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Abstract In this paper, we have explored the optical char-
acteristics, namely the shadow and the deflection angle,
inherent to the solution of a 4D-AdS-Einstein–Gauss–Bonnet
black hole. This solution, which finds its inspiration in non-
commutative geometry, had previously been established in
our previous work. The radius of the shadow was determined
using the Hamilton-Jacobi method and the Carter separation.
Our results revealed that the presence of noncommutativity
in the background of spacetime impacts the variation of the
shadow radius. More specifically, we have demonstrated that
an increase in the parameter θ induces a decrease in the radius
of the shadow. In a similar way, analogous observations have
been made by studying the variation of the electric charge Q.
The noncommutative parameter θ and the electric charge Q
have been constrained regarding the EHT observation data
of the M87* and Sgr A* black holes. Furthermore, the angle
of deflection, which is the outcome of lensing by the black
hole, has been derived following the Ishihara et al. approach
for a receiver and source positioned at finite distances from
the black hole in an asymptotically non-flat spacetime. The
impact of the noncommutative parameter θ and the charge Q
of the black hole are hence analyzed, and our results depict
that these parameters have a significant influence on the angle
at which light is deflected by the gravitational field of the
black hole.

a e-mail: h.lekbich@edu.umi.ac.ma
b e-mail: nashibaparbin91@gmail.com
c e-mail: moloydhruba@yahoo.in
d e-mail: a.elboukili@umi.ac.ma (corresponding author)

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . .
2 Noncommutative inspired charged 4D-AdS-EGB

black hole . . . . . . . . . . . . . . . . . . . . . . . .
3 Shadow . . . . . . . . . . . . . . . . . . . . . . . . .
4 Observational constraints on shadow from EHT . . . .
5 Energy emission rate . . . . . . . . . . . . . . . . . .
6 Deflection angle . . . . . . . . . . . . . . . . . . . .
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

The physics of black holes is becoming one of the most active
branches of modern physics. This dynamic is constantly
evolving with the collection of new data. At the same time,
different theories have been developed in order to explain
and model these data, attracting attention to the exploration
of these mystical objects of the universe [1]. The optical prop-
erties of black holes have sparked significant interest in the
scientific community, particularly with the historic achieve-
ment of the first black hole image by the Event Horizon Tele-
scope (EHT) [2–4]. This image has opened new perspectives
for studying black holes and prompted researchers to explore
solutions beyond the general relativity framework [5]. The
image has reinforced confidence in Einstein’s general rela-
tivity predictions but also raised questions about its limits in
extreme environments. This has led to a deeper exploration of
black hole properties, exploring theoretical models beyond
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general relativity [6], and stimulating scientific debates on
the fundamental nature of space-time in extreme conditions.
The EHT’s captivating image has marked the beginning of
a passionate era of discoveries and questions, propelling the
understanding of black holes to new horizons [7].

The study of black holes is progressing due to the com-
plexity of their relationship with the equations of general rel-
ativity. The apparent problems associated with black holes
depend on the conceptual framework in which these solu-
tions are treated. This led to the development of modified
relativity, which aims to overcome the limitations of general
relativity in the context of black holes [8]. This new theoreti-
cal approach explores the possible modifications of the laws
of gravity at important scales, expanding our understand-
ing of fundamental physics [9]. This exploration represents
a bold extension of black hole research, offering a new per-
spective that could potentially reveal unexpected aspects of
space-time in extreme cosmic regions.

From theoretical as well as observational aspects, the grav-
itational field features of a black hole, such as its gravi-
tational lensing and shadow can be determined by study-
ing the null geodesics around the black hole. Gravitational
lensing features around black holes have been explored in a
plethora of scenarios, such as the Schwarzschild black hole
[10], naked singularity and horizonless ultracompact objects
[11,12], AdS/dS black holes [13,14], etc. In 2008, Gibbons
and Werner reformed the standard perspective by propos-
ing a new geometrical approach to deduce the deflection
angle in the weak field limit using the Gauss–Bonnet theorem
(GBT) [15] for the static and asymptotically flat spacetimes
[16]. This method was then applied to stationary spacetimes
using a Finsler metric of Randers type [17,18]. In 2016, this
method was further developed by Ishihara et. al. for source
and observer at finite distances employed to both static as
well as stationary black hole solutions [19]. For asymptot-
ically non-flat black hole solutions, study of gravitational
lensing features can be found in the Refs. [20,21]. For black
hole spacetimes in modified gravity theories, studies on the
deflection angle of light using GBT are also reported in [22–
25]. Additionally, after the successful release of the black
hole images by the EHT, exploring the shadow cast by a
black hole has attracted the scientific minds [26–35]. Such
investigations can also aid in differentiating the features of
various gravity theories [22,24,36]. Another observable phe-
nomenon which has also gained interest is the emission rate of
particles around the black hole and studies have been reported
in the Refs. [37–41].

Motivated by the elements mentioned above, our research
approach continues with perseverance within the framework
of the Einstein–Gauss–Bonnet theory [42–50], inspired by
noncommutative geometry [51–60]. Following on from our
previous investigations [61–63], we present a new part of our
work in this ambitious scientific context. More precisely, our

attention is focused on a careful analysis of the optical proper-
ties of the noncommutative inspired charged 4D-AdS-EGB
solution that we have established previously in [64]. This
investigation aims to unveil the subtleties of light interac-
tions in the specific context of this solution, highlighting the
implications of noncommutative geometry on the propaga-
tion of light near dense gravitational structures.

The organization of the paper is as follows: In Sect. 2, we
explain the framework in which we will work throughout the
document. In Sect. 3, we calculate the shadow of our studied
black hole. In Sect. 4, we discuss the constraints on black
hole shadow from EHT observations. The energy emission
rate is studied in Sect. 5. In Sect. 6, we explore the deflection
angle. In the last Sect. 7, we summarize our results.

2 Noncommutative inspired charged 4D-AdS-EGB
black hole

In this section, we explicitly present the metric solution of
our charged black hole, elaborated within the framework of
the 4D-AdS-EGB model and inspired by noncommutative
geometry. For more detailed information about this solution,
please refer to the reference [64]. To do this, we start by
giving the action of such a theory

S = 1

2

∫
dDx

√−g
[
R − 2� + α

D − 4
LGB + FμνF

μν
]
,

(2.1)

where g is the metric determinant, R is the Ricci scalar, α is
the GB coupling constant which has a dimension of lenght2,
LGB is the GB term given by

LGB = Rμνλσ Rμνλσ − 4RμνRμν + R2 (2.2)

and Fμν is the electromagnetic tensor defined by Fμν =
δ0[μ|δr |ν]E(r). The field equations are obtained by varying
the action (2.1) with respect to the metric tensor gμν .

Rμν − 1

2
gμνR + �gμν + α

D − 4
Hμν = Tμν, (2.3)

where Tμν is the total energy-momentum tensor and Hμν is
the Lanczos tensor defined by

Hμν = 2
(
RRμν − 2RμλR

λ
ν − 2Rμλνσ R

λσ − RμλσρR
λσρ
ν

)

−1

2
LGBgμν. (2.4)

In the right-hand side of Eq. (2.3), it is widely recognized
that the Gauss–Bonnet term in a 4-dimension is generally
considered to be a total derivative, thus suggesting a sig-
nificant non-participation in gravitational dynamics. How-
ever, various efforts have been undertaken to solve this prob-
lem. In particular, the recent proposal by Glavan and Lin
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is based on a clever redefinition of the Gauss–Bonnet cou-
pling constant, denoted α, where α → α

D−4 and in a four-
dimensional theory, the Gauss–Bonnet term regains signif-
icant relevance by taking the D → 4 limit at the level of
Einstein’s field equations. This regularization method thus
allows the Gauss–Bonnet term to provide a significant con-
tribution to the dynamics of the system, thus modifying our
understanding of its role in the gravitational context.

In the context of noncommutativity, a reformulation of
Einstein’s equations is conceivable to take into account this
newly introduced feature in the background. Although, so far,
such a formulation is not available, an alternative approach
based on the results of [52,53] suggests that the noncommuta-
tivity of the spacetime coordinates, denoted [xμ, xν] = iθμν ,
can be incorporated into the spacetime content as the non-
commutativity is an intrinsic property of the manifold itself.
This makes it possible to express the matter and the electri-
cal sources in the form of smeared distributions rather than
localized sources. As a result, spacetime acquires a certain
indeterminacy, and the notion of point structure loses its rel-
evance. In other words, a minimum distance cannot be less
than

√
θ . This modification of the nature of the sources is

implemented mathematically by replacing the Dirac delta
function with a Gaussian distribution. Thus, the left part of
Einstein’s equation (2.3) is adjusted by integrating a new
energy-momentum, which takes into account the effect of
non-commutativity. Nevertheless, the geometric sector of Eq.
(2.3) remains unchanged, thus preserving the spherical sym-
metry of the required solution [46].

Using the regularization method mentioned above, our
objective is to derive a static spherical solution by solving
Eq. (2.3) when the matter and the electrical sources are rep-
resented by Gaussian distributions [59]. These Gaussian dis-
tributions, defined by

ρmatt (r) = m

(4πθ)
3
2

exp

(
− r2

4θ

)
,

ρele(r) = Q

(4πθ)
3
2

exp

(
− r2

4θ

)
(2.5)

where m is the barre mass and Q is the total electrical charge
[60].

Subsequently, countless studies were undertaken explor-
ing different forms of matter distributions, such as Gaussian,
non-Gaussian, Lorentzian, etc. These investigations aimed
to understand how different characteristics of matter distri-
butions influence the geometry of spacetime in the context
of general relativity. These various approaches have made
it possible to explore the flexibility and implications of the
theory, paving the way for a deeper understanding of the grav-
itational phenomena associated with specific configurations
of matter.

The supposed form of the metric is as follows:

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dϑ2 + sin2(ϑ)dφ2). (2.6)

In accordance with [51], if we assume that g00 = 1
grr

and
employ (2.5), the temporal and radial components of the
total energy-momentum tensor are assumed by the following
form:

T t
t = T r

r = ρθ (r) = ρmatt (r) + ρele(r)

= m + Q

(4πθ)
3
2

exp

(−r2

4θ

)
. (2.7)

Moreover, the other two components, which remain the
same due to spherical symmetry, must also be determined.
Utilizing the requirement that the total energy-momentum
tensor has zero divergence, T μν; ν, where the semicolon
indicates covariant differentiation [55], assists in achieving
this and results in:

T ϑ
ϑ = T φ

φ = ρθ (r) + r

2
∂rρθ (r), (2.8)

By combining Eqs. (2.7) and (2.8) and subsequently sub-
stituting them into (2.3), and using the same approach as
described in [60] to connect m with the integration constants
and the total mass M of the black hole, we arrive at a static
spherically symmetric charged solution inspired by noncom-
mutative geometry in 4D-AdS-EGB gravity

f (r) = 1 + r2

2α

×
[

1−
√

1+ 16αM√
πr3

γ (
3

2
,
r2

4θ
)− 4αQ2

πr4 F(r)+ 4α�

3

]
,

(2.9)

with

F(r) = γ 2
(

1

2
,
r2

4θ

)
− r√

2θ
γ

(
1

2
,
r2

2θ

)

+
√

2

θ
rγ

(
3

2
,
r2

4θ

)
, (2.10)

and γ is the lower incomplete gamma function defined by

γ

(
a

b
, x

)
=

∫ x

0

dt

t
t
a
b exp(−t). (2.11)

In Eq. (2.9) the quantities α, M , θ , Q and � are the Gauss–
Bonnet coupling constant, the black hole mass, the noncom-
mutative parameter, the electric charge and the Cosmological
constant respectively.

In what follows from our study, we restrict our analysis to
the impact of the electric charge Q and the noncommutative
parameter θ . Indeed, the effect of the Gauss–Bonnet coupling
constant α has already been the subject of numerous investi-
gations in the scientific literature [67]. We, therefore, focus
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our attention on the specific aspects of the electric charge and
the noncommutative parameter to deepen our understanding
of these influences on our model.

It is widely recognized that the first thing to compute for
an established black hole solution is the event horizon radius.
To do so, we have to find the roots of the equation f (r+) =
0. Unfortunately, this equation lacks an analytical solution,
prompting us to look for an alternative method, which is the
numerical one. In Fig. 1, we depict the metric function for
various values of the noncommutative parameter θ and the
electrical charge Q against the event horizon radius r+. It
becomes evident that three distinct cases can be identified: i)
two event horizons; ii) one degenerate event horizon. ii) No
event horizon radius.

For more details about (2.9), such as asymptotic behavior
at large distances and its convergence to the standard solu-
tions of general relativity, you can see [64].

3 Shadow

Here, we demonstrate how noncommutativity and electric
charge affect the black hole shadow’s size since the metric
function provides a static solution; the shape is perfectly cir-
cular. When a black hole is placed between an observer and
a light source, the image that results is known as the black
hole’s shadow. Thus, it seems that the shadow of the black
hole brings us to study the geodesics followed by the pho-
tons in the curved space-time. To do this, we start with the
Lagrangian given by

L = 1

2
gμν ẋ

μ ẋν, (3.1)

where gμν is the metric tensor and the over dot is the deriva-
tive with respect to an affine parameter along the geodesics
σ .

To determine the photon orbits, we use the Hamilton-
Jacobi method and the Carter approach

1

2
gμν dS

dxμ

dS
dxν

+ dS
dσ

= 0, (3.2)

where S is the Hamilton-Jacobi action, which we assume to
take the following form: where σ denotes the affine parame-
ter along the geodesics and S is the Hamilton-Jacobi action
which takes the form

S = −Et + Lφφ + Sr (r) + Sϑ(ϑ), (3.3)

where E is identified with the energy of the photon and Lφ

with the angular momentum,Sr andSϑ are r and ϑ functions,
respectively. Using Eqs. (3.2)–(3.3), the functions of r and
ϑ can be separated as follows:

r2 f (r)
(dSr (r)

dr

)2 − r2E2

f (r)
+ L2

φ

sin2 ϑ
= X (3.4)

(dSϑ(ϑ)

dϑ

)2 + L2
φ cot2 ϑ = −X (3.5)

whereX is the Carter constant. Based on the Hamilton-Jacobi
approach, photon motion is governed by the following equa-
tions:

dt

dσ
= E

f (r)
(3.6)

r2 dr

dσ
= ±√

R (3.7)

r2 dϑ

dσ
= ±√

� (3.8)

dφ

dσ
= Lφ

r2 sin2 ϑ
(3.9)

where R and � take the following forms

R = E2r4 − r2 f (r)
(
X + L2

φ

)
(3.10)

� = X − L2
φ cot2 ϑ (3.11)

The radial null geodesic Eq. (3.7) can be rewritten to take
the form( dr

dσ

)2 + Vef f (r) = 0 (3.12)

where Vef f (r) is the effective radial potential given by

Vef f = f (r)

r2

(
X + L2

φ) − E2 (3.13)

In order to determine the unstable circular orbits that limit
the visible shape of a black hole’s shadow, we take advantage
of the effective potential by imposing the following condi-
tions:

Vef f (r)
∣∣
r=rp

= dVef f (r)

dr

∣∣
r=rp

= 0, (3.14)

where rp denotes the radius of the photon sphere. The radius
of the photon sphere rp is provided by the solution of the
equation Vef f (rp) = 0. The obtained rp is subsequently put
into the equation V ′

e f f (rp) = 0 to check if the constraint
V ′′
e f f (rp) < 0 is satisfied in order to get the unstable photon

orbits. Conditions (3.14) for determining the radius of the
photon sphere can be put together to be

r f ′(r)
∣∣
r=rp

− 2 f (r)
∣∣
r=rp

= 0. (3.15)

The above Eq. (3.15) cannot be solved analytically. Alter-
nately, we are moving towards a numerical solution where
the results are summarized in Table 1.

At this point, we want to produce the visible shape of the
black hole’s shadow, which may be obtained by using the
celestial coordinates X and Y , which are defined as follows:

X = lim
r0→∞

(
− r2

0 sin ϑ0
dφ

dr

∣∣∣∣
ϑ=ϑ0

)
, (3.16)
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Fig. 1 The metric function vs event horizon radius for various values of electrical charge Q (a) and noncommutative parameter θ (b) with M = 1,
α = 0.01 and � = −0.02

Table 1 The photon sphere
radius and event horizon radius
for variations in electrical
charge Q and noncommutative
parameter θ with
M = 1, α = 0.01 and
� = −0.02

Q 0.36 0.52 0.63 0.7

rp 2.90658 2.80256 2.70144 2.6212

re 1.8814 1.80546 1.7303 1.66949

θ 0.1 0.25 0.3 0.33

rp 2.98924 2.97942 2.95125 2.91552

re 1.94095 1.93364 1.93095 1.92597

Y = lim
r0→∞

(
r2

0
dϑ

dr

∣∣∣∣
ϑ=ϑ0

)
(3.17)

where (r0, ϑ0) are the observer coordinates at infinity. Using
the Eqs. (3.6)–(3.7) we get the following results

dϑ

dr
=

√
X − L2

φ cot2 ϑ tan2 ϑ√
E2r4 − r2 f (r)

(
R + L2

φ

) (3.18)

dφ

dr
= Lφ

sin2 ϑ
√
E2r4 − r2 f (r)

(
R + L2

φ

) . (3.19)

Taking the limit r → ∞ for the above expressions, the celes-
tial coordinates are reduced to

X = − η csc ϑ√
1 −

(
�+η2

)(
1−

√
1+ 4α�

3

)
2α

(3.20)

Y = ±
√√√√√

� − η2 cot2 ϑ

1 −
(
�+η2

)(
1−

√
1+ 4α�

3

)
2α

(3.21)

where the impact parameters are defined by

� = X
E2 , η = Lφ

E
, . (3.22)

To investigate the apparent shape of the shadow, we combine
the coordinates X and Y and derive an equation that repre-
sents a circle with radius Rs in the celestial plane X-Y, as
given by

X2 + Y 2 = η2 + � = R2
s (3.23)

The observer is assumed to be in the equatorial plane, as
imposed by (ϑ = π

2 ). Also, we use the condition Vef f (r) =
0, which implies that

r2
p

f (rp)
= � + η2. Therefore, we get the

shadow radius

R2
sh =

r2
p

f (rp)

1 − r2
p

f (rp)

(
1−

√
1+ 4α�

3
2α

) . (3.24)

A depiction of the shadow cast by the noncommutative
charged 4D-AdS EGB black hole is provided in Fig. 2. It is
evident from this figure that the shadow has a perfectly cir-
cular form, and it’s noteworthy to notice that the radius of the
shadow is sensitive to variations in two different parameters:
the noncommutative parameter θ and the electric charge Q.
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Fig. 2 Black hole shadow in celestial plane (X − Y ) for various values of noncommutative parameter θ with M = 1, α = 0.01 and � = −0.02

Figure 4a provides a clear demonstration of this link, show-
ing that a large reduction in the shadow’s radius is induced
by an increase in electric charge Q. Similarly, looking at Fig.
4b, it is clear that the noncommutative parameter θ changes
and the shadow’s radius is inversely proportional, highlight-
ing the significance of these two elements in the shadow’s
configuration.

It is relevant to emphasize that the tiny influence of the
noncommutative parameter arises from the quantum nature
of spacetime at extremely small scales, such as those associ-
ated with the Planck or String scales, where quantum effects
prevail [65]. At these energy levels, quantum fluctuations
induce fundamental alterations in the geometry and the very
constitution of spacetime. Developments in advanced theo-
ries such as string theory suggest that this noncommutativ-
ity is intrinsic to the deep structure of reality at quantum
scales [66]. The careful exploration of these corrections at
microscopic scales offers crucial information on the nature
of spacetime and its interaction with particles and quantum
fields, thus contributing to a thorough understanding of the
universe.

One of the main features of this black hole solution is the
investigated black hole’s shadow radius sensitivity to changes
in the different parameters. This characteristic opens up a
useful application of these data for astrophysics observations,
allowing constraints on the shadow observables captured by
objects like M87* and Sgr A*. Whether or not these items
are connected to rotating black holes does not affect their
usefulness [68,69].

By the same token, the effect of the correspondence
between the electric charge and the noncommutative param-

eter has already been noted in the literature [61,63,64]. By
way of illustration, reference [80] has demonstrated a close
relationship between the electric charge and the noncommu-
tative parameter, in particular with regard to the thermody-
namic properties. In order to deepen this relationship from an
optical angle, a thorough understanding of these two quanti-
ties in light of the Event Horizon Telescope (EHT) data.

4 Observational constraints on shadow from EHT

In this section, we shall discuss the constraints on the model
parameters Q and θ from the black hole shadow observa-
tional data. Using the distance D between the supermassive
black hole (SMBH) and the galactic center, the shadow’s size
dsh of a black hole can be found using the arclength equation
as given below:

dsh = Dθsh

M
.

For the case of M87�, the shadow diameter is given by
dM87*

sh = (11 ± 1.5)M [71,72]. These results can be used to
constrain the theory using arclength. However, this study uses
uncertainties from Event Horizon Telescope (EHT) follow-
ing Refs. [73,74] to limit or constrain the possible values of
black hole charge Q, which are more precise than those from
the arclength equation. The focus here is on determining the
1σ boundaries of the considered black hole parameters Q and
θ using data from M87� and Sgr. A�. Further details on the
methodology and confidence levels can be found in the refer-
enced works. One may note that the properties of black hole
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shadows are significantly affected by model parameters in a
modified theory of gravity [75–79]. Hence observational con-
straints on the model parameters from shadow observations
can provide us with feasibility and a better understanding of
the theory in light of EHT data.

In Figs. 3 and 4, we have shown the 1σ constraints on
the model parameters Q and θ from EHT data associated
with M87* and Sgr A* and the constrained model parameter
values are shown in Table 2. One may observe that both
observations suggest that the Q value less than 1 is preferable.
The other parameter θ is also well constrained and has a
lower and upper bound from EHT data. Constraints on both
Q and θ from Sgr. A* are more stringent in comparison to
the constraints obtained from M87*.

Another apparent observation is the correspondence between
charge Q and the non-commutative parameter θ from the
shadow observations for smaller values of θ . Such a corre-
spondence is also reported in Ref. [80]. It is seen from our
investigation that with an increase in the value of both Q
and θ , the shadow of the black hole decreases initially. This
correspondence is found to be valid for smaller values of θ

only. On the contrary, we observe that for the higher values
of θ , both parameters have opposite impacts on black hole
shadow. However, it is evident that Q has a more distinct
impact on the shadow radius of the black hole. Observational
constraints on both the parameters in this section showed that
Q has a larger feasible parameter space in comparison to θ .
From the complete scenario of feasible parameter space, the
important aspect is that the non-commutative parameter, in
most cases, supports a larger black hole shadow. On the other
hand, the presence of charge results in a smaller black hole
shadow.

5 Energy emission rate

Hawking has demonstrated that, due to quantum effects,
black holes can radiate. This radiation is expressed by what is
called the energy emission rate, which measures the amount
of energy emitted per unit of time. The energy emission rate
is expressed as follows [28]

d2E(�)

dtd�
= 2π3R2

sh

exp( �
TH

) − 1
(5.1)

where � is the emission frequency and TH is Hawking tem-
perature given by

TH = 1

12π2r+
(
2α + r2+

)
[

− 3
(
Q2 (F(r+) − r+F ′(r+)

)

+π
(
α + �r4+ − r2+

))

× r+
(−3Q2F(r+) + π�r4+ − 3π

(
α + r2+

)) γ ′( 3
2 ,

r2+
4θ

)

γ ( 3
2 ,

r2+
4θ

)

]
.

(5.2)

The energy emission rate of the charged noncommutative
4D-AdS EGB black hole is plotted against frequency � for
a variety of electric charge Q values and a noncommutative
parameter θ in Fig. 5. This graphic illustrates a broad pattern
in the energy emission rate’s evolution, which is marked by
growth that rises before declining until complete extinction.
It is especially noteworthy that this final point, shown by the
peak in Fig. 5, turns out to be sensitive to changes in the
properties that the black hole in question contains.

To describe it even more precisely, it is clear that the rise
in electric charge directly affects the peak’s magnitude, as
shown on the graph. Put another way, the energy emission
rate approaches a decreasing peak as the electric charge rises;
this variation may be seen on the curve (Fig. 5a). This phe-
nomenon points to an inherent relationship between the elec-
tric charge and the energy emitted by the black holes in this
specific configuration.

Likewise, the same pattern reproduces when the variation
of the noncommutative parameter is observed. The energy
emission rate’s peak (Fig. 5b) declines in direct proportion
to this noncommutative parameter’s increase. As a result, the
dynamics of the energy release rate of the black holes under
study are significantly influenced by the electric charge and
the noncommutative parameter.

Finally, Fig. 5 sheds light on how these parameters influ-
ence the behavior of the energy emission rate of black holes
by showing how their variation can modify the height of the
peak, which contributes substantially to our understanding of
the complex phenomena surrounding these celestial objects.

6 Deflection angle

The bending angle of light is a key parameter in the investiga-
tion of the beautiful phenomenon called gravitational lensing.
In this section, we shall deduce the deflection angle for the
noncommutative charged 4D-AdS EGB black hole (2.6) in
order to investigate how the noncommutative parameter and
the charge of the black hole affects the angle at which light
is bent as it approaches the gravitational field of the black
hole. To this end, we consider the approach followed by Ishi-
hara et al. for asymptotically non-flat spacetimes depicted in
Ref. [19]. This method utilizes the Gauss–Bonnet Theorem
(GBT) [16] to calculate the deflection angle. Out of the many
formulations of the GBT, the most straightforward one pos-
tulates that the total Gaussian curvature within an enclosed
triangle can be represented in terms of the total geodesic cur-
vature of the boundary and the jump angles formed at the
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Fig. 3 1σ constraints on the black hole shadow using Sgr A� with M = 1, α = 0.01 and � = −0.02

Fig. 4 1σ constraints on the black hole shadow using M87� with M = 1, α = 0.01 and � = −0.02

Table 2 1σ constraints on Q
and θ based on the shadow radii
of Sgr. A* and M87* as depicted
in Figs. 3 and 4 with M = 1,

α = 0.01 and � = −0.02

constraint on Q using θ = 0.1 constraint on θ using Q = 0.1

1σ (upper/lower) from M87* 0.900902/none 1.21026/0.328268

1σ (upper/lower) from Sgr. A* 0.795234/none 0.765009/0.37583

Fig. 5 The energy emission rate variation vs frequency � for different values of electric charge Q and noncommutative parameter θ
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Fig. 6 Schematic representation for the GBT [19]. The inner angle is
εa and the jump angle is βa (a = 1, 2, . . . , N )

corners. As demonstrated in Fig. 6, if an orientable surface
T in two dimensions is considered, then the boundaries of
the surface which are differentiable curves are expressed as
∂Ta (a = 1, 2, . . . , N ) with βa as the jump angles formed
between the curves. Following this, the GBT can be mathe-
matically expressed as [15]

∫ ∫
T
KdS +

N∑
a = 1

∫
∂Ta

κgdl +
N∑

a = 1

βa = 2π, (6.1)

where K is the Gaussian curvature of the surface T , κg is the
geodesic curvature of the boundaries ∂Ta with an infinites-
imal line element dl along the boundary. The sign of dl is
chosen such that it is consistent with the orientation of the
surface with dl > 0 for prograde motion and dl < 0 for
retrograde motion of photons.

Light rays follow the null condition for which ds2 = 0.
Hence, the black hole metric can be rewritten as

dt2 = γi j dx
i dx j = 1

f (r)2 dr2 + r2

f (r)
d�2, (6.2)

where γi j is usually referred to as the optical metric, which
specifies a 3D Riemannian space denoted by M(3). A ray of
light in this manifold is considered as a spatial curve. The
non-vanishing components of this metric are

γrr = 1

f (r)2 , γφφ = r2

f (r)
. (6.3)

The impact parameter is of utmost importance in the anal-
ysis of the gravitational bending of light which is given by
Eq. (3.22) and can be recast as

η ≡ Lφ

E
= r2

f (r)

dφ

dt
. (6.4)

The unit vector in the radial direction from the center of
the lens can be written as erad = ( f (r), 0), and the unit
vector along the angular direction can be obtained as eang =
(0, f (r)/r). Again, the components of the unit tangent vector
K ≡ dx/dt along the photon orbit are obtained as [19]

(Kr , K φ) = η f (r)

r2

(
dr

dφ
, 1

)
. (6.5)

Fig. 7 Illustrative description for the quadrilateral
∞
R�

∞
S enclosed in

a curved space [21]

In the above relation, the term dr/dφ leads to the orbit equa-
tion expressed as
(
dr

dφ

)2

= − r2 f (r) + r4

η2 . (6.6)

If � is assumed to be the angle between the radial compo-
nent of the tangent vector and the radial vector, i.e. the angle
formed by the light ray in the radial direction, then we arrive
at

cos � = η

r2

dr

dφ
. (6.7)

It consequently results in,

sin � = η
√

f (r)

r
. (6.8)

Assuming a new variable u = 1/r , the orbit Eq. (6.6) can
be rewritten in the form(
du

dφ

)2

= F(u), (6.9)

where we obtain the function F(u) = − u2 f (u) + 1/η2.
Portrayed in Fig. 7 is the black hole which behaves as a

lens (L) with the source (S) and the receiver (R) situated
at finite distance from the lens. Considering the equatorial
plane (ϑ = π/2), the bending angle of light arriving from
the source can be expressed as [19,81]

�̂ = �R − �S + φRS, (6.10)

where �R and �S are the angles of light estimated with
respect to L at the positions of S and R respectively. The sep-
aration angle between R and S is denoted by φRS = φR −φS

where φR and φS are the longitudes of R and S respectively.

The quadrilateral
∞
R�

∞
S illustrated in Fig. 7 is enclosed in

a curved space M(3).
∞
R �

∞
S contains light rays considered

as spatial curves with two outgoing radial lines from S and
R positions, and a fragment of the circular arc Cr with the
coordinate radius rC (rC → ∞). It is evident from Fig. 7 that
within the asymptotically Minkowskian spacetime, κg →
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1/rC and dl → rC dφ as rC → ∞ [16]. Consequently, the

gravitational bending angle of light in the domain
∞
R�

∞
S can

be defined as

�̂ = �R − �S + φRS = −
∫ ∫

∞
R�∞

S
K dS (6.11)

Integration of Eq. (6.9) results in the separation angle φRS as

φRS = 2
∫ u0

0

du√
F(u)

, (6.12)

where u0 is the inverse of the distance of the closest approach.
In accordance with the approach demonstrated by Ishihara et
al. if S and R positions are considered to be at finite distances
from the black hole, then the angle of deflection of light can
be expressed as

�̂ = �R − �S +
∫ u0

uR

du√
F(u)

+
∫ u0

uS

du√
F(u)

. (6.13)

Now, implementing Eq. (6.8) into the black hole space-
time (2.6), we obtain

�R − �S ≈ arcsin(ηuR) + arcsin(ηus)

−π +
(

ηM − 2ηMα�

3

) ⎛
⎝ u2

R√
1 − η2u2

R

+ u2
S√

1 − η2u2
S

⎞
⎠

+
(

ηQ2

2
√

2πθ
− ηM√

πθ
− ηQ2α�

3
√

2πθ
+ 2ηMα�

3
√

πθ

)

×
⎛
⎝ uR√

1 − η2u2
R

+ uS√
1 − η2u2

S

⎞
⎠

−
(

ηQ2

2
−

√
2ηMQ2α

(πθ)3/2 − ηQ2α�

3

)

×
⎛
⎝ u3

R√
1 − η2u2

R

+ u3
S√

1 − η2u2
S

⎞
⎠ +

(
η�

6
− ηα�2

18

)

×
⎛
⎝ u−1

R√
1 − η2u2

R

+ u−1
S√

1 − η2u2
S

⎞
⎠ −

(
ηM�

6
− ηM�

6
√

πθ

)

×
[

1

(1 − η2u2
R)3/2

+ 1

(1 − η2u2
S)

3/2

]

−
(

ηMQ2

2
√

2(πθ)3/2
+ ηQ2�

12

− ηMQ2α�√
2(πθ)3/2

+ η3Q2�

6
√

2πθ
− η3M�

3
√

πθ

)

×
[

uR

(1 − η2u2
R)3/2

+ uS
(1 − η2u2

S)
3/2

]

−
(

η3M�

3
+ ηMQ2α�√

2πθ

)

×
[

u2
R

(1 − η2u2
R)3/2

+ u2
S

(1 − η2u2
S)

3/2

]

+
(

η3MQ2

√
2(πθ)3/2

+ ηMQ2

2
√

πθ
+ η3Q2�

6

−
√

2η3MQ2α�

(πθ)3/2 − ηMQ2α�√
πθ

)

×
[

u3
R

(1 − η2u2
R)3/2

+ u3
S

(1 − η2u2
S)

3/2

]

+
(

ηQ2�

12
√

2πθ
− ηM�

6
√

πθ

)

×
[

u−1
R

(1 − η2u2
R)3/2

+ u−1
S

(1 − η2u2
S)

3/2

]
(6.14)

It is clear that the above expansion becomes divergent at
infinite distances of the source and the receiver, i.e. uR → 0
and uS → 0. This is an outcome of the fact that the black
hole under study is an asymptotically non-flat spacetime.

Next, we compute the separation angle as

φRS ≈ π − arcsin(ηuR) − arcsin(ηuS)

+
(

2M

η
+ 32MQ2α

5η5
− 8

√
2MQ2α

3η3πθ
− 4Mα�

3η

)

×
⎛
⎝ 1√

1 − η2u2
R

+ 1√
1 − η2u2

S

⎞
⎠

−
⎛
⎝ uR√

1 − η2u2
R

+ uS√
1 − η2u2

S

⎞
⎠

×
(

3Q2

4η
− 3MQ2α√

2η(πθ)3/2
− ηQ2

2
√

2πθ
+ ηM√

πθ

+15MQ2α

4η3
√

πθ
− η3�

6
− Q2α�

2η
+ ηQ2α�

3
√

2πθ
+ η3α�2

18

)

−
(

ηM + 16MQ2α

5η3 − 4
√

2MQ2α

3ηπθ
− 2ηMα�

3

)

×
⎛
⎝ u2

R√
1 − η2u2

R

+ u2
S√

1 − η2u2
S

⎞
⎠

+
(

ηQ2

4
− ηMQ2α√

2(πθ)3/2
+ 5MQ2α

4η
√

πθ
− ηQ2α�

6

)

×
⎛
⎝ u3

R√
1 − η2u2

R

+ u3
S√

1 − η2u2
S

⎞
⎠

−
(

8MQ2

η3 − 2
√

2MQ2

ηπθ
− ηM�

3

−16MQ2α�

η3 + 4
√

2MQ2α�

ηπθ

)

×
[

1

(1 − η2u2
R)3/2

+ 1

(1 − η2u2
S)

3/2

]
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−
[

uR

(1 − η2u2
R)3/2

+ uS
(1 − η2u2

S)
3/2

]

×
(

3ηMQ2

2
√

2(πθ)3/2
− 15MQ2

4η
√

πθ
+ ηQ2�

4

−3ηMQ2α�√
2(πθ)3/2

+ 15MQ2α�

2η
√

πθ

)

+
(

12MQ2

η
− 3

√
2ηMQ2

πθ
− η3M�

2

−24MQ2α�

η
+ 6

√
2ηMQ2α�

πθ

)

×
[

u2
R

(1 − η2u2
R)3/2

+ u2
S

(1 − η2u2
S)

3/2

]

+
[

u3
R

(1 − η2u2
R)3/2

+ u3
S

(1 − η2u2
S)

3/2

]

×
(√

2η3MQ2

(πθ)3/2 − 5ηMQ2

√
πθ

+ η3Q2�

3

−2
√

2η3MQ2α�

(πθ)3/2

− η5Q2�

12
√

2πθ
+ η5M�

6
√

πθ
+ 10ηMQ2α�√

πθ

)
(6.15)

Consequently, for the noncommutative charged black hole
under study, combining Eqs. (6.14) and (6.15) yields the
deflection angle of light presented as

�̂ =
(

32αMQ2

5η5
− 8

√
2αMQ2

3πη3θ
− 4α�M

3η
+ 2M

η

)

×
⎛
⎝ 1√

1 − η2u2
R

+ 1√
1 − η2u2

S

⎞
⎠

+
⎡
⎢⎣η3�(3 − α�)

18
+

(
1√
2πθ

− 5
4η2

)
3αMQ2

η
√

πθ

−2ηM(3 − 2α�)

3
√

πθ
+ ηQ2(3 − 2α�)

3
√

2πθ
− Q2(3 − 2α�)

4η

]

×
⎛
⎝ uR√

1 − b2u2
R

+ uS√
1 − η2u2

S

⎞
⎠

+
(

4
√

2αMQ2

πθ
− 16αMQ2

5η3

)

×
⎛
⎝ u2

R√
1 − η2u2

R

+ u2
S√

1 − η2u2
S

⎞
⎠

−
[

ηQ2

12
(3 − 2α�) − αηMQ2

√
2(πθ)3/2

− 5αMQ2

4η
√

πθ

]

×
⎛
⎝ u3

R√
1 − η2u2

R

+ u3
S√

1 − η2u2
S

⎞
⎠

−
[

8MQ2

η3 + η�M

6
√

πθ
− η�M

2

− (1 − 2α�)2
√

2MQ2

πηθ
− 16

3
α�MQ2

]

×
[

1

(1 − η2u2
R)3/2

+ 1

(1 − η2u2
S)

3/2

]

−
[

uR
(1 − η2u2

R)3/2
+ uS

(1 − η2u2
S)

3/2

]

×
[

η3�Q2

6
√

2πθ
− η3�M

3
√

πθ
+ (1 − 2α�)2ηMQ2

√
2(πθ)3/2

− (1 − 2α�)15MQ2

4η
√

πθ
+ 1

3
η�Q2

]

−
[

5

6
η3�M + (1 − 2α�)11ηMQ2

2
√

2πθ
− (1 − 2α�)12MQ2

η

]

×
[

u2
R

(1 − η2u2
R)3/2

+ u2
S

(1 − η2u2
S)

3/2

]

+
[

η5�M

6
√

πθ
− η5�Q2

12
√

2πθ
+ (1 − 2α�)3η3MQ2

√
2(πθ)3/2

+ 3

6
η3�Q2

− (1 − 2α�)9ηMQ2

2
√

πθ

]

×
[

u3
R

(1 − η2u2
R)3/2

+ u3
S

(1 − η2u2
S)

3/2

]
+

(
η�

6
− αη�2

18

)

×
⎛
⎝ u−1

R√
1 − η2u2

R

+ u−1
S√

1 − η2u2
S

⎞
⎠

+
(

η�Q2

12
√

2πθ
− η�M

6
√

πθ

)

×
[

u−1
R

(1 − η2u2
R)3/2

+ u−1
S

(1 − η2u2
S)

3/2

]
(6.16)

It can be seen from the above equation that similar to
Eq. (6.14), this expression also has few terms that tend to
diverge in the far distance limit (uR → 0, uS → 0). Also,
the effect of the noncommutative parameter and the elctric
charge of the black hole on the bending angle can be clearly
observed from the above expression. Furthermore, if the non-
commutative parameter θ , charge Q, the GB coupling con-
stant α and the cosmological constant � are to vanish, it
would result in

�̂ ≈ 2M

η

⎛
⎝ 1√

1 − η2u2
R

+ 1√
1 − η2u2

S

⎞
⎠ (6.17)
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Fig. 8 Deflection angle as a function of the impact parameter η for various values of the noncommutative parameter θ and the electric charge Q
with M = 1, α = 0.01 and � = −0.02

which in the far distance limit (uR → 0, uS → 0) reduces
to

�̂ ≈ 4M

η
(6.18)

The gravitational bending angle of light formed in the
vicinity of the gravitational field of this noncommutative
charged 4D-AdS EGB black hole is portrayed in Fig. 8 as
a function of the impact parameter. The first illustration is
for different values of the noncommutative parameter θ and
the second one is for different values of electric charge Q. We
have assumed uR = uS = 0.5/η. Further, each plot is com-
pared with that of the Schwarzschild case. It can be seen from
the figure that the behaviour of the bending angle for the black
hole under study is similar to that of the Schwarzschild case
up to a particular value of the impact parameter. However,
with increasing impact parameter, unlike the Schwarzschild
case, the deflection angle for the noncommutative charged
black hole further decreases and becomes negative. For the
first figure, with rising values of the noncommutative param-
eter, the value of the deflection angle also increases. Again,
with an increase in the charge of the black hole, the value
of the deflection angle becomes smaller. This indicates that
the properties of the black hole under consideration have
significant effect on the behaviour of the deflection of light
around the black hole. It can be said that for higher impact
parameters, the photons are repelled by the gravitational field
of the black hole thereby resulting in a negative deflection
angle. In fact, such a negative deflection angle gives us an
idea about the gravitational nature of the black hole under
study. Here, it should be remarked that negative deflection
angle has also been obtained in various literature [19,22,81–
83] and in modified gravity theories with exotic matter and
energy [84,85].

7 Conclusion

In summary, our article takes an in-depth look at the optical
features of a charged 4D-AdS-EGB black hole, inspired by
noncommutative geometry. Such a black hole solution was
derived in the framework of 4D-EGB with a negative cos-
mological constant. The recent regularization proposed by
Glavan and Lin has been used to restore the dynamic compo-
nent of the Gauss–Bonnet term in a 4D context. In addition,
the influence of the non-commutativity of space-time has
been incorporated by characterizing the source of matter and
charge by Gaussian distributions.

To investigate the shadow of the black hole, we applied the
Hamilton-Jacobi technique and the Carter separation method
to integrate the geodesic equation and calculate the radius
of the shadow. The equations of the system do not have
an analytical solution. Alternately, we used the numerical
method to find the solution.. Our results highlight the influ-
ence of the framework of the noncommutative geometry on
the radius of the shadow, showing an inverse relationship with
the variation of the noncommutative parameter θ . This trend
is also observed with the variation of the electric charge Q.
Therefore, the examination of the restrictions imposed on the
parameters of the model by the observations of the shadows
could not only increase the feasibility but also improve our
understanding of the theory by illuminating our perspective,
thanks to the data of the EHT.

Subsequently, given that the radius of the shadow is
directly related to the rate of energy emission, we ana-
lyzed the impact of the electric charge and noncommuta-
tivity on this physical quantity. Our results demonstrate that
the increase in the electric charge, or the noncommutative
parameter, leads to a decrease in the energy emission rate
(EER).
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Furthermore, we have investigated the deflection angle of
the black hole. To this end, the GBT is employed. The effect
of the parameters of the black hole on the deflection angle is
analyzed. For a change in the charge or the noncommutative
parameter of the black hole, the deflection angle is found to
decrease and become negative after a certain impact parame-
ter. Specifically, for a rise in the charge of the black hole, the
angle becomes smaller whereas for an increasing noncom-
mutative parameter, the deflection angle becomes larger. This
outcome gives us an idea about the nature of the gravitational
field of the black hole. A few other optical features related
to lensing by the noncommutative 4D-AdS-EGB black hole
can also be investigated in future work.
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