
parameter

we f f = −1 − 2x (P) z (P) . (59)

5.2 Exponential potential

In order to reduce further the dimension of the dynamical
system we consider the simple case where V̂ (ψ) is the expo-

nential potential, that is, V̂ (ψ) = V0eλ0ψ . For this potential
we calculate � (λ) = 1, and λ = λ0 is always a constant.

Hence, the stationary points of the dynamical system (56),
(57) are

P1 =
(
x1,− 1

x1

)
, P2 = (2λ, 0) .

For the family of points P1 we derive we f f (P1) = 1,
this implies that the points represent a family of stiff fluid
solutions. Furthermore, the asymptotic solution at point
P2 describes the accelerated de Sitter universe, because
we f f (P2) = −1.

Let us now proceed with the investigation of the stability
properties of the points. For the linearization system (56),
(57) around the stationary points P1 we determine the eigen-

values e1 (P1) = 6
(

1 − λ
x1

)
, e2 (P1) = 0. For 1 − λ

x1
> 0

points P1 are sources, however for 1 − λ
x1

< 0 we will infer
about the stability of the points from the phase-space por-
traits. For point P2 the eigenvalues of the linearized system
are e1 (P2) = −3 and e2 (P2) = −3, which means that the de
Sitter universe is a future attractor for the dynamical system.

In Fig. 1 we present the phase-space portrait for the two-
dimensional dynamical system (56), (57). We observe that
the family of points P1 describe always unstable solutions
and they are the boundaries where the trajectories move to
the infinity.

5.2.1 Analysis at infinity

We define the Poincare variables

x = X√
1 − X2 − Z2

, z = Z√
1 − X2 − Z2

and the new independent variable dT = √
1 − X2 − Z2dτ .

In the Poincare variables the field equations read

dX

dT
= −3

(
X2 + Z2 − 1 − X Z

)
(

2λ − X
(

2λX +
√

1 − X2 − Z2
))

, (60)

dZ

dT
= 3Z

(
X2 + Z2 − 1 − X Z

) (
2λX +

√
1 − X2 − Z2

)
,

(61)

and the we f f (x, z) becomes

we f f (X, Z) = −1 − 2X Z

1 − X2 − Z2 . (62)

Hence, in order the solutions at the infinity to be physical
accepted it should be X Z ≥ 0. For X Z > 0 at infinity the
solutions describe Big Rip singularities with we f f → −∞,
while in the limit X Z = 0, the de Sitter universe is recovered.
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Fig. 1 Phase-space portrait for the two dynamical system (56), (57)
for λ = 1 (left fig.) and λ = −1 (right fig.). With red lines are the
family of points P1 and with red dot is marked the de Sitter attractor

P2. We observe that points P1 describe always unstable solutions and
are the limits where the trajectories move to the infinity regime

Fig. 2 Phase-space portrait for the two dynamical system (56), (57)
for λ = 1 (left fig.) and λ = −1 (right fig.) in the Poincare variables
(X, Z). With red lines are the family of points P1 and with red dot are
marked the de Sitter attractor P2 and the stationary points at the infin-

ity Q±
1 and Q±

2 . The regions outside the red lines (points P1) lead to
unphysical solutions with we f f > 1, thus the accepted initial conditions
of the dynamical system are those inside the red lines

The stationary points at the infinity are calculated Q±
1 =

(±1, 0) and Q±
2 = (0,±1), which means that we f f

(
Q±

1

) =
−1 and we f f

(
Q±

1

) = −1. The linearized system at points
Q±

1 , Q±
2 are e1

(
Q±

1

) = 0, e2
(
Q±

1

) = 0 and e1
(
Q±

2

) =
±6λ2, e2

(
Q±

2

) = 0 respectively. From the phase-space por-
trait of Fig. 2, we remark that the stationary points at infinity
describe always unstable solutions and the unique attractor of
the dynamical system is the de Sitter solution described by the
stationary point P2. The regions outside the red lines (points

P1) lead to unphysical solutions with we f f (X, Z) > 1, thus
the accepted initial conditions of the dynamical system are
those inside the red lines.

6 Conclusions

Scalar field gravitational theories which are modified by the
presence of a minimum length in the Uncertainty Principle
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are equivalent with two-scalar field theories of gravity. In
this work we investigate the equivalent modified theory of
gravity which can be described by the latter GUP scalar field
theory. We assumed F (R,�R)-gravitational model which
is a sixth-order theory. We found that the separable model
F (R,�R) = f (R) + K (�R) can be in comparison with
the GUP scalar field theory. Specifically, for the K (�R) =
1

2β̂
(�R)2 model, there are introduced geometrodynamical

terms in the field equations which are in the same form with
that introduced by the deformed Heisenberg algebra of the
quadratic GUP. Indeed, parameter β̂ is linearly related with
the deformation parameter β of GUP.

We focused in the case of F (R,�R) = R + K (�R)

where now the K (�R)-terms can attribute the quantum cor-
rections in the limit of General Relativity. For the latter the-
ory and for a spatially flat FLRW background geometry we
investigated the cosmological dynamics. From the analysis of
the phase-space it was found that there exist always a future
attractor which corresponds to the de Sitter solution without
to introduce a cosmological constant term. We conclude that
the quantum corrections related by the K (�R) can drive the
dynamics such that inflation to occurred.

In a future work we plan to investigate further the effects
of the introduction of higher-order terms K (�R) in f (R)f
theory for the cosmological evolution and investigate the case
of EUP in gravitational models.
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