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Abstract In models with large extra dimensions, “minia-
ture” black holes (BHs) might be produced in high-energy
proton–proton collisions at the Large Hadron Collider
(LHC). In the semi-classical regime, those BHs thermally
decay, giving rise to large-multiplicity final states with jets
and leptons. On the other hand, similar final states are
also expected in the production of electroweak sphaleron/
instanton-induced processes. We investigate whether one
can discriminate these scenarios when BH or sphaleron-like
events are observed in the LHC using machine learning (ML)
methods. Classification among several BH scenarios with
different numbers of extra dimensions and the minimal BH
masses is also examined. In this study we consider three ML
models: XGBoost algorithms with (1) high- and (2) low-
level inputs, and (3) a Residual Convolutional Neural Net-
work. In the latter case, the low-level detector information
is converted into an input format of three-layer binned event
images, where the value of each bin corresponds to the energy
deposited in various detector subsystems. We demonstrate
that only a small number of detected events are sufficient to
effectively discriminate between the sphaleron and BH pro-
cesses. Separation between BH scenarios with different min-
imal masses is possible with an order of 10 events passing the
preselection. A sufficient number of events could be observed
in combined Run-2 and -3 data, if the production cross sec-
tion is not much smaller than the present limit ∼ 0.1 fb. We
find, however, that a large number of events is needed to dis-
criminate between BH hypotheses with the same minimal
BH mass, but different numbers of extra dimensions.

a e-mail: kazuki.sakurai@fuw.edu.pl (corresponding author)

1 Introduction

The Standard Model (SM) of particle physics has been
extremely successful in describing particle interactions below
the TeV scale. However, the SM has several theoretical issues,
such as the hierarchy problem, as well as phenomenological
problems like the inability to account for the existence of dark
matter and the observed asymmetry between matter and anti-
matter in the Universe. These problems suggest that a more
fundamental theory underlying the SM must exist, and may
emerge at the energy scale around, or higher, than the TeV
scale.

An attractive solution to the hierarchy problem is a sce-
nario with Large Extra Dimensions (LEDs) [1–3]. This
model postulates that all matter and gauge fields, except
for gravity, are restricted to live on a (3 + 1)-dimensional
hypersurface, called a 3-brane, which is embedded in the
higher dimensional spacetime. Assuming all extra dimen-
sions orthogonal to the 3-brane are compactified, the tra-
ditional Planck scale MP ∼ 1018 GeV is understood as
an effective scale, derived from the fundamental higher-
dimensional Planck scale M∗ with the relation:

M2+n∗ ∼ M2
P

Rn
, (1.1)

where we have assumed the existence of n extra dimensions
with the common size R. If the size of the extra dimensions is
much larger than the traditional Planck length, R � 1/MP ,

the fundamental Planck scale M∗ can be much smaller than
the usual Planck scale MP . In particular, the hierarchy prob-
lem is solved if M∗ is around the TeV scale [1–3].
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This scenario has a striking implication for new physics
searches at high-energy colliders, such as the Large Hadron
Collider (LHC) at CERN. For the fundamental Planck scale
around or smaller than the TeV scale, M∗ � O(1) TeV, high-
energy colliders can offer trans-Planckian particle collisions
with

√
ŝ > M∗. In this situation, the gravitational interaction

becomes very strong and the colliding particles may collapse
into a black hole (BH) [4–11]. In the semi-classical regime,
where the BH mass is significantly larger than M∗, such
a “miniature” BH, once formed, will quickly “evaporate”
through Hawking radiation [12].1 The spectrum of emitted
particles can be understood as the thermal radiation charac-
terized by the Hawking temperature TH of the BH at a given
stage of the evaporation [13,18]. Those outgoing particles,
however, must travel through a strong gravitational potential
created by the BH, and the spectrum is distorted from the
blackbody profile for an observer located infinitely far from
the BH [19,20]. The deviation from the blackbody spectrum
is described by the so-called “greybody factor”, which carries
the information of extra dimensions [13].

The last observation poses an interesting question to col-
lider physics: “can we discriminate one extra dimension
scenario from another with the BH signature at a collider,
if observed?”, or more concretely, for example, “can we
identify the number of extra dimensions by analysing BH
events?”. Since the greybody factor depends on the param-
eters of extra dimensions in a subtle way, answering these
questions is non-trivial.

There even exists a similar collider signature that has
a completely different origin, due to electroweak (EW)
sphaleron/instanton-induced processes [21–24]. These are
non-perturbative processes within the SM, which go over
(or penetrate via quantum tunneling) a potential barrier sep-
arating two distinctive EW vacua: the Higgs and EW gauge
field configurations in these vacua are characterised by dif-
ferent values of the topological winding number, NCS (the
Chern–Simons number). The EW sphaleron plays a cru-
cial role in many proposed scenarios of baryogenesis (see,
e.g., Ref. [25] for a review). The theoretical prediction for
the production cross section of these non-perturbative pro-
cesses at high-energy colliders suffers from large uncertain-
ties, and whether such processes are observable in the fore-
seeable future is still under debate [26–45]. Although the

1 As opposed to the semi-classical regime, production and decay
of quantum BHs (QBHs) have been discussed [13,14], and collider
searches have been carried out. Those searches are based on the assump-
tion that QBHs decay exclusively into two high-energy SM particles.
The current limit depends on the decay channels: � 1 fb for dijet [15]
and � 0.1 fb for lepton+jet [16] and charged lepton flavour violating
final channels (QBH → eμ, eτ, μτ ) [17]. If these limits are considered
seriously, there is little chance that the LHC can observe semi-classical
BHs. However, the dynamics of QBHs are much less known than those
of their semi-classical counterparts, and in this paper, we assume the
cases where the current limit on QBH is not applicable.

cross section is largely unknown, the final state of the pro-
cess is anticipated to possess certain characteristic features.
Firstly, the minimum height of the potential barrier, Esph, is
known to good accuracy, Esph � 9.1 TeV [21,22]. There-
fore, one expects that those processes can occur only at very
high energies, at least with

√
ŝ � Esph. Secondly, since the

anomaly connects the change of NCS, and the change of the
fermion number that couples to the SU (2)L gauge bosons,
all left-handed fermions, (3 quarks + 1 lepton) × (3 genera-
tions), of the SM must be involved in the interaction [46,47].
Therefore, ‘consuming’ two light-flavor quarks in the initial
state, the final state must contain at least seven anti-quarks
and three anti-leptons (plus some EW bosons). Such a high-
energy and high-multiplicity final state resembles the BH
events mentioned. It is therefore a non-trivial task to discrimi-
nate the EW sphaleron/instanton-induced processes from the
miniature BH signature in the LED scenario.

A traditional way of tackling the above questions is to
analyse various event variables built out of reconstructed
objects. In particular, in Ref. [48], the CMS collaboration
has performed an analysis to search for semi-classical BHs
and EW sphalerons, resulting in the cross section limits of
the order of 0.1 fb.2 The CMS event selection is based on the
reconstructed high-pT objects, with pT > 70 GeV, includ-
ing jets, isolated electrons, muons and photons. Although
this approach appears to be powerful for searches, it has sev-
eral drawbacks when applied to discrimination problems in
high-multiplicity final states. For example, we will show later
that isolated leptons are potentially a powerful discrimina-
tor between the BH and EW sphaleron scenarios. However,
charged leptons arise only in some fraction of signal events.
Moreover, those leptons are often rejected by the isolation cri-
terion in the busy environment of a high-multiplicity event.
As a result, the majority of signal events contain no recon-
structed leptons. This is a crucial problem for our case since
the expected signal cross sections are low (� 0.1 fb). Refer-
ence [5] proposed a method to measure the number of extra
dimensions by fitting the Hawking temperature formula with
the electron/photon spectrum in BH events. Given the current
cross section limit, however, this method is no longer avail-
able as it requires large statistics. Ideally, the optimal discrim-
ination method should use as much information as possible
in the high multiplicity event data, rather than looking at a
particular object. Finding the optimal analysis method or con-
structing a good discrimination variable, however, becomes

2 They set the model-independent limit � 0.1 fb on the cross section
times acceptance in the signal regions with N � 5 and ST � 7 TeV or
N � 10 and ST � 4 TeV (see the definitions of N and ST in the next
section). In the sphaleron scenario, this corresponds to the prefactor �
0.02 with the threshold energy E sph

thr � 9 TeV. For the BH scenario with
a certain assumption (non-rotating, n = 6, the fundamental Planck scale
M∗ = 4 TeV) and the Hoop conjecture [49], this limit translates into
the minimal BH mass Mmin � 10 TeV. For more details, see Ref. [48].
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increasingly difficult when the number of final state objects
increases.

The identification of the number of extra dimensions,
and the discrimination between the BH and EW sphaleron/
instanton events, is essentially a classification problem,
which machine learning (ML) methods have been proven
to be exceptionally good at. Reference [50] studied a way
to look for EW sphaleron events in cosmic ray showers
with ML. The application of ML to collider physics has
also been an active research field in the last decade. Recent
development includes the application of deep learning, i.e.,
neural networks (NNs) to, for example, triggering, back-
ground estimation, jet tagging, and event classification (see,
e.g., Ref. [51] for a comprehensive list of references). More
recently, deep learning methods utilising low-level whole-
event data (e.g., the energy deposits of the entire calorimeter)
have been investigated [52–54]. These studies represented
entire collider events as images, and processed them using
Convolutional Neural Networks (CNNs) [55]. They have
demonstrated that such methods can exceed the sensitivity of
standard approaches with high-level inputs, such as the four-
momenta of reconstructed objects. Classifying events using
low-level inputs has an obvious advantage in our problem,
since the object reconstruction process is largely omitted, and
most detector information is kept and used in the analysis.
It should be noted, however, that this approach has certain
limitations in high pile-up conditions, when the detector is
swamped by energy deposits that do not belong to the main
hard interaction of interest. Reconstructions of jets point-
ing to the main vertex of interest, and rejecting the deposits
not belonging to them, typically serve as pile-up mitigation.
In what follows, we assume that pile-up mitigation can be
performed, and we do not consider energy deposits coming
from pile-up interactions. Furthermore, we assume that the
SM backgrounds can be suppressed with the CMS-inspired
selections [48], which are applied to our data.

In this paper, we study the discrimination of EW sphaleron
and five different BH scenarios, using three different ML
methods. The aim is to see if we can separate these scenar-
ios with a reasonable number of events that can be collected
in the on-going and future LHC runs. Three ML methods
are examined. The first two are based on the state-of-the-art
XGBoost library, which constructs a boosted decision tree
model. The low-level tracking and calorimeter data are used
as inputs in the first method, whereas the second method
employs tabular reconstructed object data. The third method
uses a Residual Neural Network (ResNet) model based on a
CNN architecture. Here, the low-level detector information
is converted into three-layer event images with a resolution
of 50 × 50 bins and bin values corresponding to the energy
deposits in the electromagnetic and hadronic calorimeters
and pT of tracks observed in the tracking system. We pro-
ceed to estimate the expected p-values for each hypothesis,

for a given number of observed events in the signal region,
originating from each of the possible scenarios.

The rest of the paper is organised as follows. In Sect. 2
our simulation setup and event selection are explained. The
six model hypotheses used in this study are also given in this
section. The distributions of several observables are studied
in Sect. 3. The three ML models used in this study are laid out
in Sect. 4. Our main result, the comparison between different
ML models and the exclusion p-values of the hypothesis test,
is shown and discussed in Sect. 5. Section 6 is devoted to
conclusions.

2 Monte Carlo simulation and event selection

To study the classification of high-multiplicity events, we first
consider semi-classical BH events. For simplicity and to align
with the CMS analysis [48], we focus on non-rotating BHs
and fix the fundamental Planck scale at M∗ = 4 TeV through-
out our analysis. Within this assumption, the two most impor-
tant parameters are the number of extra dimensions, n, and
the minimal BH mass, Mmin,which we vary. The minimal BH
mass is defined as the partonic threshold energy, where the
semi-classical BH events are turned on. Such a phenomenon
is expected under the Hoop conjecture.3 We treat the pro-
duction cross section as an independent parameter, rather
than relying on specific assumptions to connect it with other
parameters. The observed number of events is therefore not
used for the classification input. In this treatment, the model-
dependent CMS bounds, Mmin � 10 TeV, [48] is also not
applicable.

The BH events are generated at parton level using the
BlackMax event generator [57]. BlackMax allows for the
choice of the number of extra dimensions, n, and the minimal
BH mass, Mmin. In this study, we examine five different BH
hypotheses with number of extra dimensions set to n = 2, 4
and 6 and minimal BH masses to Mmin = 8, 10, and 12 TeV.
In the semi-classical regime, the BH loses its mass via Hawk-
ing radiation. However, when the BH mass reaches M∗, the
semi-classical approximation breaks. The detailed mecha-
nism of the final burst of the BH evaporation is not known.
The BlackMax takes the minimal approach. Once the BH
mass reaches M∗, the BH decays into the minimal number
of SM particles, which conserves all unbroken charges, such
as the total electric charge, colour and four-momentum. The
back reaction from this burst process to the BH geometry is
not considered. Altering these assumptions might affect our
conclusion quantitatively.

3 As opposed to this case, there is a scenario in string theory, where
semi-classical BH-like events turn on smoothly as a function of the
partonic collision energy [56]. We do not consider such a scenario.
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Fig. 1 Normalised distributions of the number of signal jets (left), the
pT of all signal jets (middle) and the pseudorapidity η of the highest-pT
jets (right). The sphaleron events are shown with blue histograms. The

plots in the upper panel show the BH scenarios with n = 2 (orange),
4 (red) and 6 (brown), while those in the lower panel show the BH
scenarios with Mmin = 8 (green), 10 (red) and 12 (purple) TeV

The EW sphaleron/instanton-induced events are gener-
ated using Herwig 7 [58–64] with the instanton addon
library [65]. We fix the threshold energy of the sphaleron
production at E sph

thr = 9 TeV. Both sphaleron and black hole
events are simulated assuming proton–proton collisions at√
s = 13 TeV. It has been argued that sphalerons may

be dominantly produced in association with multiple EW
bosons [26,31]. This argument is, however, based on an
approximation in a low energy regime, E � E sph

thr . We do

not know whether this conclusion still holds at E ∼ E sph
thr .4

We found that the sphaleron events are most similar to the
BH events when the boson production is switched off (see the
first plot in Fig. 1). If the multi-boson production is included,
sphaleron events would have much higher jet multiplicities
than BH events and the discrimination between them would
be trivial. We therefore choose the zero boson option to study
the most interesting case for the discrimination problem. For
the parton shower and hadronisation, we employ Herwig
7 for both BH and sphaleron events. The detector response
and object reconstruction are simulated with the fast multi-

4 In fact, the CMS analysis [48] is based on sphaleron events without
the boson production.

purpose detector response simulation framework Delphes
3 [66], assuming the conditions and geometry of the ATLAS
detector. This paper is a proof-of-concept study and does
not include any real ATLAS data or ATLAS simulations.
Instead, we use computationally inexpensive open-source
tools that are good approximations of, not openly available,
ATLAS internal simulations. Although we do not expect a
large effect from the detector modelling, a detailed study
using the full detector simulation may be necessary for the
real-world application.

The six model hypotheses studied in this paper are listed
in Table 1. In both BH and sphaleron scenarios, we treat the
production cross sections as unknown parameters, since we
wish to focus on discrimination with kinematics only, while
keeping in mind, however, that the current experimental limit
on the sphaleron and BH cross sections is σ � 0.1 fb [42,48]
with E sph

thr , Mmin ∼ 8–12 TeV.5

5 One might wonder whether one can treat the signal cross section as
an independent parameter from the partonic threshold energy, Mthr =
E sph

thr or Mmin. Such a treatment is indeed possible because the partonic

cross section is phenomenologically modeled as σ̂ (ŝ) = σ̂0�(
√
ŝ −

Mthr) [44,48], where �(x) is the Heaviside step function. The hadronic
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Table 1 List of the six model hypotheses used in this study. The first
row is the sphaleron scenario with the 9 TeV threshold energy, E sph

thr . The
other five rows correspond to the BH scenarios with different number
of extra dimensions n and the minimal BH masses Mmin. The signal
efficiencies εsig for the signal region (N ≥ 5, ST ≥ 7 TeV) are shown
in the last column

Hypothesis n Mmin E sph
thr εsig

SPH_9 – – 9 TeV 0.18

BH_n4_M8 4 8 TeV – 0.17

BH_n2_M10 2 10 TeV – 0.55

BH_n4_M10 4 10 TeV – 0.49

BH_n6_M10 6 10 TeV – 0.43

BH_n4_M12 4 12 TeV – 0.65

Before delving into the classification problem, we would
like to highlight that the SM background is under control.
In particular, in Ref. [48], the CMS collaboration has per-
formed an analysis to search for semi-classical BHs and EW
sphalerons and has demonstrated that the SM background,
dominantly QCD multijet events, can be heavily suppressed
with an appropriate event selection. In the CMS analysis, the
event selection is based on the two reconstructed quantities,
N and ST . The variable N is defined as the number of high-
pT objects in an event, with pT > 70 GeV, including jets
with |η| < 5, isolated electrons and photons with |η| < 2.5,

and isolated muons with |η| < 2.4. In the following, we call
the reconstructed objects satisfying the above criteria, signal
objects. For example, signal electrons comprise of the iso-
lated electrons with pT > 70 GeV and |η| < 2.5. The ST
is the scalar sum of the missing transverse energy pmiss

T and
the magnitude of transverse momenta of all N signal objects,
ST ≡ |pmiss

T | + ∑N
i=1 |piT |. The CMS study has shown that

the SM background is reduced to ∼ 0.1 event at 36 fb−1

(13 TeV) by demanding ST ≥ 7 TeV and N ≥ 5. On the
other hand, 17–65% of the signal events remain after this
event selection, as shown in Table 1. In the following analy-
sis, we apply essentially the same event selection. The only
difference is that our signal objects are defined with a tighter
pseudorapidity cut, |η| < 2.4.6 Since the SM background
can be safely neglected by this selection, we do not consider
it further in our analysis. Assuming the signal cross section
is just below the current limit and the event selection effi-
ciency is ∼ 50%, we expect around 30 signal events after
the cut at the LHC run-3 (13.6 TeV, 300 fb−1), while the
number of expected backgrounds is ∼ 1 or smaller since our

Footnote 5 continued
cross section, obtained by integrating σ̂ (ŝ) with the parton distribution
functions, still depends on unknown parameter σ0, even after fixing
Mthr .

6 We have checked the change of the signal efficiency by this modifi-
cation is less than 1%.

selection cuts are tighter than the CMS ones.7 At the High-
Luminosity LHC (HL-LHC), with an integrated luminosity
of 3 ab, one has to even tighten the selection cuts to suppress
the SM background below 1. This is necessary to justify our
analysis where the SM background is not included in the
simulation. After such a tighter selection cut, one can still
expect the observed signal events of O(100) or more, espe-
cially if the HL-LHC is operated with the collision energy of
14 TeV. Although we envisage the collision energy slightly
higher than 13 TeV, our simulation is performed with 13 TeV
throughout, for simplicity. We, however, do not expect sig-
nificant changes in the event kinematics and our qualitative
result is valid for collision energies between 13 and 14 TeV.
Since we do not expect a large number of observed signal
events, our goal is to find a model discrimination method
applicable to low signal statistics, O(30) − O(100).

3 Kinematical distributions

In order to assess the sensitivity to the model hypotheses of
high-level kinematical variables, we compare their distribu-
tions in Figs. 1 and 2. In the upper panels of both figures
we fix the minimal BH mass at 10 TeV and vary the num-
ber of extra dimensions as n = 2 (orange), 4 (red) and 6
(brown), whereas in the lower panels, we fix n = 4 and var-
ied Mmin = 8 (green), 10 (red) and 12 (purple) TeV. In both
panels, the distributions for sphaleron events are shown in
blue.

The left panel of Fig. 1 shows the number of signal jets,
where we see that the sphaleron has on average 2–3 addi-
tional signal jets compared to the BH scenarios. The majority
(∼ 90%) of sphaleron events have 6–10 signal jets and the
distribution peaks at 8. On the other hand, the distributions for
BH scenarios peak around 5–6 jets and have a relatively long
tail towards higher multiplicities. The signal jet multiplicity
is almost insensitive to the number of extra dimensions and
the minimal BH mass.

The middle panel of Fig. 1 displays the accumulated pT
distributions of all signal jets. We see that the average signal
jet pT is much lower for sphaleron events. The distribution for
sphaleron events has a sharper peak around 2 TeV, whereas
the distributions for BH scenarios have a broader shape, and
the average jet pT is much higher, around 2.5–3.5 TeV. We
observe in the upper middle plot that the jet pT for n = 2 BH
is slightly lower than that for n = 4 and 6, on average. In the
lower middle plot, we also see that the jet pT distributions

7 Here we took into account the fact that by the energy increase
from 13 to 13.6 TeV, the signal cross section is roughly doubled for
E sph

thr , Mmin ∼ 9 TeV [37], while the background cross section does not
change significantly.
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Fig. 2 Normalised
distributions of ST (left) and the
muon charge asymmetry CAμ

(right). The same colour coding
is used as in Fig. 1

have longer tails in the higher-pT region for larger minimal
BH masses.

The distributions of the pseudorapidity η of the highest-pT
jet are shown in the right panel of Fig. 1. As can be seen, the
most energetic jet is produced in the central region, |η| � 1,

both for sphaleron and BH events. The η distributions are
similar among all scenarios, though one can observe that the
sphaleron and the (Mmin, n) = (8 TeV, 4) BH have slightly
narrower distributions, compared to the other BH scenarios.

The left panel of Fig. 2 shows the ST distributions. As
can be seen, the ST distribution for sphalerons sharply peaks
around 7.5 TeV. We observe that the ST distribution for
BH scenarios is sensitive to Mmin, but not to the number
of extra dimensions, n. We see in the lower-left plot that
the ST distribution for the (Mmin, n) = (8 TeV, 4) BH is
similar to that for sphalerons. The distribution gets broader
and shifts towards higher energies as the minimal BH mass
increases. The ST distribution peaks around 9.5 TeV for the
(Mmin, n) = (12 TeV, 4) BH scenario.

The right panel of Fig. 2 displays the charge asymmetry
of signal muons, defined by the difference between the num-
bers of μ+ and μ− in an event, divided by the total number
of muons: CAμ ≡ (Nμ+ − Nμ−)/(Nμ+ + Nμ−). If the event
contains no signal muons, we set CAμ = 0. We see in the

plots that there is a large excess of μ+ in sphaleron events:
sphaleron events have CAμ = 0 or 1 with ∼ 50% chance.
This asymmetry is expected because in the quark-quark ini-
tial state, the sphaleron vertex involves exactly one anti-muon
or exactly one anti-muon-neutrino. Extra (anti-)muons may
arise from decays of anti-top-quark or heavy hadrons. Con-
trary to the sphaleron case, the majority (∼ 90%) of BH
events have zero muon charge asymmetry. This is expected
because semi-classical BH decays are essentially a thermal
process. In the plots, we however observe a small excess for
μ+ in all BH samples. This is a consequence of the charge
conservation of BH decays and the proton contains more up-
quarks than down-quarks, especially in a large-x region of
the parton distribution function. Although the muon charge
asymmetry has different distributions between BH and EW
sphaleron events, it is not the best discrimination variable,
particularly when the available data size is small, as the
majority of events have CAμ = 0.

Observed differences in several kinematical distributions
between sphaleron and various BH scenarios suggest that
the separation between sphaleron and BH scenarios should
be relatively straightforward with sufficient collider data,
though the optimal discrimination method is not clear. Sep-
aration between different Mmin among BH scenarios seems
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also possible with some resolution, since the jet pT and ST
distributions depend, to some extent, on Mmin. On the other
hand, separation of the number of extra dimensions n seems
challenging as no distribution in Figs. 1 and 2 exhibits a clear
dependence on n. In the following sections, we investigate
how well one can distinguish different scenarios, with a given
number of observed events, using modern ML techniques.

4 Machine learning setup

In this study, we examine three types of ML methods. The
first two are based on the well-established XGBoost algo-
rithm [67], which creates an ensemble of decision trees to
effectively separate different events. The difference between
the two models based on XGBoost is the choice of input fea-
tures. In the first approach, we use high-level variables based
on reconstructed objects, while in the second we utilise low-
level tracker and calorimeter signals. The third method uses
the CNN-based ResNet [68] architecture, which is known to
be very powerful in image recognition applications.

The ML models are all trained and evaluated using shared
input data consisting of 10000 (training), 3000 (validation)
and 15000 (testing) events for each physics model hypothe-
sis, giving a total of 60000, 18000 and 90000 events, respec-
tively. These are the number of events after cuts are applied,
so the models are trained on a balanced dataset. The models
are trained using the training set, fine-tuned using the vali-
dation set and finally, the networks are used to predict the
labels of the independent test set events. The predicted and
true labels of the test set are then used to calculate the metrics
for evaluation. For this study, the metric chosen is a simple
global accuracy (ACC), i.e., the number of correctly labelled
events divided by the total number of events, such that perfect
labelling of all events corresponds to ACC = 1.0, and a ran-
dom classifier results in ACC = 1/n, where n is the number
of distinct classes (under the assumption that the dataset is
balanced, i.e., all classes are equally represented).8

To assess the uncertainties due to the randomness of the
ML training, for each of the three ML methods, we create
five independent classifiers (decision trees for XGBoost and
neural networks for ResNet) by shuffling the training data at
the start of each training. The mean global accuracy and its
standard deviation are estimated with these five independent
classifiers.

4.1 XGBoost

The XGBoost algorithm was developed during the highly
successful Higgs ML 2014 Kaggle competition (http://www.

8 Code, results and data specifications are openly available on our
project GitHub https://github.com/choisant/imcalML [69].

kaggle.com/c/higgs-boson) [70]. It is a regularizing gradient
boosting framework library and enables fast training of deci-
sion tree models. XGBoost is implemented in many modern
HEP analyses such as the diphoton search from ATLAS [71].
As such, XGBoost is a state-of-the-art machine-learning tool
for high-energy particle physics and is expected to yield good
results in a short training time.

In this study, XGBoost models with two different input
types have been explored. The first XGBoost method
(XGBoost-High) uses the high-level inputs of the recon-
structed objects. The selected input features are9 pT . the first
eight jets (pmiss

T , η, φ), the first two electrons and muons (pT ,

η, φ) and the missing transverse energy (pmiss
T , φ), which

comprises 38 input features. The XGBoost algorithm toler-
ates missing values, but the data must be the same length for
all events. The data are padded with NaN if an event does not
have enough jets or leptons.

In the second XGBoost method (XGBoost-Low) low-
level input is used. In this case, the input features consist
of the signals in the tracking system, the electromagnetic
calorimeter (ECAL) and the hadronic calorimeter (HCAL).
The calorimeter hits, also referred to as calorimeter towers,
represent the summed-up energies at discrete angular posi-
tions across the detector. This means that the radial coordi-
nates where the energy was deposited are not retained. The
30 highest-energy hits in each of the three different detec-
tor systems, and their corresponding angular position, were
selected. This sums to 270 input features in total. Although
we experimented with other variations of input features, we
did not find any improvement by adding more features with
lower-energy hits.

4.2 Convolutional neural network

CNNs are neural networks with convolutional layers. It is
known that this architecture works extremely well in recog-
nizing patterns in image-type data, that is data which have a
matrix structure where the relative positioning of each input
in the matrix is important. In this study, we use the ResNet18
architecture with 18 layers,10 implemented with the PyTorch
package [72]. We convert low-level collider event data into
event images as follows: starting from the 2D angular coordi-
nates of the calorimeter towers and tracks, (φ, η), we divide
the range φ ∈ [−π, π ], η ∈ [−5, 5] into 50 × 50 equal sized
bins.11 The total energy deposit (in GeV, not normalised) in
the ECAL, HCAL and tracks in a given bin is assigned to
their respective layer in that bin. The result is a 3-layer 2D

9 The jets and leptons are ordered by descending.
10 We tested models with more layers, but did not find an increase in
performance.
11 Higher resolutions than 50 × 50 were tested. We found either no
improvement or slightly worse performance.
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Table 2 The global accuracy (in percent) as well as the training and test-
ing time for XGBoost-High, XGBoost-Low and ResNet18 ML meth-
ods. The mean and error of the global accuracy were estimated from
an ensemble of five separately trained classifiers for each ML method.
The quoted training and testing times were measured based on a GPU
with an NVIDIA RTX A4500 graphic card

Model XGBoost-High XGBoost-Low ResNet18

Accuracy 48.91 ± 0.05 46.69 ± 0.08 57.92 ± 0.37

Training time 2 min 3.5 min 8.5 min

Testing time 10 s 7 s 31 s

The values highlighted with bold indicate the best performance among
the three architectures

histogram with the input shape 50 × 50 × 3, which we refer
to as an event image and has 7500 input features in total. In
the appendix, we show example event images of each of the
physics scenarios in Fig. 5.

In the course of the training process, data augmentation
is applied to the images in order to artificially increase the
statistics of the dataset. The augmentation consists of random
rotations in the φ-direction and random flipping of the η axis.
These transformations do not affect the physics of the events,
because of the symmetries of the detector and the collision
setup. The images in the validation and testing set are not
transformed in any way.

During the training, random batches of 128 images are
loaded into memory at a time. Data augmentation is applied
to each image, and then the network is trained using an expo-
nential cyclic learning rate scheduler [73] with a base learn-
ing rate of 0.001, a maximum learning rate of 0.01, and
gamma = 0.85 and the Adam optimization algorithm [74]
based on the calculated cross-entropy loss from the batch.
The network is trained for 40 epochs.

5 The classification performance

The mean global accuracy with uncertainties due to the
stochastic ML training process, as well as training and test-
ing times for each ML method, is presented in Table 2. The
three ML methods we examined have global accuracy clas-
sifier scores ranging from 46.69 ± 0.08 (XGBoost-Low) to
57.92 ± 0.37 (ResNet18). It is interesting that ResNet18,
which uses only low-level data, can perform significantly bet-
ter than XGBoost does with high-level data inputs. It should
be noted that the training and testing times for the CNN model
are approximately 3–4 times longer than for XGBoost. This
is a natural effect of the deep neural network’s complex struc-
ture and the large difference in the number of input features.

Figure 3 shows the confusion matrices of the three ML
methods we examined. The separation of sphalerons and
BHs is the objective that all models handle well. In particu-

lar, ResNet can correctly identify the sphaleron events with
∼ 91% accuracy. Furthermore, when separating the differ-
ent BH samples, the models are much better at distinguishing
samples with different minimal BH masses, than with differ-
ent numbers of extra dimensions. ResNet correctly identifies
92% of all the black holes with a minimum mass of 12 TeV,
compared to 71% and 80% respectively for XGBoost-High
and XGBoost-Low. ResNet is also fairly good at separating
the different number of dimensions. It correctly classifies
49% of the events with 2 extra dimensions and 42% of the
ones with 6 extra dimensions.

To demonstrate the practical application of the ML clas-
sifiers, we perform hypothesis tests using Poisson statistics,
for a given number of observed signal events, Nobs, in our
signal region (N ≥ 5, ST ≥ 7 TeV). We have conducted
this exercise only with the ResNet model as it outperforms
XGBoost.

For each observed event i of model hypothesis scenario
J,12 ResNet assigns a classification label, Li , where J and Li

belong to the set of six model hypotheses in Table 1. Using the
test set of 15000 events, we first create a normalised template
distribution of classification labels L for each scenario J.
Roughly speaking, each bin of the distribution, PJ (L), can
be interpreted as the probability that an observed event of
scenario J is classified as scenario L by the ResNet.

Iterating over all the possible scenarios where the data
corresponds to hypothesis I, we test each hypothesis J to
see if it can be excluded. We define the label L∗

J into which
the event of J is most likely to be classified by the ResNet:
i.e., PJ (L∗

J ) ≥ PJ (L) for all L . If Nobs events are observed
in the signal region, the average number of events labelled
as L∗

J is λ = Nobs · PJ (L∗
J ). If hypothesis J is correct, the

probability of observing n events labelled as L∗
J is given by

the Poisson function

P(n|λ) = λne−λ

n! . (5.1)

The hypothesis J will be excluded at 95% confidence level
if the number of observed events labelled as L∗

J , N (L∗
J ), in

the data is too few: i.e.,

pJ ≡
N (L∗

J )∑

n=0

P(n|λ) < 0.05. (5.2)

Given the current limits on the BH and EW sphaleron cross
sections, [42,48], σ � 0.1 fb, we do not expect that a large
number of BH/sphalerons events could be collected in LHC
Run-2, -3 and HL-LHC. For a small number of signal events,
the corresponding p-values can fluctuate significantly. To
understand the magnitude of the fluctuation, we performed
3000 pseudo-experiments, sampled from the 15000 event test

12 There is no case in which the real LHC data could contain a mix of
scenarios.
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Fig. 3 Confusion matrices for the XGBoost-High (left), XGBoost-Low (middle) and CNN ResNet18 (right)

Fig. 4 The exclusion p-values of six model hypotheses calcu-
lated using Poisson statistics: SPH_9 (blue), BH_n4_M8 (green),
BH_n2_M10 (orange), BH_n4_M10 (red), BH_n6_M10 (brown),

BH_n4_M12 (purple) as a function of the signal events registered in
the signal region. The true hypotheses are indicated at the top of each
plot. The horizontal black-dashed line represents the 2-σ exclusion

set, for each Nobs of the “true” scenario and estimated the
upper and lower errors on the p-values.

In Fig. 4, we show the result of our p-value estima-
tion as a function of the number of observed events in the
signal region. In the top-left plot, the true scenario (the
origin of signal events) is SPH_9 (EW sphaleron scenario
with 9 TeV threshold energy). The blue curve and the band

around it show the p-value for the SPH_9 hypothesis and the
standard deviation, estimated from the pseudo-experiments,
respectively. As expected, the p-value is O(1) and does not
decrease as the number of signal events increases, since
it is the correct hypothesis. The other curves show the
p-values for various BH hypotheses: BH_n4_M8 (green),
BH_n2_M10 (orange), BH_n4_M10 (red), BH_n6_M10
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(brown), BH_n4_M12 (purple). The horizontal dashed black
line in the plot corresponds to the 2-σ (p � 0.05) exclusion.
Observing less than 15 events is often enough to exclude all
of our BH hypotheses at more than the 2-σ level.

The top-middle and top-right plots show the p-values of
various hypotheses when the true scenarios are BH_n4_M8
and BH_n4_M12, respectively. In both cases, we can observe
that the p-values for the correct hypotheses remain O(1) for
a larger number of signal events. We also notice that the
sphaleron hypothesis and the BH hypothesis with Mmin dif-
fer by 4 TeV from the correct hypothesis (i.e., BH_n4_M12
(purple) in the middle plot and BH_n4_M8 (green) in the
right plot), are excluded very quickly while accumulating
signal events. For those scenarios, a small number of events
are sufficient for a 2-σ exclusion. In the same plots, we see
the p-values for the BH hypotheses whose Mmin differs by
2 TeV from the correct hypothesis. These are the scenarios
with Mmin = 10 TeV and n = 2 (orange), 4 (red) and 6
(brown). We see that the p-values of these three hypotheses
decrease at a somewhat slower rate.

The three plots at the bottom of Fig. 4 show the p-values
when the true scenarios have Mmin = 10 TeV and n = 2
(bottom-left), 4 (bottom-middle) and 6 (bottom-right). The
sphaleron hypothesis can be excluded with a small number
of events at the 2-σ levels. The exclusion of the BH sce-
nario with Mmin = 12 TeV (purple) is easier than that with
Mmin = 8 TeV (green). As can be seen from these three plots,
the discrimination between the same Mmin and different n is
more challenging. 2-σ discrimination between n = 2 and
n = 6 requires ∼ 45 events.

6 Conclusions

Large-multiplicity final states of jets and leptons at the LHC
are ubiquitous in exotic processes, both within the Stan-
dard Model and within its extensions. In particular, final
states with O(10) jets plus a few leptons are expected
in thermal decays of semi-classical Black Holes (BHs),
which are anticipated to be produced in models with large
extra dimensions, characterised by two main parameters:
the number of extra dimensions and the minimal mass of
the BH. Similar final states are also expected in the EW
sphaleron/instanton-induced processes. In this study, we
have investigated whether one can discriminate among the
sphaleron scenario and five different BH scenarios listed in
Table 1, through events collected at the LHC, using modern
Machine Learning (ML) methods.

In studying kinematical distributions we observed that
sphalerons have significantly different distributions than
those of various BH scenarios, in the number of jets, pT of
jets, as well as the muon charge asymmetry. The ST and jet pT
distributions also exhibit a dependence on the minimal BH

masses. Despite these differences, the optimal model separa-
tion method, which works for low signal statistics, is unclear
due to the complexity of large-multiplicity final states. On
the other hand, no clear sensitivity to the number of extra
dimensions was found in any of the distributions shown in
Figs. 1 and 2.

In this study, three ML models have been examined:
XGBoost with low- and high-level inputs (XGBoost-Low
and XGBoost-High) and a convolutional neural network
ResNet model. In the latter, the input was the low-level
detector information, converted into three-layer binned event
images, corresponding to the signals in the ECAL, HCAL and
tracking system. We found that the discrimination power is
the highest for the ResNet model as it outperforms the state-
of-the-art XGBoost method by achieving a 9% higher global
accuracy score on our test set. This is quite remarkable and
highlights the capacity of neural networks to utilize low-
level, high-dimensional data.

To assess the practical applicability of the best-performing
ML classification, we evaluated the exclusion p-value of each
hypothesis, J, for a given number of observed signal events
(in the signal region), originating from the true scenario I.
We demonstrated that the sphaleron hypothesis can be dis-
criminated from various BH scenarios with a small number of
events. Separation between BH scenarios with different min-
imal BH masses is also possible with a reasonable number
of events collected at LHC Run-2, -3 and HL-LHC. The dis-
crimination among the BH scenarios with the same minimal
BH mass but a different number of extra dimensions is more
challenging and requires a larger number of signal events,
which may be collected at future high-energy colliders.

Finally, we emphasise that the work presented in this paper
should be considered a proof-of-concept study, as it entirely
relies on MC simulations. In the actual experimental situa-
tion, one must validate and correct the MC modelling with
the real data before using it for model discrimination. Such
a process is non-trivial and interesting in its own right. We,
however, postpone this subject for future work.
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Appendix A: Example event images

We show below in Fig. 5, event images of various physics
scenarios: SPH_9, BH_n4_M8, BH_n2_M10, BH_n4_M10,
BH_n6_M10 and BH_n4_M12. Three randomly-chosen
events in the validation dataset are used for each scenario
as examples. The signals in the ECAL, HCAL and tracking
system correspond to the red, green and blue colour inten-
sities, respectively. To aid visualisation, we map the accu-
mulated energy deposits (pT of the tracks), Ei , in bin i to
the colour intensity Ii = f (Ei ) with a conversion function
f (Ei ) = arctan(ln(Ei/20 GeV))/π+ 1

2 ∈ [0, 1]. The recon-
structed jet (anti-kT jet with radius parameter R = 0.4) posi-
tions for each event are indicated with orange circles of radius
0.4.
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Fig. 5 Event images of various physics scenarios. Three randomly-
chosen events are shown for each scenario. The red, green and blue
colour intensities correspond to the signals in the ECAL, HCAL and

tracking system, respectively. The reconstructed jet positions for each
event are indicated with orange circles of radius 0.4
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Fig. 5 continued
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