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Abstract In the current article, we discuss the wormhole
geometries in two different gravity theories, namely F(Q,T)

gravity and F(R,T) gravity. In these theories, Q is called
a non-metricity scalar, R stands for the Ricci scalar, and T
denotes the trace of the energy–momentum tensor (EMT).
The main goal of this study is to comprehensively compare
the properties of wormhole solutions within these two modi-
fied gravity frameworks by taking a particular shape function.
The conducted analysis shows that the energy density is con-
sistently positive for wormhole models in both gravity theo-
ries, while the radial pressure is positive for F(Q,T) gravity
and negative in F(R,T) gravity. Furthermore, the tangential
pressure shows reverse behavior in comparison to the radial
pressure. By using the Tolman-Oppenheimer-Volkov (TOV)
equation, the equilibrium aspect is also described, which indi-
cates that hydrostatic force dominates anisotropic force in
the case of F(Q,T) gravity theory, while the reverse situation
occurs in F(R,T) gravity, i.e., anisotropic force dominates
hydrostatic force. Moreover, using the concept of the exotic-
ity parameter, we observed the presence of exotic matter at
or near the throat in the case of F(Q,T) gravity while mat-
ter distribution is exotic near the throat but normal matter far
from the throat inF(R,T) gravity case. In conclusion, precise
wormhole models can be created with a potential NEC and
DEC violation at the throat of both wormholes while having
a positive energy density, i.e., ρ > 0.
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1 Introduction

Scientists and authors have been fascinated by the idea of
wormholes for ages. Numerous works of science fiction have
drawn inspiration from these improbable spacetime tunnels
that connect distant regions of the cosmos. They have also
grown to be an exciting topic of study in theoretical physics.
The history of wormholes is a testament to humanity’s curios-
ity and willingness to investigate the universe’s mysteries,
even though they are still hypothetical and unproven. A
wormhole (WH) is a hypothetical route that theoretically
connects faraway regions of the cosmos, cutting down on
both travel time and distance.

In terms of history, Flamm [1] first suggested the con-
cept of this hypothetical structure in 1916. After Flamm’s
ideas, Einstein and Rosen proposed a bridge [2] that looked
like a structure. On the other hand, Misner and Wheeler first
used the word “wormhole” in 1957 [3] to describe these enti-
ties as spaces having several connected topologies. With-
out scalar charge, Bronnikov (1973) investigated the scalar-
electrovacuum situations [4]. In higher dimensions, a class
of traversable wormholes was presented by Clement [5]. The
thin-shell wormhole that Visser created in 1989 [6] via the
cut-and-paste approach gave rise to a new class of wormholes
on its own.

Wormholes, also known as astrophysical compact objects,
are unique, non-trivial topological structures that lack singu-
larities and horizons [7]. The structures have been examined
using a variety of methods, including applying certain equa-
tions of state, constraining fluid parameters, and solving met-
ric elements. These geometric models can be visualized as a
means of warp drives, time travel, and swift interstellar travel.
Within the context of the general theory of relativity (GR),
the static and spherically symmetric Lorentzian wormhole
solutions are studied. When examining the characteristics
and behavior of traversable WHs, shape functions are cru-
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cial. It is a mathematical function that expresses the spatial
geometry of the WH, particularly the relationship between
the radius of the neck and the radial coordinate [8].

The research of Visser et al. [9] has demonstrated that,
with the right wormhole geometry selection, the null energy
condition (NEC) violation can be contained to an arbitrarily
small region. The presence of an exotic matter component,
which causes the EMT to deviate from the NEC, is one of
the necessities for developing a WH within the framework
of GR. The NEC, which is violated by the flaring-out con-
dition through the Einstein field equations, is necessary for
the wormhole spacetime to be traversable in GR, which in
turn violates all of the energy conditions [9–12]. Violating
the NEC acts as a source of exotic matter. Now there has
recently been a rise in interest among scientists on modified
theories of gravity.

Through the work [13] of Xu et al., the F(Q) gravity was
expanded to become the F(Q,T) gravity, where T is the trace
of the EMT. This kind of trace gives classical gravity addi-
tional contributions from the quantum domain. The valid-
ity of cosmological models for F(Q,T) gravity with energy
conditions was recently revealed by Arora et al. [14], while
according to Tayde et al. [15], the stability of a thin-shell
encircling the wormhole and its potential was ascertained by
using the Israel junction condition [16].

Further development of F(R) gravity, the F(R,T) theory
of gravity takes into account the dependency of the stress-
energy tensor trace T as well as the scalar curvature R in the
gravitational action. The fields of cosmology [17,18], ther-
modynamics [19,20], and astrophysics of compact objects
have [21–23] examined this F(R,T) gravity. Particularly,
F(R,T) gravity-specific examples includeF(R) andF(T) the-
ories. F(R) and F(T) gravity are combined in the F(R,T))
gravity theory. Several functional variants of F(R,T) theo-
ries have been examined for the impact of cosmic dynamics
in multiple contexts [24]. Similar to the F(R,T), the newly
formulatedF(Q,T) gravity is built [25,26], but the mathemat-
ical component of the action is substituted by the symmetric
teleparallel approach.

Wormholes can be tested by many gravity theories such
as Einstein–Gauss–Bonnet gravity [27–29], Rastall theory of
gravity [30,31], supported by Chaplygin gas with its modified
and generalized forms [32–35], Born-field theory [32,36],
Einstein–Cartan gravity [37–39], Braneworld [40–42] etc.
Mustafa et al. recently looked at the geometry of wormholes
in galactic halo regions with changing symmetric teleparallel
gravity [43]. In the framework of F(R) gravity, Lobo et al.
[44] created traversable wormhole geometries by taking into
account a variety of state equations and certain shape func-
tions. Maurya et al. used matter coupling gravity formalism
[45] with observational data to look for potential wormhole
solutions. Our focus in this work is on F(Q,T) gravity and
F(R,T) gravity, which is an extension of F(Q) and F(R)

gravity respectively. We also showed that these wormholes
are stable with the help of the equilibrium conditions derived
from the generalized TOV.

Film scriptwriters and science fiction writers have long
utilized the WH as an essential premise. Humans can quickly
move from Point A to Point B over great distances in space-
time using these tunnel-like constructions [46]. Although
many theorists have speculated about the possibility of these
spacetime gateways for decades, no one has until recently
been able to offer concrete evidence of their existence.

To examine the wormhole mechanism in the modified the-
ory of gravity, the major objective of this research is to pro-
pose a new form function. The following paragraphs pro-
vide an overview of the concepts discussed in the present
work. Section 2 provides WH’s framework, which includes
basic conditions for form function and energy conditions. In
Sect. 3 we discussed the field equation of F(Q,T) gravity and
F(R,T) gravity. In Sect. 4 we covered graphical and theoret-
ical analysis of energy conditions for wormhole geometry.
Further, we evaluate the Equilibrium condition in Sect. 5, the
Surface diagram in Sect. 6, and the exoticity parameter in
Sect. 7. Our findings are concluded in the final portion 8.

2 Wormhole framework

In this part, we characterize and extract relevant information
about the geometry of wormholes using a shape function.
For the redshift and shape functions, we search for wormhole
solutions taking into account the following constraints [47].

1. The radial coordinate r lies between r0 ≤ r < ∞, where
r0 is throat radius.

2. The shape function should follow throat condition at
r = r0, Rs(r0) = r0, Rs(r) < r for r > r0 that is out of
throat.

3. For flaring out condition at the throat,Rs(r)has to follow,

R′
s(r0) < 1 i.e.Rs (r)−rR′

s (r)
R2
s (r)

> 0.

4. For Asymptotical flatness: lim
r→∞

Rs(r)

r
= 0 is fulfilled.

5. All instances of the redshift function ε(r) should be
finite.

In this work, we take a novel shape function [48] for both
gravities

Rs(r) = e
1− r

r0 cosh

(
r

r0

)
. (1)

The provided Fig. 1 clarifies that our suggested shape func-
tion satisfies all requirements. The results obtained using this
shape function are identical to those of a study on traversable
wormholes conducted within the framework of modified
gravity theories [49–53].
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Fig. 1 Characteristics of shape function Rs(r) with r0 = 1.55

2.1 Energy conditions

Studying these energy conditions is necessary to learn about
the characteristics of spacetime and the matter sources that
create it. In general relativity, the NEC is seen to be the most
important of these criteria for wormhole solutions because
of its association with the energy density necessary to keep
the wormhole throat open. The presence of exotic material
with negative energy density, which is absent from sources
of ordinary matter, would be indicated by the NEC occurring
at a wormhole’s throat [54]. The energy conditions are

• To satisfy the NEC, the energy density and pressure must
total up to be non-negative in all directions (ρ +P j ≥ 0
for j = r, t).

• The energy density must always be non-negative by the
Weak energy condition (WEC), and the total of the energy
density and pressure must likewise be non-negative in any
direction ( ρ ≥ 0 & ρ + P j ≥ 0 for j = r, t).

• For there to be a Dominant energy condition (DEC),
There must be no negative energy density and the energy
density has to balance all pressures (ρ ≥ 0 & ρ−|P j | ≥
0 for j = r, t). The DEC states that the speed of light,
which is the fastest that energy can move, is the limit for
any flow of energy or matter [55].

• The energy density and the total of the energy density and
pressure in all directions must not be negative to satisfy
the strong energy condition (SEC), which is the strongest
energy condition (ρ + Pr + 2Pt ≥ 0).

3 Background of the field equations in modified gravity
theory

3.1 The basic field equations in F(Q,T)-gravity for
wormhole geometry

We take into account the symmetric teleparallel gravity action
put out by Xu et al. [13]

SG =
∫ [

F(Q,T)

16π
+ Lm

]√−gd4x . (2)

In this scenario, F(Q,T) is a function of the non-metricity
of Q and the trace of the EMT is T, g is the metric’s determi-
nant of gβη, and Lm is the density of the Lagrangian of the
matter. The explicit notation for the non-metricity tensor is
[56]

Qαβη = ∇αgβη.

The non-metricity conjugate or superpotential is another
important component of this theory. Its form is

Pτ
βη = 1

4

[
−Qτ

βη + 2Q τ
(β η) − Qτ gβη − Q̃τ gβη − δτ

(βQη)
]
,

where Qτ = Q β
τ β , Q̃β

τβ are the non-metricity tensor’s
traces. By adopting the following contraction from the above
formulation, one can get the non-metricity scalar as

Q = −QτβηP
τβη (3)

= −gβη(Lξ
τβL

τ
βξ − Lξ τξLτ

βη) (4)

the disformation Lξ
βη is characterised as

Lξ
βη = 1

2
Qξ

βη − Q ξ

(β η).

Now, by changing the action concerning the metric ten-
sor gβη, we can derive the equations of motion for F(Q,T)

gravity, which has the following form:

−2√−g
∇τ (

√−gFQP
τ

βη) − 1

2
gβηF − FQ(PβτξQ

τξ
η

−2Qτξ
β Pτξη) = 8πTβη − FT(Tβη + �βη), (5)

where FQ = ∂F
∂Q , FT = ∂F

∂T .

As we write for notational simplified FQ = ∂F
∂Q and the

tensor of energy–momentum Tβη is given by

Tβη = − 2√−g

∂
√−gLm
∂gβη

. (6)
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and

�βη = gτξ δTτξ

δgβη
. (7)

According to Morris and Thorne’s original study, let’s
examine the static and spherically symmetric wormhole met-
ric in Schwarzschild coordinates (t, r, θ,�), whose exact
form is

ds2 = e2ε(r)dt2 −
(

1 − Rs(r)

r

)−1

dr2

−r2(dθ2 + sin2 θd�2), (8)

where, respectively, “Rs(r)” and “ε(r)” stand for the shape
function and red-shift function. Given that we are writ-
ing the line element in Schwarzschild form and assuming
that the wormhole solutions for F(Q,T) are consistent with
Birkhoff’s theorem. Our speculation about the validity of
Birkhoff’s theorem is based on the work of Meng and Wang
[57] as well as the most current review of Bahamond et al.
[58].

We analyze wormhole solutions in this work by assuming
an anisotropic EMT, which is provided by [59] and repre-
sented by Eq. (9), i.e.

Tβη = (ρ + Pt )uβuη − Ptδ
β
η + (Pr − Pt )χβχη. (9)

where, respectively, Pr and Pt stand for radial and tangen-
tial pressures, and all are functions of the radial coordinate
r , where ρ stands for the energy density. The four vectors
of motion and unitary space-like vector are denoted by the
symbols uβ and χβ .

To examine a two-fluid model in plasma physics, Lete-
lier [60] introduced the anisotropic EMT. Additionally, it has
been used in various circumstances for modeling magnetized
neutron stars [61]. As can be shown from Eq. (9), the trace
of the EMT is such that T = ρ + Pr − 2Pt . In this article,
we work with the matter lagrangian Lm = −P [62], where
P = Pr+2Pt

3 Such Lagrangian changes Eq. (6) to

�βη = −gβηP − 2Tβη.

Furthermore, the explicit written non-metricity scalar Q
for the metric (7) is

Q = −Rs(r)

r2

[
rR′

s(r) − Rs(r)

r(r − Rs(r))
+ 2ε′(r)

]
. (10)

The field equations related to F(Q, T ) gravity are shown
below:

8πρ(r) = 1

2r2

(
1 − Rs

r

) [
2r FQQQ

′ Rs
r − Rs

+FQ

(
Rs

r − Rs
(2 + 2rε′(r))

+ (2r − Rs)(R′
sr − Rs)

(r − Rs)2

)

−2r3FT(P + ρ)

(r − Rs)
+ F

r3

r − Rs

]
, (11)

8πPr = − 1

2r2

(
1 − Rs

r

) [
2r FQQQ

′ Rs
r − Rs

+FQ

(
Rs

r − Rs

(
2 + rR′

s − Rs
r − Rs

+ 2rε′(r)
)

−4rε′(r)
)

− 2r3FT(P − Pr )

(r − Rs(r))

+F
r3

r − Rs

]
, (12)

8πPt = − 1

4r

(
1 − Rs

r

)[
− 4rε′(r)FQQQ′

+FQ

(
4ε′(r)2Rs − r

r − Rs
− 4r(ε′(r))2

+ rR′
s − Rs

r(r − Rs)

(
2r

r − Rs
+ 2rε′(r)

)
− 4rε′′(r)

)

−4r2FT(P − Pt )

(r − Rs)
+ 2F

r2

r − Rs

]
. (13)

Our three equations Eq. (11) through Eq. (13) contain six
unknown functions, including ρ, Rs(r), ε(r), Pr , F(Q,T)

and Pt . For the traversable wormholes to avoid having hori-
zons, the redshift function ε(r) must be finite everywhere
[59]. To derive analytic constraints over the energy condi-
tions, one simple form of ε(r) that is finite is as follows:
ε(r) = Constant and we take into account the F(Q,T)

gravity’s linear functional form, which is given by

F(Q,T) = ϑQ + κT, (14)

where ϑ and κ are model parameters. After simplifying these
values we obtained these equations

ρ = ϑ(12π − κ)R′
s

3(4π − κ)(κ + 8π)r2 , (15)

Pr = −ϑ(2κrR′
s − 3κRs + 12πRs)

3(4π − κ)(κ + 8π)r3 , (16)

Pt = −ϑ((κ + 12π)rR′
s + 3Rs(κ − 4π))

6(4π − κ)(κ + 8π)r3 . (17)

3.2 The basic field equations in F(R,T)-gravity under
wormhole geometry

The general relativity of Einstein has been modified by Harko
et al. [25] by replacing F(R) with an arbitrary function
F(R,T), where T represents the EMT’s trace and the gravi-
tational action is explained as

SG =
∫ √−g

[
1

16π
F(R,T) + Lm

]
d4x . (18)
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where F(R,T) is an arbitrary function of the Ricci scalar,
T is the trace of the stress EMT, and Lm is the Lagrangian
density of matter of the source. Imperfect fluids may exist
in the cosmos, which is what drives the additional material
terms in the gravitational force.

The definition of the EMT Tξη from Lagrangian matter is
as follows:

Tξη = − 2√−g

∂
√−gLm
∂gξη

. (19)

and trace is given by T = gξηTξη

On taking variation action of Eq. (18) with respect to met-
ric gξη, field equations are given by

FR(R,T)Rξη − 1

2
F(R,T)gξη

+[gξη� − ∇ξ∇η]FR(R,T)

= 8πTξη − FT(R,T)Tξη − FT(R,T)�ξη (20)

Here

�ξη = −2Tξη + gξηLm − 2gLm
∂2Lm

∂gξη∂gLm
,

where FR(R,T) = ∂F(R,T)
∂R and FT (R,T) = ∂F(R,T)

∂T � =
∇ξ∇η called D’Alembert Operator and ∇ξ ,∇η are called
covariant derivative.

A source term for the curvature of space-time can be
thought of as the EMT. The anisotropic fluid’s EMT in this
model is provided as

T ξ
η = (ρ + Pt )u

ξuη − Pt g
ξ
η + (Pr − Pt )x

ξ xη, (21)

by taking matter Lagrangian as Lm = −(Pr+2Pt
3 ).

Now for F(R,T) = R + 2F(T), to F(T) = χT, where χ

is a constant, and the gravitational field equation is obtained
as

Gξ
η = (8π + 2χ)Tξ

η + χ(ρ − P). (22)

The wormhole’s geometry in spherically symmetric space-
time is as follows

ds2 = −e2ε(r)dt2 +
(

1 − Rs(r)

r

)−1

dr2

+r2(dθ2 + sin2 θd�2). (23)

For the metric Eq. (23) with a constant redshift function
(i.e. ε′(r) = 0), the field equations from Eq. (22) are as
follows:

R′
s

r2 = (8π + 3χ)ρ − 1

3
χPr − 2

3
χPt (24)

Rs
r3 = −(8π + 7

3
χ)Pr + χρ − 2

3
χPt (25)

R′
sr − Rs

2r3 = −(8π + 8

3
χ)Pt − 1

3
χPr + χρ. (26)

Fig. 2 Nature of the energy density (ρ) for WH-I with ϑ = 1, r0 =
1.55 and κ ∈ [−35,−26]

We have three distinct equations for our four unknown
quantities. To construct wormhole solutions, a variety of tech-
niques can be applied. Here we use the shape function (Eq. 1)
and then after simplifications, we get the stress-energy tensor
components:

ρ = − e
1− 2r

r0 (12π + 5χ)

12r0r2(4π + χ)(2π + χ)
(27)

Pr = e
1− 2r

r0 (−rχ + 3(1 + 2r
r0

)r0(2π + χ))

12r0r3(2π + χ)(4π + χ)
(28)

Pt = −e
1− 2r

r0 (3(1 + 2r
r0

)r0(2π + χ) + 4r(3π + 2χ))

24r0r3(2π + χ)(4π + χ)

(29)

ρ + Pr = e
1− 2r

r0 (r0 + e
2r
r0 r0 − 2r)

4r0r3(4π + χ)
(30)

ρ + Pt = −e
1− 2r

r0 (r0 + e
2r
r0 r0 + 6r)

8r0r3(4π + χ)
. (31)

Furthermore, the outcomes obtained from utilizing Eqs.
(27)–(31) and solving Eqs. (24)–(26) match the physical
properties of the wormhole.

4 Physical analysis of wormhole solution in modified
gravity theory

As we all know, the energy conditions are the best geomet-
rical tool for assessing the stability of cosmological models.
So, we put our models to the test using this methodology.
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Fig. 3 Nature of the null energy condition (ρ + Pr ) for WH-I with
ϑ = 1, r0 = 1.55 and κ ∈ [−35,−26]

Fig. 4 Nature of the null energy condition (ρ + Pt ) for WH-I with
ϑ = 1, r0 = 1.55 and κ ∈ [−35,−26]

4.1 Analysis of energy conditions in F(Q,T)-gravity for
wormhole geometry

In Fig. 2, we clearly show that Energy density (ρ) is pos-
itive when r ∈ (0.5, 2.5) and κ ∈ [−35,−26]. For other
ranges of free parameter κ , we also check the behavior of
energy density and we obtained that when κ < −26 &
13 ≤ κ ≤ 37 it behaves positively with decreasing nature,
and for the remaining range it behaves negatively. The ini-
tial NEC term ρ + Pr is positive as can be seen in Fig. 3
with decreasing nature if r ∈ (0.5, 2.5) and κ ∈ [−35,−26]
but it also behaves positively with decreasing nature with
respect to(w.r.t) κ < −35 and negative for remaining values

Fig. 5 Nature of the dominant energy condition (ρ − |Pr |) for WH-I
with ϑ = 1, r0 = 1.55 and κ ∈ [−35,−26]

Fig. 6 Nature of dominant energy condition (ρ −|Pt |) for WH-I with
ϑ = 1, r0 = 1.55 and κ ∈ [−35,−26]

of κ . From Fig. 4, ρ +Pt is negative with increasing nature
for r ∈ (0.5, 2.5) and κ ∈ [−35,−26] and also negative
whole range ofκ < −35. Hence we concluded the infractions
of NEC which is necessary for the existence of traversable
wormholes. Now it’s intriguing to see that the DEC is also
violated as it behaves negatively with an increasing nature
for the whole range of r and κ (see Figs. 5, 6). The SEC
condition (Fig. 7) behaves positively with decreasing nature
for −35 ≤ κ ≤ −26. In brief, we also discuss the nature of
energy conditions in Table 1.
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Fig. 7 Nature of strong energy condition (ρ + Pr + 2Pt ) for WH-I
with ϑ = 1, r0 = 1.55 and κ ∈ [−35,−26]

4.2 Analysis of energy conditions in F(R,T)-gravity for
wormhole geometry

The nature of all energy conditions and energy density over
the specified range of χ ∈ [−35,−26] are shown in Figs. 8,
9, 10, 11, 12 and 13, as can be seen. The energy density
(Fig. 8) behaves positively with decreasing nature for a given
range of χ ∈ [−35,−26] and 0.5 < r < 2.5 but negative
for −5 ≤ χ ≤ 5. It also appears that the null energy require-
ment is negative with an increasing nature in the case of the
radial coordinate for 0.5 < r < 2.5 and χ ∈ [−35,−26]
while in the case of tangential co-ordinate, null energy con-
dition behaves positively with decreasing nature. From this
scenario, we concluded that the null energy condition is vio-
lated which is required for the existence of exotic matter and
traversable WHs (see Figs. 9, 10). From Figs. 11 and 12, we
observe that the dominant energy conditions are not satisfied
in both cases that is radial coordinate and tangential coordi-
nate. Hence both behave negatively with increasing nature
for the whole range of χ and r . SEC fulfills the criteria for
a given range. It behaves positively with decreasing nature
for −35 ≤ χ ≤ −26 but for −5 ≤ χ ≤ 5 sum of all stress-
energy tensors behaves negatively with increasing nature for
0.5 < r < 2.5 (see Fig. 13). Table 1 also discusses the gen-
eral characteristics of energy situations.

5 Equilibrium condition

The equilibrium arrangement of WH models is examined in
this subsection. One can attain the equilibrium situation for

Table 1 Summary of the energy conditions

WH EC WH-I(−35 ≤ κ ≤ −26) WH -II (−35 ≤ χ ≤ −26)

ρ > 0 > 0

ρ + Pr > 0 < 0

ρ + Pt < 0 > 0

ρ − |Pr | < 0 < 0

ρ − |Pt | < 0 < 0

ρ + Pr + 2Pt > 0 > 0

Fig. 8 Nature of energy density (ρ) for WH -II with r0 = 1.55 and
χ ∈ [−35,−26]

Fig. 9 Nature of null energy condition (ρ + Pr ) for WH -II with
r0 = 1.55 and χ ∈ [−35,−26]
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Fig. 10 Nature of null energy condition (ρ + Pt ) for WH -II with
r0 = 1.55 and χ ∈ [−35,−26]

Fig. 11 Nature of dominant energy condition (ρ − |Pr |) for WH -II
with r0 = 1.55 and χ ∈ [−35,−26]

WHs using the resolution of the TOV equations provided by

dPr

dr
+ σ ′(ρ + Pr )

2
+ 2(Pr − Pt )

r
= 0, (32)

where σ(r) = 2ε(r). Taking into consideration the gravita-
tional, hydrostatic, and anisotropic forces (resulting from the
anisotropy of matter), this equation establishes the equilib-
rium state of the configuration. The following relationships
characterize these forces:

Fg f = −σ ′(ρ + Pr )

2
,

Fig. 12 Nature of dominant energy condition (ρ − |Pt |) for WH -II
with r0 = 1.55 and χ ∈ [−35,−26]

Fig. 13 Nature of strong energy condition (ρ + Pr + 2Pt ) for WH
-II with r0 = 1.55 and χ ∈ [−35,−26]

Fa f = 2(Pt − Pr )

r
,

Fh f = −dPr

dr
.

Hence Fg f + Fa f + Fh f = 0 is a necessary condition for
the WH solutions to be in equilibrium.

The impact of gravitational forces is zero in our situation
due to the constant redshift function. Now The remaining
forces of WH-I are provided as

Fa f = e
1− 2r

r0 (3(1 + e
2r
r0 )r0 + 2r)

2r0(κ + 8π)r4 (33)
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Fig. 14 Nature of equilibrium condition for WH-I (left panel) with ϑ = 1 and r0 = 1.55 & for WH -II (right panel) with r0 = 1.55

Fh f

= e
1− 2r

r0 (12r0π(3(1+e
2r
r0 )r0 + 2r)−κ(9(1 + e

2r
r0 )r2

0 +14r0r+8r2))

6r2
0 (κ − 4π)(κ+8π)r4

.

(34)

For WH -II, the hydrostatic force and anisotropic forces
are given as

Fa f = − e
1− 2r

r0 (3(1 + e
2r
r0 )r0 + 2r)

4r0r4(4π + χ)
(35)

Fh f = − e
1− 2r

r0 (2r2χ−9(1+e
2r
r0 )r2

0 (2π + χ)−4r0r(3π + χ))

12r2
0 r

4(2π + χ)(4π + χ)
. (36)

Figure 14 illustrates the stability study of the wormhole
solution for WH-I (left panel) and WH -II (right panel).
For WH-I, we observed that hydrostatic force behaves pos-
itively in nature while anisotropic force behaves negatively
in nature. In their structure, the hydrostatic case takes over
anisotropic force.

On the other hand, for WH-II, anisotropic force exhibits a
positive behavior in nature while hydrostatic force exhibits a
negative behavior. Hence the anisotropic case prevails over
hydrostatic force in its shape.

These forces reflect the same intensity but are in opposi-
tion to one another, for each wormhole as can be shown. It is
revealed by this balancing of the forces that our wormholes
are stable.

6 Surface diagram

Wormholes can be represented as embedding diagrams, and
by using these diagrams, we can learn some important details
about the shape function that should be applied. The Morris-
Thorne metric’s spatial sector is typically compared to the
spatial three-dimensional flat metric written in cylindrical

coordinates to generate this diagram [63]. With a rigorous
part of time t = constant, we can take an equatorial slice
θ = π

2 due to the spherical symmetry [64]. We make use of
these assumptions in the action field.

ds2 =
(

1 − Rs(r)

r

)−1

dr2 + r2d�2. (37)

Now, using the cylindrical coordinates (r, z, φ), which
can project the previous slice onto its hypersurface. So, we
write

ds2 = dr2 + dz2 + r2d�2. (38)

Applying axial symmetry, the embedded surface z(r) in
three-dimensional space can be expressed using the follow-
ing formula:

ds2 =
[

1 +
(
dz

dr

)2
]
dr2 + r2d�2. (39)

Through comparing Eqs. (37) and (39)

dz

dr
= ±

(
r

Rs(r)
− 1

)− 1
2

We examine that the surface diagram is vertical at the neck,
i.e., dz

dr → ∞. Additionally, we look at the fact that the space
is asymptotically flat far from the throat because dz

dr goes to 0
as r tends to infinity. The embedded diagram is displayed in
Fig. 15. The visualized ideas of WH are very well displayed
via the embedding diagrams. Here the chosen shape function,
Rs(r), is important.

7 Exoticity parameter

For wormholes to be capable of being traversed, exotic mat-
ter, or something that differs from ordinary matter, must exist.

123



414 Page 10 of 12 Eur. Phys. J. C (2024) 84 :414

Fig. 15 Visualization of embedding diagrams w.r.t. r0 = 1.55

Exotic stuff that does not adhere to the weak or any other
energy conditions because it does not adhere to the NEC. By
applying the exoticity factor, we investigate the presence of
unusual materials close to the neck and its surroundings. The
exoticity parameter is defined as [65]

ξ = − (ρ − Pr )

|ρ| . (40)

Since the non-negativity of ξ guarantees that the exotic
matter is present at the throat or close to the wormhole’s
throat and the negative behavior of the exoticity factor shows
that the matter distribution is exotic near the throat but nor-
mal far from the throat [65–67]. We plotted the graph of the
exoticity parameter against the radial coordinate for WH-I &

WH-II. As can be seen from Fig. 16 (left panel) the exoticity
parameter behaves positively for WH-I and negatively for
WH-II (Fig. 16, right panel). Hence it verifies the presence
of exotic matter near the throat of F(Q,T) gravity wormhole
(WH-I) and exotic matter near but normal matter far from
the throat in F(R,T) gravity wormhole (WH-II).

8 Conclusion

In the literature, wormholes have received a lot of atten-
tion and numerous models have been put forth in this area.
The history of wormholes is a tale of fantasy, conjecture
and research. With the motivation of creating new wormhole
solutions, we have considered two different gravity F(Q,T)

and F(R,T) respectively in this work. The following points
provide a summary of the findings from the two gravity
wormhole models that were presented:

(i) First, we have demonstrated in Fig. 1 that the selected
shape function 1 for both wormhole models satisfies
all necessary criteria with throat radius r0 = 1.55. We
analyze the wormhole solution in F(Q,T) and F(R,T)

with taking range of r ∈ (0.5, 2.5) and free parameters
κ & χ lies in [−35,−26].

(ii) The idea of non-minimal coupling between the geom-
etry and matter fields has opened up new possibilities
for understanding the dynamics of wormholes in the
context of F(Q,T) gravity. In the same manner study
of wormholes under the effect of F(R,T) gravity has
revealed the impact of curvature-matter coupling on the
endurance of such structures.

Fig. 16 Nature of exoticity parameter for WH-I (left panel) with ϑ = 1 and r0 = 1.55 & for WH -II (right panel) with r0 = 1.55
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(iii) In both cases, we obtained energy density is positive
within the given range. NEC in radial pressure case
behaves negatively in F(R,T) gravity but positively in
F(Q,T) gravity, and in tangential pressure case behaves
both in opposite nature. Hence NEC is violated in both
cases which is necessary for the existence of worm-
holes. DEC is violated in both the gravity cases. The
sum of all the stress-energy tensors or we can say SEC
behaves positively according to the values of κ in both
the cases.

(iv) The stability of these wormhole solutions has also been
examined using a generalized equation called TOV. In
F(Q,T) gravity the hydrostatic case is dominating in
nature as compared to anisotropic force but in the case
of F(R,T) gravity anisotropic force is dominating in
nature as compared to hydrostatic case.

(v) Furthermore, we used an embedding diagram to demon-
strate the geometry of wormhole models. The energy
conditions are violated in both cases which becomes a
source of exotic matter and the presence of exotic mat-
ter is verified by the exoticity factor (ξ ). By using these
concepts, we got the presence of exotic matter near the
throat in case of F(Q,T) gravity and matter distribution
is exotic near the throat but normal matter far from the
throat in F(R,T) gravity case.

In summary, the study of wormholes in F(Q,T) gravity
and F(R,T) gravity showcases the rich interplay between
modified theories of gravity and the theoretical possibility of
traversable shortcuts in spacetime. The approach here opens
up a new way to derive wormhole solutions in different grav-
ities.
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