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Abstract We study an extension of the Standard Model
(SM) which could have two candidates for dark matter
(DM) including a Dirac fermion and a vector dark matter
(VDM) under a new U (1) gauge group in the hidden sector.
The model is classically scale-invariant and the electroweak
symmetry breaks because of loop effects. We investigate
the parameter space allowed by current experimental con-
straints and phenomenological bounds. We probe the param-
eter space of the model in the mass range 1 < MV < 5000
GeV and 1 < Mψ < 5000 GeV. It has been shown that there
are many points in this mass range that are in agreement with
all phenomenological constraints. The electroweak phase
transition has been discussed and it has been shown that there
is region in the parameter space of the model consistent with
DM relic density and direct detection constraints that, at the
same time, can lead to first-order electroweak phase tran-
sition. The gravitational waves produced during the phase
transition could be probed by future space-based interferom-
eters such as LISA and BBO.

1 Introduction

The Standard Model (SM) has been the most effective way to
describe the functioning of the world around us, but is incom-
plete because of challenges like matter–antimatter asymme-
try, hierarchy problem, and dark matter (DM). DM is esti-
mated to make up approximately 27% of our universe, as
indicated by a lot of astrophysical and cosmological evi-
dence [1]. One of the main goals of particle physicists is
to predict and find a particle that can satisfy the properties of
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DM, which can be a window to physics beyond the standard
model (BSM).

Weakly interacting massive particles (WIMPs) are the
most popular candidate for DM, with the freeze-out scenario
being the most popular choice [2]. The WIMP paradigm is
essential background for almost any discussion of particle
DM and the triple coincidence of motivations from particle
theory, particle experiment, and cosmology is known as the
WIMP miracle. However, no trace of DM has so far been
found in direct detection experiments. Due to strong con-
straints on direct detection experiments in one-component
DM models, multi-component DM models seem more appro-
priate in some ways [3–53].

In the SM, electroweak phase transition is of the second
order [54,55] and does not generate the gravitational wave
(GW) signal (for a recent review see [56]). A first-order phase
transition can be caused by certain extensions of the SM and
the DM candidate, leading to the creation of GWs [57–85].
In the early universe, when two local minima of free energy
(potential) co-exist for some range of temperatures (critical
temperature), strongly first-order electroweak phase transi-
tion can take place. After that, the relevant scalar fields can
quantum-mechanically tunnel into the new phase and through
the nucleation of bubbles and collide with each other to cause
a significant background of GWs [86–90].The discovery of
GWs resulting from the first-order phase transition can be the
consequence of physics BSM, which can be a supplement
to ground experiments like those conducted using the Large
Hadron Collider (LHC). Unlike GWs from strong astrophysi-
cal sources [91], these waves have a range between millihertz
and decihertz [92]. The Laser Interferometer Space Antenna
(LISA) [93] and Big Bang Observer (BBO) [94] are two
space-based GW detectors which are expected to observe
GWs resulting from cosmological phase transitions in future
years. On the other hand, one of the Sakharov conditions [95]
which explains the matter–antimatter asymmetry in universe
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is the thermal imbalance that occurs in first-order phase tran-
sitions.

As mentioned, one of the fundamental challenges of par-
ticle physics is the hierarchy problem. A potential solution
to this problem is to drop the Higgs mass term in the poten-
tial. SM without the Higgs mass term is scale-invariant. In
this paper, we present a classically scale-invariant extension
of the SM where all the particle masses are generated using
the Coleman-Weinberg mechanism [96]. The model includes
three new fields: a fermion, a complex singlet scalar and a
vector field with UD(1) gauge symmetry. We examine two
scenarios in this paper. In scenario A, we consider only the
fermionic field as DM. In scenario B, both fermionic and
vector fields are considered as DM. We probe the parame-
ter space of the model according to constraints from relic
density and direct detection. DM relic density is reported by
the Planck Collaboration [97] and DM-Nucleon cross sec-
tion is constrained by XENONnT experiment results [98].
We investigate the possibility of the electroweak phase tran-
sition with respect to the bounded parameter space, where
we use the effects of the effective potential of the finite tem-
perature. We probe the parameter space of the model, which
is consistent with the said phenomenological constraints and
also leads to a strong first-order electroweak phase transition.
The GW signal resulting from this phase transition also has
been studied in the LISA and BBO detectors.

Here is the organization of the paper. In the next section,
we introduce the model. In Sect. 3, we study the phenomenol-
ogy of the Scenario A including relic density, direct detec-
tion, invisible Higgs decay and the resulting GWs. Section 4
is dedicated to the phenomenology of the Scenario B and its
GW signals. Finally, our conclusion comes in Sect. 5.

2 The model

In this section, we consider an extension of the SM to explain
DM phenomenology. In this regard, the model contains three
new fields in which a vector dark matter Vμ and a Dirac
fermion field ψ can play the role of DM. A complex scalar,
S, mediates between SM and the dark sector. In the model Vμ,
ψ and S are charged under a new dark U (1)D gauge group.
All of these fields are singlet under SM gauge groups. We
suppose the mass of the fermion was produced by breaking of
darkUD(1) gauge symmetry, and so was constrained by other
parameters of the model. However, in the model, the dark
sector is invariant under the transformations of the UD(1)

gauge group:

ψL → eiQlα(x)ψL , ψR → eiQrα(x)ψR,

S → eiQsα(x)S, Vμ → Vμ − 1

gv

∂μα(x), (2.1)

Table 1 The charges of the dark sector particles under the new U (1)D
symmetry

Field S ψL ψR

U (1)D charge 1 1
2 − 1

2

where theU (1)D charge of the new particles, Ql,r,s , are given
in Table 1.

The Lagrangian for the model is given by the following
renormalizable interactions,

L = LSM + iψ̄Lγ μDμψL + iψ̄Rγ μDμψR − gsψ̄LψRS

+ h.c. − 1

4
VμνV

μν + (DμS)∗(DμS) − V (H, S),

(2.2)

whereLSM is the SM Lagrangian without the Higgs potential
term, The covariant derivative is

Dμ = (∂μ + i QgvVμ), and

Vμν = ∂μVν − ∂νVμ. (2.3)

On the imposition of dark charge conjugation symmetry,
we do not assume a kinetic mixing term between Vμ and the
U (1)Y gauge boson of the SM.

The most general scale-invariant potential V (H, S) that is
renormalizable and invariant under gauge symmetry is

V (H, S) = 1

6
λH (H†H)2+1

6
λS(S

∗S)2+2λSH (S∗S)(H†H).

(2.4)

Note that the quartic portal interaction, λSH (S∗S)(H†H), is
the only connection between the dark sector and the SM.

SM Higgs field H as well as dark scalar S can receive
VEVs, respectively breaking the electroweak and UD(1)

symmetries. In unitary gauge, the imaginary component of S
can be absorbed as the longitudinal part of Vμ. In this gauge,
we can write

H = 1√
2

(
0
h1

)
and S = 1√

2
h2, (2.5)

where h1 and h2 are real scalar fields which can receive
VEVs. Now, the tree-level potential becomes

V tree = 1

4!λHh
4
1 + 1

4!λSh
4
2 + 1

2
λSHh

2
1h

2
2. (2.6)

There is a Z2 symmetry for ψ , making it a stable particle. In
addition, if the mass of Vμ is less than two times of the mass
of ψ , then both Vμ and ψ are viable DM candidates.
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For the Hessian matrix, we define:

Hi j (h1, h2) ≡ ∂2V tree

∂hi∂h j
. (2.7)

Necessary and sufficient conditions for local minimum of
V tree in which vacuum expectation values 〈h1〉 = ν1 and
〈h2〉 = ν2, have been written as:

∂V tree

∂hi

∣∣∣∣
ν1,ν2

= 0 (2.8)

∂2V tree

∂h2
i

∣∣∣∣
ν1,ν2

> 0 (2.9)

det(H(ν1, ν2)) > 0, (2.10)

where det(H(ν1, ν2)) is the determinant of the Hessian
matrix. Condition (2.8) for non-vanishing VEVs leads to the
following constraints:

λHλS = (3!λSH )2 ν2
1

ν2
2

= −3!λSH

λH
. (2.11)

Conditions (2.8) and (2.9) require λH > 0, λS > 0, and
λSH < 0. However, condition (2.10) will not be satisfied,
because det(H(ν1, ν2)) = 0. When the determinant of the
Hessian matrix is zero, the second derivative test is incon-
clusive, and the point (ν1, ν2) could be any of a minimum,
maximum or saddle point. However, in the model, constraint
(2.11) is defined as a flat direction, in which V tree = 0. Thus,
it is the stationary line or a local minimum.

The important point is that for other directions,
V 1−loop(T=0)

eff > 0, and the tree level potential only vanishes
along the flat direction. Thus, the full potential of the theory
will be dominated by higher-loop contributions along the flat
direction, and specifically by the one-loop effective potential.
Considering one-loop effective potential,V 1−loop

eff , can lead to
a small curvature in the flat direction, which picks out a spe-
cific value along the ray as the minimum with V 1−loop

eff < 0
and vacuum expectation value ν2 = ν2

1 + ν2
2 characterized

by a renormalization group (RG) scale �. Since at the min-
imum of the one-loop effective potential V tree � 0 and
V 1−loop

eff < 0, the minimum of V 1−loop
eff along the flat direction

(where V tree = 0) is a global minimum of the full potential,
and so spontaneous symmetry breaking takes place. As a
result, we suppose h1 → ν1 + h1 and h2 → ν2 + h2, and
the electroweak symmetry breaks with value ν1 = 246 GeV.
In tree level potential, since h1 and h2 mix with each other,
they can be rewritten by the mass eigenstates H1 and H2 as

(
H1

H2

)
=

(
cos α − sin α

sin α cos α

) (
h1

h2

)
, (2.12)

where H2 is along the flat direction; thus MH2 = 0, and H1

is perpendicular to the flat direction which we identify as
the SM-like Higgs observed at the LHC with MH1 = 125
GeV. After the symmetry breaking, we have the following
constraints:

ν2 = MV

gv

, sin α = ν1√
ν2

1 + ν2
2

Mψ = gsMV√
2gv

λH = 3M2
H1

ν2
1

cos2 α

λS = 3M2
H1

ν2
2

sin2 α λSH = − M2
H1

2ν1ν2
sin α cos α, (2.13)

where Mψ and MV are the masses of vector and fermion
fields after symmetry breaking. Conditions (2.13) constrain
free parameters of the model up to three independent param-
eters. We choose MV , Mψ and gv as the independent param-
eters of the model.

Since in tree level, MH2 = 0, and the elastic scattering
cross section of DM off nuclei becomes severely large, the
model actually is excluded by direct detection experiments.
However, the radiative corrections give a mass to the mass-
less eigenstate H2. One-loop corrections to the potential, via
the Gildener–Weinberg formalism [99], shift the scalon mass
to the values that can be even higher than SM Higgs mass.
Along the flat direction, the one-loop effective potential has
the general form [99]

V 1−loop(T=0)

eff = aH4
2 + bH4

2 ln
H2

2

�2 , (2.14)

where a and b are dimensionless constants that given by

a = 1

64π2ν4

n∑
k=1

gkM
4
k ln

M2
k

ν2 ,

b = 1

64π2ν4

n∑
k=1

gkM
4
k . (2.15)

In (2.15), Mk and gk are the tree-level mass and the internal
degrees of freedom of the particle k, respectively (In our
convention gk takes positive values for bosons and negative
values for fermions).

Minimizing (2.14) shows that the potential has a non-
trivial stationary point at a value of the RG scale �, given by

� = ν exp

(
a

2b
+ 1

4

)
. (2.16)

Equation (2.16) can now be used to find the form of the one-
loop effective potential along the flat direction in terms of
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the one-loop VEV ν:

V 1−loop(T=0)

eff = bH4
2

(
ln

H2
2

ν2 − 1

2

)
. (2.17)

It is noteworthy that the scalon does not remain massless
beyond the tree approximation. Regarding V 1−loop(T=0)

eff ,
MH2 will be

M2
H2

= d2V 1−loop(T=0)

eff

dH2
2

∣∣∣∣
ν

= 8bν2. (2.18)

Considering (2.15), the scalon mass can be expressed in terms
of other particle masses

M2
H2

= 1

8π2ν2

(
M4

H1
+ 6M4

W + 3M4
Z + 3M4

V

−12M4
t − 4M4

ψ

)
, (2.19)

where MW,Z ,t are the masses of W, Z gauge bosons, and top
quark, respectively. As mentioned before, MH1 = 125 GeV

and ν2 = ν2
1 + ν2

2 . Notice that in order for V 1−loop(T=0)

eff to
be a minimum, it must be less than the value of the potential
at the origin, hence it must be negative. From (2.19), we
have a constraint on the parameter space of our model where
MH2 > 0.

Note that according to (2.19) and (2.13), MH2 is com-
pletely determined by the independent parameters of the
model, i.e., MV , Mψ and the coupling gv . These con-
straints are due to the scale invariance conditions which were
imposed on the model. Depending on the new particle masses
of our model, we examine two different scenarios. In sce-
nario A, the ψ field is considered as DM. In scenario B,
MV < 2Mψ and both Vμ and ψ fields are considered as
DM. In the following, we examine the phenomenology of
each scenario separately.

3 Scenario A

3.1 DM phenomenology

3.1.1 Relic density

In this case, since we do not assume MV < 2Mψ , the only
candidate for DM is ψ . In the WIMP scenario, at first the
early universe is hot and very dense and all particles are in
thermal equilibrium. Then the universe cools until its temper-
ature falls below the mass of DM particles, and the amount
of DM becomes Boltzmann suppressed, dropping exponen-
tially as e−mX /T . As the universe expands, the DM particles
are diluted and can no longer find each other until they are
annihilated and are out of thermal equilibrium with the SM

particles. Then the DM particles freeze out and their number
asymptotically reaches a constant value as their thermal relic
density. The evolution of the number density of DM particle
(nψ) with time is governed by the Boltzmann equation:

˙nψ + 3Hnψ = −〈σannνrel〉[n2
ψ − (neq

ψ )2], (3.1)

where H is the Hubble parameter and neq
ψ ∼ (mψT )3/2

e−mψ/T is the particle density before particles get out of equi-
librium. The relevant Feynman diagrams for DM production
are shown in the Fig. 1. We calculate the relic density numer-
ically for the ψ particle by implementing the model into
micrOMEGAs [100]. Figure 2 shows the parameter space of
the model in agreement with the observed density relic [97].
As can be seen, there is agreement for 400 < MV < 5000
GeV, 20 < Mψ < 2500 GeV and 0.1 < gv < 6.

3.1.2 Direct detection

WIMPs may be detected by the scattering off normal mat-
ter through processes XSM→XSM . Given a typical WIMP
mass of mX ∼ 100 GeV and WIMP velocity υ ∼ 10−3, the
deposited recoil energy is limited to ∼ 100 keV, so detec-
tion requires highly-sensitive, low-background and deep-site
detectors. Such detectors are insensitive to very strongly-
interacting DM, which would be stopped in the atmosphere
or earth and would be undetectable underground. The spin-
independent direct detection(DD) cross sections of ψ were
obtained using the micrOMEGAs package [100].

In Fig. 3, the parameter space of the model is drawn in
agreement with the limits of relic density, XENONnT and
neutrino floor. For 20 < Mψ < 1000 GeV, there will be
points of the parameter space that fall below the XENONnT
limit. As can be seen from Fig. 3, for Mψ < MH1/2 there
will be points that allow the investigation of the invisibility
Higgs decay, which will be investigated in the next section.

3.1.3 Invisible Higgs decay

As mentioned, for a parameter space consistent with ψ relic
density and DD, SM Higgs(H1) can only kinematically decay
into a pair of ψ . Therefore, H1 can contribute to the invisible
decay mode with a branching ratio:

Br(H1 → Invisible) = �(H1 → ψψ)

�(h)SM + �(H1 → ψψ)
, (3.2)

where �(h)SM = 4.15 [MeV] is total width of Higgs boson
[101]. The partial width for process H1 → ψψ is given by:

�(H1 → ψψ) = MH1g
2
s sin2 θ

8π

(
1 − 4M2

ψ

M2
H1

)3/2

. (3.3)
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Fig. 1 The relevant Feynman diagrams for DM relic density production cross section
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Fig. 2 The allowed range of parameter space consistent with DM relic
density
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Fig. 3 The allowed range of parameter space consistent with DM relic
density and DD

The SM prediction for the branching ratio of the Higgs boson
decaying to invisible particles coming from process h →
Z Z∗ → 4ν [102–105] is 1.2×10−3. CMS Collaboration has
reported the observed (expected) upper limit on the invisible
branching fraction of the Higgs boson to be 0.18(0.10) at the
95% confidence level, by assuming the SM production cross
section [106]. A similar analysis was performed by ATLAS
collaboration in which an observed upper limit of 0.145 is
placed on the branching fraction of its decay into invisible
particles at a 95% confidence level [107].
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Fig. 4 The cross points depict the allowed region that is consistent
with invisible Higgs decay at [107]

Figure 4, shows the allowed range of parameters by con-
sidering the ATLAS [107] upper limit for invisible Higgs
mode.

3.2 Electroweak phase transition and gravitational waves

3.2.1 Finite temperature potential

In addition to the 1-loop zero-temperature potential (2.17),
we can also consider the 1-loop corrections at finite temper-
ature in the effective potential, which is [108]

V 1−loop(T 	=0)

eff (H2, T ) = T 4

2π2

n∑
k=1

gk JB,F

(
Mk

ν

H2

T

)
, (3.4)

with thermal functions

JB,F (x) =
∫ ∞

0
dyy2 ln

(
1 ∓ e−

√
y2+x2

)
. (3.5)

The above functions can be expanded in terms of modified
Bessel functions of the second kind, K2(x) [71],
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JB(x) � −
3∑

k=1

1

k2 x
2K2(kx),

JF (x) � −
2∑

k=1

(−1)k

k2 x2K2(kx). (3.6)

The contribution of resummed daisy graphs is also as follows
[109]

Vdaisy(H2, T ) =
n∑

k=1

gkT 4

12π

((Mk

ν

H2

T

)3

−
((Mk

ν

H2

T

)2+�k(T )

T 2

) 3
2
)

, (3.7)

where the sum runs only over scalar bosons and longitudinal
degrees of freedom of the gauge bosons. Thermal masses,
�k(T ), are given by

�W = 11

6
g2
SMT 2, �V = 2

3
g2
vT

2,

�Z/γ = 11

6

(
g2
SM 0
0 g′2

SM

)
T 2,

�H1/H2

=
(

λH
24 + λSH

12 + 3g2
SM

16 + g′2
SM
16 + λ2

t
4 0

0 λS
24 + λSH

12 + g2
v

4

)
T 2.

(3.8)

Finally, the one-loop effective potential, including both
one-loop zero temperature (2.17) and finite temperature (3.4)
and 3.7 corrections, is given by

Veff(H2, T ) = V 1−loop(T=0)(H2)

+ V 1−loop(T 	=0)(H2, T ) + Vdaisy(H2, T ).

(3.9)

In order to get Veff(0, T ) = 0 at all temperatures, we make
the following substitution:

Veff(H2, T ) −→ Veff(H2, T ) − Veff(0, T ). (3.10)

Now we are ready to study the phase transition and the result-
ing gravitational waves.

3.2.2 Gravitational waves

The characteristic of first-order phase transitions is the exis-
tence of a barrier between the symmetric and broken phases.
The electroweak phase transition takes place after the tem-
perature of the universe drops below the critical tempera-
ture (TC ). At this temperature, effective potential (3.9) has

two degenerate minimums, one in H2 = 0 and the other in
H2 = νC 	= 0:

Veff(0, TC ) = Veff(νC , TC ),

dVeff(H2, TC )

dH2

∣∣∣∣
H2=νC

= 0. (3.11)

By solving these two equations, one can obtain νC and TC . If
this phase transition is strongly first-order, it can satisfy the
condition of departure from thermal equilibrium, which is
one of Sakharov conditions for creating baryonic asymmetry
in the universe. There is a criteria for strongly electroweak
phase transition [95,110], which is as follows

νC

TC
> 1. (3.12)

The transition from the false to the true vacuum proceeds
via thermal tunneling at finite temperature. This concept can
be grasped in the context of formation of bubbles of the bro-
ken phase in the sea of the symmetric phase. Once this has
happened, the bubble spreads throughout the universe, con-
verting false vacuums into true ones. Bubble formation starts
at the nucleation temperature TN , where one can estimate
TN by the condition S3(TN )/TN ∼ 140 [111]. The func-
tion S3(T ) is the three-dimensional Euclidean action for a
spherical symmetric bubble given by

S3(T ) = 4π

∫ ∞

0
drr2

(
1

2

(dH2

dr

)2+Vef f (H2, T )

)
,

(3.13)

where H2 satisfies the differential equation which minimizes
S3:

d2H2

dr2 + 2

r

dH2

dr
= dVeff(H2, T )

dH2
, (3.14)

with the boundary conditions:

dH2

dr

∣∣∣∣
r=0

= 0, and H2(r −→ ∞) = 0. (3.15)

In order to solve Eq. 3.14 and find the Euclidean action (3.13),
we used the AnyBubble package [112]. In the following, we
will show that the nucleation temperature(TN ) will be much
lower than the critical temperature (TC ), indicating a very
strong phase transition.

GWs resulting from the strong first-order electroweak
phase transitions are have three causes, which are as follows:

• collisions of bubble walls and shocks in the plasma,
• sound waves to the stochastic background after collision

of bubbles but before expansion
has dissipated the kinetic energy in the plasma,
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• turbulence forming after bubble collisions.
These three processes may coexist, and each one con-
tributes to the stochastic GW background:

�GWh2 � �collh
2 + �swh

2 + �turbh
2. (3.16)

There are four thermal parameters that control the above
contributions:

• TN : the nucleation temperature,
• α: the ratio of the free energy density difference between

the true and false vacuum and
the total energy density,

α =
�

(
Veff − T ∂Veff

∂T

)∣∣∣∣
TN

ρ∗
, (3.17)

where ρ∗ is

ρ∗ = π2g∗
30

T 4
N , (3.18)

• β: the inverse time duration of the phase transition,

β

H∗
= TN

d

dT

( S3(T )

T

)∣∣∣∣
TN

, (3.19)

• υω: the velocity of the bubble wall which is anticipated
to be close to 1 for the strong transitions [113].

Isolated spherical bubbles cannot be used as a source of
GWs, and these waves arise during the collision of the bub-
bles. The collision contribution to the spectrum is given by
[114]

�coll( f )h
2 = 1.67 × 10−5

( β

H∗

)−2

×
( κα

1 + α

)2( g∗
100

)− 1
3
( 0.11υ3

ω

0.42 + υ2
ω

)
Scoll,

(3.20)

where Scoll parameterizes the spectral shape and is given by

Scoll = 3.8( f/ fcoll)
2.8

2.8( f/ fcoll)3.8 + 1
, (3.21)

where

fcoll = 1.65 × 10−5
( 0.62

υ2
ω − 0.1υω + 1.8

)( β

H∗

)

×
( TN

100

)( g∗
100

)1/6
Hz. (3.22)

The collision of bubbles produces a massive movement in
the fluid in the form of sound waves that generate GWs. This

is the dominant contribution to the GW signal, and is given
by [115]

�sw( f )h2 = 2.65 × 10−6
( β

H∗

)−1( κυα

1 + α

)2

×
( g∗

100

)− 1
3
υωSsw. (3.23)

The spectral shape of Ssw is

Ssw = ( f/ fsw)3
( 7

3( f/ fsw)2 + 4

)3.5
, (3.24)

where

fsw = 1.9 × 10−5 1

υω

( β

H∗

)( TN
100

)( g∗
100

)1/6
Hz. (3.25)

Plasma turbulence can also be caused by bubble collisions,
which is a contributing factor to the GW spectrum and is
given by [116]

�turb( f )h
2 = 3.35 × 10−4

( β

H∗

)−1(κturbα

1 + α

)3/2

×
( g∗

100

)− 1
3
υωSturb, (3.26)

where

Sturb = ( f/ fturb)3

(1 + 8π f/h∗)(1 + f/ fturb)11/3 , (3.27)

and

fturb = 2.27 × 10−5 1

υω

( β

H∗

)( TN
100

)( g∗
100

)1/6
Hz. (3.28)

In Eq. 3.27, h∗ is the value of the inverse Hubble time at
GW production, redshifted to today,

h∗ = 1.65 × 10−5
( TN

100

)( g∗
100

)1/6
. (3.29)

In computing the GW spectrum we have used [117,118]

κ = 1

1 + 0.715α

(
0.715α + 4

27

√
3α

2

)
,

κυ = α

0.73 + 0.083
√

α + α
, κturb = 0.05κυ, (3.30)

where the parameters κ , κυ , and κturb denote the fraction of
latent heat that is transformed into gradient energy of the
Higgs-like field, bulk motion of the fluid, and MHD turbu-
lence, respectively.

To investigate the GWs resulting from the first-order elec-
troweak phase transition, we choose three benchmark points.
These points are presented in Table 2. Figure 5 shows the
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Table 2 Three benchmark points with DM and phase transition parameters

# MV (GeV) Mψ (GeV) gv gs MH2 (GeV) �ψh2 σψ (cm2)

1 839.9 36.1 0.485 0.029 78.39 1.11 × 10−1 1.11 × 10−47

2 4998 407.8 0.87 0.1 849.1 1.18 × 10−1 5.16 × 10−48

3 3526 159.7 0.468 0.029 321.6 1.2 × 10−1 1.98 × 10−49

# TC (GeV) TN (GeV) α β/H∗ (�GWh2)max

1 237 71 1.48 306.694 1.32 × 10−9 – –

2 1665 1490.7 0.02 2758.95 2.68 × 10−16 – –

3 1114 640.8 0.09 244.78 8.77 × 10−13 – –

Fig. 5 In a, b and c Potential behavior are given for critical temperature and nucleation temperature. In d, e and f S3/T changes in terms of
temperature are also given for all three benchmarks
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Fig. 6 GW spectrum for benchmark points of the Table 2

potential behavior for both critical and nucleation temper-
atures. Also, S3/T changes in terms of temperature are
shown. In Table 2 all relevant quantities, including inde-
pendent parameters of the model, DM properties, and phase
transition parameters, are given. The benchmarks 1 and 2 are
consistent with direct detection constraints while benchmark
3 is outside the range of XENONnT and is placed under the
neutrino floor. The GW spectrum for these benchmark points
is depicted in Fig. 6. The GW spectrum for these benchmarks
1,(2,3) falls within the observational window of LISA(BBO).
Therefore, for benchmark 3, GW can be a special way to
probe it.

4 Scenario B

4.1 DM phenomenology

4.1.1 Relic density

In this scenario, MV < 2Mψ and both Vμ and ψ fields are
considered as DM. The evolution of the number density of
DM particles with time are governed by the Boltzmann equa-
tion. The coupled Boltzmann equations for fermion ψ and
vector DM are given by:

dnV
dt

+ 3HnV = −
∑
j

〈σVV→ j jυ〉(n2
V − n2

V,eq)

− 〈σVV→ψψυ〉
(
n2
V − n2

V,eq

n2
ψ

n2
ψ,eq

)
,

(4.1)

dnψ

dt
+ 3Hnψ = −

∑
j

〈σψψ→ j jυ〉(n2
ψ − n2

ψ,eq)

− 〈σψψ→VVυ〉
(
n2

ψ − n2
ψ,eq

n2
V

n2
V,eq

)
,

(4.2)

where j runs over SM massive particles, H1 and H2. In
〈σab→cdυ〉 all annihilations are taken into account except
〈σψV→ψVυ〉 which does not affect the number density. In
the above relations, for simplicity in the writing, only the
annihilation and conversion contributions are shown in the
equations. But, in practice, all contributions, even semi-
annihilations are included in the micrOMEGAs package
to solve these equations [119]. The relevant Feynman dia-
grams for DM production are shown in Fig. 7. By choosing
x = M/T and Y = n/s„ where T and s are the photon
temperature and the entropy density, respectively, one can
rewrite the Boltzmann equations in terms of Y = n/s:

dYV
dx

= −
√

45

π
Mplg

1/2∗
M

x2

⎡
⎣∑

j

〈σVV→ j jυ〉(Y 2
V − Y 2

V,eq)

+〈σVV→ψψυ〉
(
Y 2
V − Y 2

V,eq

Y 2
ψ

Y 2
ψ,eq

)]
, (4.3)

dYψ

dx
= −

√
45

π
Mplg

1/2∗
M

x2

⎡
⎣∑

j

〈σψψ→ j jυ〉(Y 2
ψ − Y 2

ψ,eq)

+〈σψψ→VVυ〉
(
Y 2

ψ − Y 2
ψ,eq

Y 2
V

Y 2
V,eq

)]
, (4.4)

where g1/2∗ is the degrees of freedom parameter and Mpl is
the Planck mass. It is clear from the above equations that
there are new terms in the Boltzmann equations that describe
the conversion of two DM particles into each other. Because
these two cross sections are also described by the same matrix
element, we expect 〈σVV→ψψυ〉 and 〈σψψ→VVυ〉 are not
independent and their relation is:

Y 2
V,eq〈σVV→ψψυ〉 = Y 2

ψ,eq〈σψψ→VVυ〉. (4.5)

The interactions between the two DM components take
place by exchanging two scalar mass eigenstates H1 and H2,
where the coupling of V to H1 is suppressed by sin α. For
this reason, it usually is the H2-mediated diagram that gives
the dominant contribution. We also know that the conversion
of the heavier particle into the lighter one is relevant. The
relic density for any DM candidate associated with Y at the
present temperature is given by the following relation:

�ψ,V h
2 = 2.755 × 108 Mψ,V

GeV
Yψ,V (T0), (4.6)

where h is the Hubble expansion rate at present time in units
of 100 (km/s)/Mpc. We used the micrOMEGAs package
[119] to numerically solve coupled Boltzmann differential
equations. According to the data from the Planck Collabora-
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Fig. 7 The relevant Feynman
diagrams for DM relic density
cross section including: a
(annihilation), b (conversion)
and c (semi-annihilation)

tion [97], the DM constraint in this model reads

�DMh2 = �V h
2 + �ψh

2 = 0.120 ± 0.001. (4.7)

We also define the fraction of the DM density of each com-
ponent by

ξV = �V

�DM
, ξψ = �ψ

�DM
, ξV + ξψ = 1. (4.8)

In Fig. 8, the parameter space consistent with DM relic
density is obtained. As can be seen, there is an agreement
with the relic density observed for 300 < MV < 5000
GeV, 200 < Mψ < 5000 GeV and 0.1 < gv < 6. Of
course, it is necessary to mention that the contribution of
semi-annihilations in the model is important. For example,
for benchmark 2 in Table 3, using the micrOMEGAs pack-
age, we found that the share of the cross section of the process
of V ψ → ψ H2 includes 24 % of the cross section of all
processes.

4.1.2 Direct detection

We investigate constraints on parameters space of the model
which are imposed by searching for scattering of DM-nuclei.
The spin-independent direct detection (DD) cross sections of

103

102 103

M
V 

[G
eV

]

Mψ [GeV]

10−1

100

g v

Fig. 8 The allowed range of parameter space consistent with DM relic
density

V and ψ are determined by H1 and H2 exchanged diagrams
[30,70]:

σ V
DM−N = ξV

4λ2
SH M2

V M
2
Nμ2

V N (M2
H1−M2

H2)
2

πM8
H1M

4
H2

f 2
N , (4.9)

σ
ψ
DM−N = ξψ

g3
s ν1

πMψ(1 + (ν1gs/Mψ)2)
μ2

ψ

×
(

1

M2
H1

− 1

M2
H2

)2

f 2
N , (4.10)
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Table 3 Three benchmark
points with DM and phase
transition parameters

# MV (GeV ) Mψ(GeV ) gv gs MH2 (GeV )

1 2249 2069 1.32 1.72 121.7

2 3400 3150 1.65 2.16 140

3 3750 3481 1.71 2.25 125.1

# �V h2 �ψh2 �DMh2 ξV σV (cm2) ξψσψ (cm2)

1 1.17 × 10−2 1.09 × 10−1 1.2 × 10−1 6.02 × 10−48 4.75 × 10−47

2 1.1 × 10−2 9.99 × 10−2 1.1 × 10−1 9.03 × 10−47 7.04 × 10−46

3 1.15 × 10−2 1.04 × 10−1 1.15 × 10−1 1.26 × 10−50 9.84 × 10−50

# TC (GeV) TN (GeV) α β/H∗ (�GWh2)max

1 277.5 144.6 0.22 796.068 5.26 × 10−12

2 416.5 210.2 0.09 996.56 2.08 × 10−13

3 456 214.7 0.05 1501.05 1.53 × 10−14
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Fig. 9 The allowed range of parameter space consistent with DM relic density and DD. In a ξV σV VS MV and in b ξψσψ VS Mψ has shown

where

μV N = MNMV /(MN +MV ), μψ = MNMψ/(MN +Mψ).

(4.11)

MN is the nucleon mass and fN � 0.3 parameterizes the
Higgs-nucleon coupling.

Various DD experiments have placed constraints on DM-
Nucleon spin independent cross section, such as LUX
[120], PandaX-II [121], XENON1T [122], LZ [123] and
XENONnT [98]. Of course, these experiments are gradually
approaching what is called the neutrino floor [124], which is
a the irreducible background coming from scattering of SM
neutrinos on nucleons. We use the XENONnT [98] experi-
ment results to constrain the parameter space of our model. In
this experiment there is a minimum upper limit on the spin-
independent WIMP-nucleon cross section of 2.58 × 10−47

cm2 for a WIMP mass of 28 GeV. In order to study the
effect of the direct detection experiment on the model, we
use rescaled DM-Nucleon cross section ξV σV and ξψσψ .

In Fig. 9, rescaled DM-Nucleon cross sections(ξV σV and
ξψσψ ) are depicted for the parameters that are in agree-
ment with the relic density. It is clear from the figure that
there are some points between the XENONnT direct detec-
tion bound and the neutrino floor which can be probed
in future direct detection experiments. As is expected
from 4.10, by reducing the mass difference between H1

and H2, the cross section decreases and therefore allow-
able points increase. In our model, DM interacts with nucle-
ons through H1 and H2 mediators. The relevant terms
in the Lagrangian are Ah1[q̄q] and Bh2[VμVμ (ψ̄ψ)]
for vector (spinor) DM, where A and B are some con-
stants. Therefore, the H1 mediator involves A cos αH1[q̄q]−
B sin αH1[VμVμ (ψ̄ψ)]. Similarly, for the H2 mediator,
the terms are A sin αH2[q̄q] + B cos αH2[VμVμ (ψ̄ψ)].
Consequently, the effective 5(6)-dimensional interaction
terms for DM-quark interactions at low energies will be

AB sin α cos α

(
1

M2
H2

− 1
M2

H1

)
[q̄q][VμVμ (ψ̄ψ)]. Around
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MH2 � MH1 , the effective coupling between DM and quarks
approaches zero, resulting in a dip in the DM-nucleon cross-
section. In [125], a study has been done on degenerate Higgs
scenario. In [126], it is shown by using the high resolution of
the diphoton channel of the Higgs boson decays, that the mass
difference between the two degenerate states �m � 3 GeV is
disfavored at the 2σ level from the LHC Run-I data. In order
to test a degenerate Higgs scenario, a possible proposal is
consideration of degenerate scalar productions at the Inter-
national Linear Collider (ILC) [127]. It was shown [125] that
for �m � 1 GeV, it is possible to distinguish between two
Higgs.

4.1.3 Invisible Higgs decay

In this scenario, according to Fig. 9, because there is no point
where Mψ,V,H2 < MH1/2, it is not necessary to check the
invisible Higgs decay.

4.2 Electroweak phase transition and gravitational waves

To investigate the phase transition and the resulting GWs, we
follow the procedure of Sect. 3.2. We select three benchmark
points as shown in Table 3. Benchmarks 1 and 2 are consis-
tent with direct detection constraint, while benchmark 3 is
placed under the neutrino floor. Figure 10 shows the changes
of potential and S3/T in terms of temperature. The GW spec-

Fig. 10 In a, b and c Potential behavior are given for critical temperature and nucleation temperature. In d, e and f S3/T changes in terms of
temperature are also given for all three benchmarks
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Fig. 11 GW spectrum for benchmark points of the Table 3

trum for these benchmark points is depicted in Fig. 11. The
GW spectrum for these benchmarks falls within the observa-
tional window of BBO. For benchmark 1, the gravitational
wave peak will also be in LISA’s range. For the benchmark 3,
which is below the neutrino floor limit, future gravitational
wave detectors can provide a special way to discover and
investigate this area.

5 Conclusion

We have considered an extension of the SM with a new U (1)

symmetry in the dark part. According to the new particle
mass in the model, we considered two different scenarios.
The model consists of three new fields: a fermion, a complex
scalar, and a vector field. In scenario A, only fermionic par-
ticles are considered as DM. In scenario B, both vector and
fermionic particles are considered as DM. The model has
classical scale symmetry; electroweak symmetry breaking
occurs through Gildener–Weinberg mechanism and gives a
natural solution to the hierarchy problem. Numerical solution
of the Boltzmann equations for both scenarios was conducted
to determine a parameter space region which is compatible
with Planck and XENONnT data and collider constraints
(invisible Higgs decay in scenario A). A three-dimensional
parameter space acquisition was completed.

We focused our attention on the phase transition dynamics
after presenting the model and exploring DM phenomenol-
ogy. The full finite-temperature effective potential of the
model at the one-loop level was obtained to investigate the
nature and strength of the electroweak phase transition, with
the aim of exploring its nature and strength. A first-order
electroweak phase transition can exist when there is a barrier
between the broken and symmetric phases. It was demon-
strated that the finite-temperature effects induce such a bar-
rier and thereby give rise to a phase transition which can
generate GWs.

After studying the phase transition, we investigated the
resulting GWs. The parameters required to investigate GWs

can all be calculated from our presented model and are a func-
tion of the independent parameters of the model. We have
demonstrated that the model can survive DM relic density,
direct detection and collider constraints, while also produc-
ing GWs during the first-order electroweak phase transition.
We also showed that GWs can be a special probe for the
benchmarks that are placed under the neutrino floor (bench-
mark 3 in both scenarios). These waves can be placed within
the observation window of LISA and BBO, which is hoped
to be a path to new physics.
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