
Eur. Phys. J. C          (2024) 84:427 
https://doi.org/10.1140/epjc/s10052-024-12776-9

Regular Article - Theoretical Physics

Non-radial oscillations in anisotropic dark energy stars

O. P. Jyothilakshmia , Lakshmi J. Naikb , V. Sreekanthc

Department of Physics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, India

Received: 5 March 2024 / Accepted: 7 April 2024
© The Author(s) 2024

Abstract We study the non-radial f -mode oscillations of
both isotropic and anisotropic dark energy stars by using the
modified Chaplygin prescription of dark energy to model the
stellar matter. The anisotropic pressure in the system is mod-
eled with Bowers–Liang prescription. By solving the stellar
structure equations in presence of anisotropy, we study the
global properties of the dark energy star and compare the
mass-radius profiles with data from GW events and milli-
second pulsars. The stellar radial and anisotropic pressure
profiles have also been investigated. We proceed to deter-
mine the prominent non-radial l = 2 f -mode frequencies of
the anisotropic dark energy star by employing the Cowling
approximation and analyse and quantify the spectra by vary-
ing the anisotropic parameter. We report that f -mode spectra
of dark energy star have distinctly different behaviour com-
pared to neutron star and quark star, and this may possibly
help in its future identification. Further, the tidal deformabil-
ity factors of the anisotropic dark energy stars have also been
analyzed.

1 Introduction

Dark energy is the fluid component that governs the acceler-
ated expansion of the universe [1–3]. It is found from various
observations that dark energy fills up almost 70% of the uni-
verse [4]. The �CDM model (also known as the concordance
model) [5] is one of the most accepted cosmological models
describing dark energy. However, the �CDM model suffers
from problems like the cosmological constant problem [6,7],
and the Hubble tension [8–10]. Therefore, many alternative
models have been proposed in the last few decades. A detailed
review on various dynamical models of dark energy such
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as cosmological constant, quintessence, K-essence, tachyon
field, phantom field, dilatonic field, Chaplygin gas model,
etc. are given in Ref. [11].

The fact that interior composition of a compact star is
unknown to this date has motivated a lot of researchers to
construct different models of compact stars. There are several
stellar models that include dark energy such as false vacuum
bubbles [12], non-singular black holes [13], gravastars [14],
and dark energy stars [15]. Among these models, we are
interested in the dark energy star, which was first proposed
by Chapline [15]. The author gave an alternative explanation
to astrophysically observed black holes suggesting that these
compact objects may be dark energy stars. The author also
proposed that matter is converted to dark energy when it falls
through the event horizon.

Using the general relativistic prescriptions, the structure
of compact stars can be obtained by describing the interior
composition with an equation of state (EoS). Thus obtained
global properties of compact objects are compared with the
astrophysical observations to constrain the EoS. Recently
detected gravitational waves (GWs) from binary neutron star
mergers introduced a new way of restricting the dense mat-
ter EoS within neutron stars [16]. The constraints of EoS
also include the maximum mass limit set by various obser-
vational data from pulsars [17,18]. GW asteroseismology is
the study of the interior of compact objects using GW obser-
vations. The stellar oscillations can produce GWs, this has
drawn a great interest recently in the field of GW asteroseis-
mology. The analysis of stellar oscillations is used to under-
stand the microscopic and macroscopic properties of com-
pact objects [19–25]. The non-radial modes of stellar oscilla-
tions are an important class among these and the general rel-
ativistic treatment of the same can be found in Refs. [26,27].
These stellar oscillations can be classified into various quasi-
normal modes based on the force that restores the system
back to equilibrium. Some examples include fundamental f -
mode, pressure p-mode, gravity g-mode, rotational r -mode,
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and space-time w-mode [28]. Among these modes, f -modes
are considered to be a promising candidate for GW emissions,
which has frequencies in the sensitivity range of upcoming
GW detectors [29].

Another important constraint imposed on EoS is by the
tidal distortions caused from binary neutron star inspiral
[30,31]. The tidal deformability parameter � describes the
gravitational wave signal emitted during a binary neutron
star inspiral [30,31]. It determines a star’s quadrupole defor-
mation caused by its companion star’s tidal field. This is in
addition to the constraints previously provided by the electro-
magnetic studies of neutron stars, which include their masses,
radii, spin, and gravitational redshift. The tidal properties of
neutron stars can be measured from the GW signals [32].

In most of the astrophysical studies, the fluid matter within
dense compact stars is assumed to be locally isotropic. How-
ever, the high density and strong gravity suggest that the inte-
rior of compact stars could be anisotropic, meaning the pres-
sure in radial and tangential directions are different. Strong
magnetic field, superfluid cores, phase transition, pion con-
densation etc. may give rise to pressure anisotropy. Ruder-
man in 1972 was the first to propose the idea of anisotropy in
compact stars [33] and later, the relativistic stellar structure
equations for anisotropic stars were obtained by Bowers and
Liang [34]. Apart from this, various other anisotropy models
are used in the study of compact stars [35–37]. See Ref. [38]
for a recent review on anisotropic compact stars.

Non-radial oscillations were studied in anisotropic neu-
tron stars [22] and recently, an extension of this work was
done for hadronic and quark stars [39]. These studies show
that presence of anisotropy has significant effect on non-
radial oscillations. Further, the impact of anisotropy on the
tidal deformability was also studied [40]. It will be interest-
ing to study these effects in dark energy stars. There has been
a considerable interest to study the structure and properties
of compact objects with dark energy. In Ref. [41], the author
introduced a model of dark energy star and studied its sta-
bility. Anisotropic dark energy stars were considered in Ref.
[42]. Another model of dark energy star which includes neu-
tron gas was constructed and the stability of the model was
also analysed [43]. A mixed dark energy star model made
up of baryonic matter and phantom scalar field has also been
considered [44]. Further, a stable singularity-free anisotropic
dark energy star was constructed in Ref. [45].

A time-dependent solution of the Einstein field equations
describing the collapse of a spherical system resulting in a
dark energy core was obtained in Ref. [46]. The stability of
a dark energy star with a phantom field was also investigated
[47]. Recently, a study on dark energy star within Newtonian
treatment was performed with the generalised Chaplygin EoS
by including the effects of anisotropy [48]. Global properties
of slowly rotating isotropic dark energy stars with extended
Chaplygin EoS were analyzed in Ref. [49]. Radial oscilla-

tions and tidal Love numbers using generalised Chaplygin
EoS prescription was performed for the isotropic [50] and
anisotropic [51] dark energy stars. Further, it was shown that
a neutron star with dark energy core is dynamically stable
under small radial pulsations and is consistent with obser-
vational data [52]. Dark energy stars within modified the-
ories of gravity have also drawn interest recently [53,54].
In this work, we intend to study the prominent non-radial
f -mode oscillations in both isotropic and anisotropic dark
energy stars constructed using the modified Chaplygin EoS.
The anisotropy is introduced via the Bowers–Liang model
[34]. We also calculate tidal deformability for such a system.

The paper is organised as follows. In Sect. 2, we discuss
the modified Chaplygin EoS describing dark energy used
for the analysis. We present the stellar structure equations
and non-radial oscillations for anisotropic dark energy star
in Sect. 3. The results of our analysis are shown in Sect. 4 and
finally we draw the conclusions of the study and summarise
in Sect. 5.

Notations and conventions: Throughout this paper, we set
Newton’s universal gravitational constant G and velocity of
light in free space c as G = c = 1 and follow the metric
convention gμν = diag(−1, 1, 1, 1).

2 Chaplygin gas model of dark energy

The Chaplygin fluid model of dark energy was obtained
by Kamenshchik et al. in 2001 [55], where the universe is
assumed to be filled with the so called Chaplygin gas obey-
ing the equation of state (EoS)

p = −B̂/ρω, (1)

where p is the pressure, ρ is the energy density and B̂ is
a positive constant with units of energy density and ω can
take values in the range 0 < ω ≤ 1. This model provides a
possible solution for the unification of dark matter and dark
energy [56–59]. A more generalised version of the Chaplygin
EoS was introduced in Ref. [60]. Furthermore, a modified
Chaplygin EoS was later constructed by including the effects
of viscosity [61,62]

p = Âρ − B̂

ρω
, (2)

where Â is a dimensionless positive constant. The first term
represents a barotropic and the second term corresponds to
the Chaplygin gas. By setting the value of ω = 1, one obtains
the modified Chaplygin EoS in the form [63]

p = A2ρ − B2

ρ
. (3)
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Since the pressure vanishes at the surface of the star, the
energy density towards the surface takes the value of ρs =
B/A. This EoS is used in various studies on dark energy stars
[48–54] and following Refs. [49–51], we take the values of
the constants as A = √

0.4 and B = 0.23 × 10−3/km2.
Next, we proceed to study the non-radial f -mode oscilla-

tions of anisotropic dark energy star.

3 Anisotropy and non-radial oscillation

In this section, we describe the stellar structure equa-
tions, non-radial oscillations and tidal deformability for an
anisotropic stellar system. The stress-energy tensor Tμν for
an anisotropic fluid is given by

Tμν = ρuμuν + qgμν + σkμkν; (4)

where σ = p − q is the anisotropy pressure, p is the radial
pressure, q is the tangential pressure, ρ is the energy den-
sity, uμ is the four-velocity of the fluid, and kν is the radial
vector. The four-vectors satisfy the conditions: uμuμ = −1,
kμkμ = 1 and uμkμ = 0. We use the Bowers–Liang model
for anisotropy [34],

σ = −λBL
r3

3
(ρ(r) + 3p(r))

(
ρ(r) + p(r)

r − 2m(r)

)
; (5)

where free parameter λBL denotes the measure of anisotropy.
Following Ref. [40], we consider −2 < λBL < 2 in this
work. The line element for a spherically symmetric static
star in Schwarzschild coordinates, (t, r, θ, φ) is given by

ds2 = −e2
dt2 + e2λdr2 + r2
(
dθ2 + sin2 θdφ2

)
. (6)

Here, 
(r) and λ(r) are the metric functions. Solving the
Einstein field equations for the static spherically symmetric
metric for an anisotropic fluid results in the stellar structure
equations [34]

dp

dr
= − (ρ + p)(m + 4πr3 p)

r2(1 − 2m/r)
− 2σ

r
, (7a)

dm

dr
= 4πr2ρ. (7b)

These equations reduce to the well known Tolman–Oppenheimer–
Volkoff (TOV) equations [64,65] of the isotropic case, if
the value of anisotropic factor is set to zero (σ = 0). The
above shown coupled differential equations are integrated
from the center to the surface of the star for a given EoS
describing the stellar matter. The initial conditions towards
the center of the star are pressure pc = p(0) = p(ρc) and
mass mc = m(0) = 0. The pressure p tends to zero as it

approaches the surface of the star (r = R) and the mass of
the star is then obtained as M = m(R). For a given EoS, we
can obtain stellar configurations with different masses and
radii by varying the value of central density ρc.

The solutions obtained by solving Eqs. (7a) and (7b)
are used to study the non-radial oscillations of anisotropic
dark energy stars. Here, we employ the well known Cowl-
ing approximation which assumes an unperturbed space-
time while studying the fluid pertubations [66]. It was found
that the results obtained using this approximation differ
from the general relativistic solutions only by less than 20%
[67]. The oscillation equations in the Cowling approxima-
tion are obtained by considering the perturbation of energy-
momentum tensor conservation [21–23]. The system of dif-
ferential equations in terms of the fluid perturbations V (r)
and W (r) representing the anisotropic non-radial oscillations
are given by [22].

dW

dr
= dρ

dp

[
ω2 ρ + p − σ

ρ + p

(
1 − ∂σ

∂p

)−1

eλ−2
r2V

+d


dr
W

]
− l(l + 1)eλV

+ σ

ρ + p

[
2

r

(
1 + dρ

dp

)
W + l(l + 1)eλV

]
, (8a)

dV

dr
= 2V

d


dr
−

(
1 − ∂σ

∂p

)
ρ + p

ρ + p − σ

eλ

r2 W

+
[

σ ′

ρ+ p−σ
+

(
dρ

dp
+1

)
σ

ρ+ p−σ

(
d


dr
+ 2

r

)

−2

r

∂σ

∂p
−

(
1−∂σ

∂p

)−1(
∂2σ

∂p2 p′+ ∂2σ

∂p∂μ
μ′

) ]
V . (8b)

Here, μ = 2m/r = 1−e−2λ. These differential equations
are solved from the center to the surface of the star, which
obey the following conditions as r → 0:

W = Arl+1, V = − A

l
rl; (9)

where A is an arbitrary constant. The boundary condition
towards the surface of the star is [22]

ω2
(

1 − σ

ρ + p

)(
1 − ∂σ

∂p

)−1

e−2
V

+
(
d


dr
+ 2

r

σ

ρ + p

)
e−λ W

r2 = 0. (10)

The coupled differential equations Eqs. (8a) and (8b) are inte-
grated using the boundary conditions given by Eqs. (9) and
(10). Initially, we assume a value for ω2 and after each inte-
gration, the value of ω2 is modified until the surface boundary
condition is satisfied.
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Fig. 1 Mass-radius curve of static anisotropic dark energy stars with
λBL ranging from −2 to +2. λBL = 0 corresponds to the isotropic case.
The mass-radius curves of isotropic neutron star (NS), with Sly4 EoS
and quark star (QS), with modified Bag model EoS are also shown.
The horizontal bands are observational constraints from GW 190814
events [68] and various pulsars (PSR J2215+5135 (M = 2.27+0.17

−0.15M�)

[69], PSR J0348+0432 (M = 2.01+0.04
−0.04M�) [18] and PSR J0740+6620

(2.14+0.10
−0.09M� (68.3% credible) ) [17]). We indicate the observa-

tional measurements from GW 170814 event [16]. The Buchdahl limit
(2M/R ≤ 0.88) [70] is also shown here

To obtain the tidal perturbations in presence of anisotropy,
we follow the prescription developed in Ref. [40] based on
Refs. [30,31]. The tidal deformability � of a static, spher-
ically symmetric star placed in a static external quadrupo-
lar tidal field Ei j is defined in terms of induced quadrupole
moment Qi j as � = −Qi j/Ei j and can be expressed in
terms of stellar radius R, mass M and tidal Love number k2

as � = 2k2R5/3 [30,31]. In order to study the tidal pertur-
bations, we use the set of coupled differential equations in
terms of the fluid perturbation function H given by [40]

dH

dr
= β, (11)

dβ

dr
= 2r H

r − 2m

{
−2π

[
4ρ + 8p + ρ + p

Ac2
s

(1 + c2
s )

]

+ 3

r2 + 2r

r − 2m

(m

r2 + 4πrp
)2

}

+ 2β

r − 2m

{
−1 + m

r
+ 2πr2(ρ − p)

}
. (12)

Here, A = dq/dp and c2
s = dp/dρ is the speed of sound

squared. By setting A = 1, the above equations reduce to
the isotropic case [30,31]. The integration is performed out-
wards starting from the stellar center (r → 0) with the values
H(r) = a0r2 and β(r) = 2a0r , where a0 is an arbitrary con-
stant. The interior and exterior solutions are matched at the
surface of the star and the solution obtained can be used to
calculate the l = 2 tidal Love number k2 [30,31]

k2 = 8C5

5
(1 − 2C)2[2 + 2C(y − 1) − y]

×
{

2C[6 − 3y + 3C(5y − 8)]
+4C3[13 − 11y + C(3y − 2) + 2C2(1 + y)]
+3(1 − 2C)2[2 − y + 2C(y − 1)] ln(1 − 2C)

}−1

;
(13)

where y = Rβ(R)/H(R) and compactness of the star C =
M/R, which gives a measure of the strength of star’s gravity.

4 Results and discussions

Now, we proceed to obtain the stellar configurations, non-
radial f -mode oscillations and tidal deformability factors of
both isotropic and anisotropic dark energy stars that obey the
modified Chaplygin EoS discussed in Sect. 2. We begin our
analysis by numerically solving the static stellar structure
equations: Eqs. (7a) and (7b) from the center to the surface
of the star with the appropriate boundary conditions given in
Sect. 3. The f -mode frequencies are calculated by numer-
ically solving the coupled differential equations: Eqs. (8a)
and (8b) with the boundary conditions given by Eqs. (9) and
(10). Here, we use Ridder’s method to obtain the eigen or f -
mode frequency with sufficient precision. Finally, we obtain
the tidal deformability � by solving the second-order dif-
ferential equation Eq. (12) from the center to the surface of
the star. We also compare our results with that obtained for
isotropic neutron and quark stars. For neutron star (NS) mat-
ter, we consider the Sly4 EoS [71]; whereas for the (strange)
quark star (QS), the modified Bag model [72] is used.

In Fig. 1, we plot the mass-radius profiles of the anisotropic
dark energy stars for different values of anisotropic strength.
Following Ref. [40], we consider the range: −2 < λBL < 2
in this work. Here, λBL = 0 corresponds to the isotropic
stellar profile. As λBL varies positively (negatively) from the
isotropic value, both mass and radius of the star increase
(decrease). This trend is in agreement with Ref. [51],
although a different model of anisotropy was employed in
their analysis of dark energy stars. The maximum mass values
corresponding to λBL = −2, −1, 0, 1, and 2 are obtained as
2.06, 2.25, 2.47, 2.74, and 3.07M� respectively; the corre-
sponding central density values are (2.24, 1.85, 1.69, 1.43,

and 1.22) × 1015 g cm−3. Thus, we see that anisotropy has
significant impact on the maximum mass and radius of the
stellar profiles. We note that the effect of anisotropy on the
mass and radius values are more prominent at higher central
densities. Further, one can see that neutron star profiles are
different: results in lower value of maximum mass and corre-
sponding radius and higher radius for lower central densities.
However, we see that the isotropic quark star profile is quali-
tatively similar to that of the dark energy star; the maximum
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mass and radius values are lesser than that of the dark star.
The maximum mass (corresponding radius) of NS and QS are
2.06M� (10.02 km) and 2.15 M� (11.71 km) respectively.

We now compare the dark energy star results shown in
Fig. 1 with some of the observational measurements given
by GW events and milli-second pulsars. We have shown the
observational data from GW 170817 [16] and GW 190814
[68] events. We have also indicated the observational lim-
its from PSR J2215+5135 (M = 2.27+0.17

−0.15M�) [69], PSR

J0348+0432 (M = 2.01+0.04
−0.04M�) [18] and PSR J0740+6620

(2.14+0.10
−0.09M� (68.3% credible)) [17]. We find that the max-

imum masses of anisotropic dark energy stars with λBL val-
ues −1 and −2 are consistent with the PSR J0740+6620,
PSR J0348+0432 and PSR J2215+5135. We also note that
the mass-radius values of anisotropic dark energy stars fall
within the limits imposed by GW 170817; whereas, the val-
ues of mass and radius obey the limit imposed by GW 190814
only for λBL = −1 and −2. Furthermore, we have shown
the Buchdahl limit [70] in Fig. 1 and it can be seen that the
anisotropic dark energy star profiles considered in this work
fall well within this limit.

Next, we present the variation of scaled radial pressure
p/pc and anisotropic pressure σ/pc of dark energy stars as a
function of radial co-ordinate r = √

x2 + y2 with z = 0
for different values of λBL in Fig. 2. The stellar profiles
are obtained by keeping a fixed value of central pressure
pc = 6.75 × 1035 gcm−1 s−2, with corresponding central
density being 2.0 × 1015 g cm−3. The radius of the star
increases marginally with an increase in the value of λBL .
For λBL = −2,−1, 0, 1, 2, the radius values are obtained as
11.04, 11.29, 11.59, 11.84, and 12.04 km respectively. The
radial pressure for any given value of r is found to increase
(decrease) with respect to the isotropic case i.e., λBL = 0,
with increase (decrease) in the value of λBL , as shown in
Fig. 2a. The variation of radial pressure from the isotropic
case is maximum towards the mid of the radii of the profiles.
Now, coming to the anisotropic pressure profiles, we find
that it changes drastically as the value of λBL varies. From
Fig. 2b, it can be seen that the anisotropic pressure increases
from 0 (λBL = 0), reaches a maximum value and then slowly
decreases with r for positive values of λBL and vice versa
for negative values. Further, the anisotropic pressure profiles
show an overall decrement with increase in the value of λBL

from −2 to 2. It can be seen that, σ/pc becomes more and
more negative with increasing values of λBL in the positive
direction; vice-versa with negative increment of λBL . We
also note that, for positive values of λBL , the deviation from
the isotropic case is higher compared to negative values of
λBL . We note that qualitatively same trend is observed in the
case of neutron stars with a different anisotropy prescription
in Ref. [22].

For f -mode analysis, we employ the Cowling approxi-
mation discussed in Sect. 3. In Fig. 3a, b, we plot the l = 2
f -mode frequencies as a function of dark energy stellar mass
and compactness C = M/R respectively. We observe that,
the f -mode oscillation frequencies of isotropic dark energy
star (λBL = 0) lie within a smaller range compared to that of
the isotropic NS considered. Also, the oscillation frequency
corresponding to the maximum mass, fmax of the dark energy
star is observed at a lower value compared to that of the NS.
Now, considering the anisotropic dark energy star, the f -
mode frequencies corresponding to different values of λBL

can be observed distinctly from the isotropic case. We find
that the frequency range of f -modes expands for more posi-
tive values of λBL . From Fig. 3a, the f -modes of dark energy
star lie in the range of 2.38−2.61 kHz and 2.86−2.02 kHz for
λBL = −2 and +2 respectively, with the mass ranging from
1.00M� to the maximum mass of the star obtained for each
case. The deviation of the f -mode spectra from the isotropic
case is more prominent for larger absolute values of λBL .
This is because, the variation of anisotropic pressure of the
star is observed to be large for higher values of |λBL |. Fur-
ther, we note that the f -mode frequencies show only a small
deviation from isotropic case for negative λBL values. For
example, the values of f corresponding to 1.00M� are 2.39,
and 2.38 kHz respectively for λBL = −1, and −2; while
the frequencies are obtained as 2.43, 2.55, and 2.86 kHz for
λBL = 0, 1, and 2 respectively with the same mass. Also,
the fmax values are found to decrease with increase in the
value of λBL . The values of fmax for λBL = −2, −1, 0, 1,

and 2 are 2.61, 2.48, 2.36, 2.20, and 2.02 kHz respectively.
More importantly, we observe that the f -mode frequency

spectrum of dark energy stars is distinctively different from
that of the neutron stars (NS) and quark stars (QS). We note
that, the f -mode frequency corresponding to positive λBL

start from larger values compared to the isotropic case and
decrease, then approach fmax ; while for negative λBL val-
ues, the curves start from smaller frequency range, cross the
isotropic curve and approach fmax . Moreover, we observe
that the f -modes of dark energy star begin in the frequency
range ≈ 2.4 − 3.1 kHz, unlike the case of NS and QS for
which the curve begins at lower frequencies. For NS, the
values of f increase with the stellar mass and fmax occur at
largest value in the f -mode frequency range obtained for the
star. On the other hand, the f -mode values of dark energy
star for positive λBL decrease with mass and fmax values
are obtained at lower frequency range. Additionally, it can
be noted that the f -mode curve of dark energy star appears
similar to that of QS when λBL becomes more negative; the
curve remains almost constant when mass is increased, then
rises suddenly when approaching the maximum mass.

The f -mode frequency as a function of compactness
C = M/R is given in Fig. 3b. The values of compact-
ness corresponding to maximum mass Cmax for dark energy
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Fig. 2 The scaled radial
pressure p/pc and anisotropic
pressure σ/pc as a function of
radial co-ordinate
r = √

x2 + y2 in z = 0 plane of
the anisotropic dark energy star
with central pressure
pc = 6.75 × 1035 g cm−1s−2

stars are 0.28, 0.29, 0.31, 0.33, and 0.35 with λBL =
−2, −1, 0, 1, and 2 respectively. The values of Cmax for
NS and QS are 0.30 and 0.27 respectively. We note that, the
compactness of isotropic dark energy stars is of the order of
NS. However, a positive deviation from isotropy results in
ultra-compactness, C > 1/3 [73].

Further, we study the tidal properties and plot the relation
between f -mode and tidal deformability � of anisotropic
dark energy stars. In Fig. 4a, we plot the tidal Love number

k2 as a function of the stellar mass. The value of k2 increases
until it reaches a maximum and then decreases as the mass is
increased. A similar trend was observed for k2 of anisotropic
dark energy stars using a different model of anisotropy in
Ref. [51]. The value of anisotropy parameter λBL has a signif-
icant effect on the behaviour of tidal Love number k2 as well.
We find that the tidal Love numbers show a significant devi-
ation from isotropy for positive values of λBL . Whereas, the
deviation observed is comparatively lower for negative values
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Fig. 3 f -mode frequency as a function of (a) mass and (b) compactness, C = M/R of the anisotropic dark energy star for l = 2 mode. The results
for neutron star (NS) and quark star (QS) are also depicted

Fig. 4 The (a) tidal Love number k2 against mass of the anisotropic dark energy star and (b) f -mode frequency as a function of tidal deformability
�

of λBL . The values of the tidal Love number corresponding
to the maximum mass (kmax

2 ) for λBL = −2, −1, 0, 1, and
2 are 0.0147, 0.0125, 0.0116, 0.0098, and 0.0079 respec-
tively. Next, we plot the f -mode frequencies as a func-
tion of tidal deformability � in Fig. 4b. The values of tidal
deformability corresponding to the maximum mass (�max )
for λBL = −2, −1, 0, 1, and 2 are 5.96, 3.95, 2.69, 1.69,

and 0.97 respectively. The value of �max is found to decrease
with an increase in λBL . The values of tidal deformabil-
ity for 1.4M� (�1.4) for λBL = −2, −1, 0, 1, and 2 are
49, 53, 59, 60, and 76 respectively. We find that values of
�1.4 are in good agreement with the limit given by GW
170817 (�1.4 ≤ 800 [74]). However, the values of f -mode

frequency obtained in our analysis are higher and does not fall
within the limit provided in Ref. [75]. We hope that future
detection of binary NS mergers may provide further con-
straints on f -mode frequencies.

5 Summary and conclusions

We have studied the prominent non-radial f -mode oscil-
lations for the isotropic and anisotropic dark energy star
configurations. By using the modified Chaplygin fluid pre-
scription for the constituent dark energy matter, we solved
the respective coupled differential equations in presence of
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anisotropy for stellar structure, f -mode and tidal deformabil-
ity. Anisotropic pressure of the dark energy fluid is introduced
with the Bowers–Liang model, where the free parameter λBL

determines the strength of it. We find that the internal stellar
structure is highly sensitive to the strength of anisotropy and
the maximum mass and radius of the star are found to vary
significantly with λBL . As λBL increases from −2 to +2,
the maximum mass and corresponding radius of the star are
found to increase. Further, we compared the stellar profiles
obtained with observational data from GW events and milli-
second pulsars and good agreement was found; especially
for configurations with λBL < 0. The mass-radius profiles
of the dark energy star show a different trend from that of the
neutron star; while, the curves are qualitatively more simi-
lar to that of a quark star. We have also studied the radial
and anisotropic pressure profiles of the dark energy star for
different values of λBL .

The oscillation frequency of l = 2 f -mode of dark energy
star was found under the Cowling approximation. We found
that the f −mode frequencies span the range ∼ 2 − 3.1 kHz.
The range of f -mode spectrum obtained for the isotropic
case was found to be smaller compared to that of neutron and
quark stars. Further, the effect of anisotropy is reflected in the
f -mode solutions, where the frequencies show a significant
deviation from the isotropic case. This deviation is observed
to be high for larger absolute value of the parameter λBL ,
which is expected, since the anisotropic pressure variation is
found to be appreciably high for large |λBL | values. Further,
the value of f corresponding to the maximum mass of the
star, fmax is found to decrease with increase in the value of
λBL . Also, the f -mode frequencies were obtained as a func-
tion of compactness and tidal deformability. It was found that
dark energy stars become ultra compact objects for positive
values of λBL . It was noted that the tidal deformability corre-
sponding to the maximum mass �max decreases when λBL

is increased. Further, the tidal deformability of anisotropic
dark energy stars was found to be in good agreement with
the limits imposed by GW 170814 event.

Interestingly, we found that the f -mode frequency spec-
trum of the isotropic and anisotropic dark energy stars is
indicatively different from that obtained for neutron stars
(NS) and quark stars (QS). Further, unlike the case of NS and
QS, the f -mode spectra of dark energy stars begin within a
higher frequency range at M � 1.00 M�. We believe that
this distinct behaviour of f -modes in dark energy stars may
give directions in its identification.
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