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Abstract To improve our understanding of the quark–
gluon dynamics underlying multiquark states, we system-
atically study their electromagnetic properties. In this study,
the magnetic and quadrupole moments of the theoretically
predicted singly-charmed state with the quantum numbers
JP = 1+ is investigated within the framework of the QCD
light-cone sum rules method by considering the diquark–
antidiquark configuration of this state with quark con-
tents [ud][c̄s̄]. The predicted results for the magnetic and
quadrupole moments are as μXAV = −0.89+0.14

−0.12 μN and

DXAV = (−0.46+0.07
−0.06)× 10−2 fm2. The results obtained can

be useful in determining the exact nature of this state. This
work will hopefully stimulate experimental interest in the
study of the electromagnetic properties of multiquark sys-
tems.

1 Motivation

Besides the conventional hadron states, mesons, and baryons,
it is theoretically possible in states containing more quarks.
Since the discovery of the X(3872) state by the Belle Col-
laboration [1], numerous hadronic states have been reported,
that cannot be categorized in the traditional two- or three-
quark configuration. After this discovery, the CDF, LHCb,
Belle, CMS, BESIII, BaBar, and D0 collaborations also
observed a large number of states, represented as XYZ states,
pentaquarks, etc., which cannot be categorized in the tra-
ditional quark configuration. The discovery of these states
has generated excitement in the scientific community and
raised questions about their exact nature and internal struc-
ture. Numerous models have been proposed to clarify and
determine the nature of these states, and extensive research
is currently being conducted on them. The observation of
the above-mentioned states triggered interesting theoretical
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studies of these new states in the context of different mod-
els and approaches aimed at revealing their nature, quantum
numbers, and internal structure. There are many excellent
reviews on this topic that can be found in the literature [2–
17].

In 2021, two exotic states with minimal quark contents
[c̄s̄][ud], were observed by LHCb Collaboration using full
amplitude analysis B+ → D+D−K+ decays [18,19]. The
masses and widths of these states are measured as

X0(2900) : M = 2866 ± 7 ± 2 MeV,

� = 57 ± 12 ± 4 MeV,

X1(2900) : M = 2904 ± 5 ± 1 MeV,

� = 110 ± 11 ± 4 MeV.

The LHCb Collaboration predicted that X0(2900) and
X1(2900) have the quantum numbers JP = 0+ and 1−,
respectively. In various combinations, c, s, u, and d quarks
form different categories of exotic states, properties of which
deserve further investigation. In Refs. [20–27], apart from
JP = 0+ and 1− states, two other states JP = 1+ (XAV) and
2+ were also predicted, which are not yet observed. To under-
stand the exact nature and internal structure of these states,
it is useful to study their spectroscopic parameters, as well
as other characteristics such as electromagnetic and weak
decays.

The electromagnetic properties, especially the magnetic
and quadrupole moments, are prominent observables of the
hadrons that can be calculated and measured in the same
way as the mass and the decay. The magnetic and quadrupole
moments are of particular interest in studying the inner struc-
ture and possible deformation of hadrons. Furthermore, the
magnetic moment of a hadron is a measure of its ability to
interact with magnetic fields, making it a crucial parame-
ter for understanding hadron behavior. Inspired by this, in
the present work, the magnetic and quadrupole moments of
the theoretically predicted singly-charmed state, XAV, with
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the quantum numbers JP = 1+ are extracted by means of
the QCD light-cone sum rules method by considering the
diquark–antidiquark configuration of this state with quark
contents [ud][c̄s̄]. Several studies in the literature have
extracted the magnetic and quadrupole moments of hidden-
charm and singly-charmed tetraquark states [24,26,28–37].

The outline of the article is as follows. In Sect. 2 we present
the detailed QCD light-cone sum rule calculations for the
XAV state. In Sect. 3 we performed a numerical analysis of the
success of the obtained sum rules and extracted the numerical
values of the magnetic and quadrupole moments of the XAV

state. The results obtained are summarized in Sect. 4.

2 Theoretical framework

The QCD light-cone sum rules method is a powerful tool for
exploring conventional and exotic hadron characteristics and
has been widely used to extract the spectroscopic parameters,
magnetic and quadrupole moments, form factors, etc. of such
states. In this method, the correlation function, which is the
key component of the method, is calculated both regarding
hadronic features (the hadronic representation) and the QCD
features (the QCD representation) based on the prescription
of the method. Then, by equating these two different repre-
sentations of the correlation function, the physical quantities
to be calculated are obtained [38–40].

To determine the magnetic and quadrupole moments of the
XAV state, we begin by analyzing the following correlation
function:

�μν(p, q) = i
∫

d4xeip·x 〈0|T {Jμ(x)J †
ν (0)}|0〉γ , (1)

where q is the photon’s momentum and the subindex γ is the
weak external electromagnetic background field. Here Jμ(x)
is the interpolating current of the XAV state, which is given
as

Jμ(x) = εε̃
{[ubT (x)Cγ5d

c(x)][c̄d(x)γμCs̄eT (x)]}, (2)

where ε = εabc; ε̃ = εade; the a, b, c, d, and e are color
indices; and C denotes the charge conjugation operator.

As a first step in the analysis, let us calculate the hadronic
representation of the correlation function. To obtain the
hadronic representation of the desired sum rules, complete
sets of hadronic states with the same quantum numbers as the
considered hadrons are inserted into the correlation function.
As a result, we get

�Had
μν (p, q) = 〈0 | Jμ(x) | XAV(p, εi )〉

m2
XAV

− p2

× 〈XAV(p, εi ) | XAV(p + q, ε f )〉γ

× 〈XAV(p + q, ε f ) | J †
ν(0) | 0〉

m2
XAV

− (p + q)2

+ higher states, (3)

where the εi and ε f are the polarization vectors of initial and
final XAV state, respectively. The matrix elements in Eq. (3)
are required for further calculations, which are given as

〈0 | Jμ(x) | XAV(p, εi )〉 = λXAVεiμ , (4)

〈XAV(p + q, ε f ) | J †
ν(0) | 0〉 = λXAVε∗ f

ν , (5)

〈XAV(p, εi ) | XAV(p + q, ε f )〉γ
= −εγ (εi )α(ε f )β

{
G1(Q

2)(2p + q)γ gαβ

+ G2(Q
2)(gγβ qα − gγα qβ)

− 1

2m2
XAV

G3(Q
2) (2p + q)γ qαqβ

}
, (6)

where λXAV being the current coupling constant of the XAV

state, εγ is the polarization vector of the photon, andG1(Q2),
G2(Q2), and G3(Q2) are Lorentz invariant form factors with
Q2 = −q2.

The final form of the hadronic part of the correlation func-
tion is obtained by using the Eqs. (3)–(6) in the following
manner:

�Had
μν (p, q) = ετ λ2

XAV

[m2
XAV

− (p + q)2][m2
XAV

− p2]

×
{
G1(Q

2)(2p + q)τ

(
gμν − pμ pν

m2
XAV

− (p + q)μ(p + q)ν

m2
XAV

+ (p + q)μ pν

2m4
XAV

(Q2 + 2m2
XAV

)

)
+ G2(Q

2)

(
qμgτν − qνgτμ

− pν

m2
XAV

(
qμ pτ − 1

2
Q2gμτ

) + (p + q)μ

m2
XAV

(
qν(p + q)τ

+ 1

2
Q2gντ

) − (p + q)μ pν pτ

m4
XAV

Q2
)

− G3(Q2)

m2
XAV

(2p + q)τ

×
(
qμqν − pμqν

2m2
XAV

Q2 + (p + q)μqν

2m2
XAV

Q2

− (p + q)μqν

4m4
XAV

Q4
)}

. (7)

Since the magnetic and quadrupole moments are related
to the magnetic (FM (Q2)) and quadrupole (FD(Q2)) form
factors, these form factors need to be written in terms of the
G1(Q2), G2(Q2) and G3(Q2) form factors, which are given
as follows
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FM (Q2) = G2(Q
2) ,

FD(Q2) = G1(Q
2) − G2(Q

2) +
(

1 + Q2

4m2
XAV

)
G3(Q

2) ,

(8)

At zero momentum square, Q2 = 0, the magnetic and
quadrupole form factors are equal to the magnetic (μXAV )
and quadrupole (DXAV ) moments. In this limit, the μXAV and
DXAV can be written in terms of the FM (0) and FD(0) factors
as follows,

μXAV = e

2mXAV

FM (0) ,

DXAV = e

m2
XAV

FD(0) . (9)

We are now ready to start calculating the QCD representation
of the correlation function. In the QCD representation, we
contract all of the quark fields in the correlation function
with Wick’s theorem. According to the procedures described
above, the QCD representation of the correlation function for
the XAV state is obtained as follows

�QCD−XAV
μν (p, q)

= iεε̃ε′ε̃′
∫

d4xeipx 〈0|
{

Tr
[
γ5 S̃

bb′
u (x)γ5S

cc′
d (x)

]
Tr

×
[
γμ S̃

e′e
s (−x)γνS

d ′d
c (−x)

]}
|0〉γ , (10)

where ε = εabc, ε̃ = εade, ε′ = εa
′b′c′

, and ε̃′ =
εa

′d ′e′
; Sc(x) and Sq(x) represent propagators of heavy and

light quarks. Here we also use the notation S̃q(c)(x) =
CSTq(c)(x)C . The propagators of light and heavy quarks are
given by the following formula [41,42]:

Sq(x) = S f ree
q (x) − 〈q̄q〉

12

(
1 − i

mq x/

4

)

− 〈q̄σ.Gq〉
192

x2
(

1 − i
mq x/

6

)

− igs
32π2x2 Gμν(x)

[
x/σμν + σμνx/

]
, (11)

Sc(x) = S f ree
c (x) − gsmc

16π2

∫ 1

0
dv Gμν(vx)

×
[
(σμνx/ + x/σμν)

K1

(
mc

√−x2
)

√−x2

+ 2σμνK0

(
mc

√
−x2

)]
, (12)

where

S f ree
q (x) = 1

2π2x2

(
i
x/

x2 − mq

2

)
, (13)

S f ree
c (x) = m2

c

4π2

⎡
⎣K1

(
mc

√−x2
)

√−x2
+ i

x/ K2

(
mc

√−x2
)

(
√−x2)2

⎤
⎦ .

(14)

The QCD representation of the correlation function
includes two different contributions that need to be cal-
culated: perturbative (short-distance) and non-perturbative
(long-distance). To calculate the short-distance contribution,
it is sufficient to substitute one of the light/heavy-quark prop-
agators in Eq. (10) in the following way

S f ree(x) →
∫

d4y S f ree(x − y) A/(y) S f ree(y) , (15)

where the rest of the propagators are taken into account as
free propagators. This amounts to taking T̄ γ

4 (α) = 0 and
Sγ (α) = δ(αq̄)δ(αq) as the light-cone distribution amplitude
in the three particle distribution amplitudes (see Ref. [43]).

To obtain the long-distance contributions, it is sufficient
to replace one of the light-quark propagators in Eq.(10) with
the following expression

Sabμν(x) → −1

4

[
q̄a(x)�i q

b(0)
](

�i
)
μν

, (16)

where �i = 1, γ5, γμ, iγ5γμ, σμν/2.
After the aforementioned light-quark replacement, the rest

of the propagators are considered to be full propagators,
including both perturbative and non-perturbative contribu-
tions. The matrix elements of nonlocal operators such as
〈γ (q)

∣∣q̄(x)�i Gμνq(0)
∣∣ 0〉 and 〈γ (q) |q̄(x)�i q(0)| 0〉,

which are expressed regarding photon distribution ampli-
tudes (DAs), come out when a photon interacts non-
perturbatively with light-quark fields (for details see Ref.
[44]). These steps are standard for this method and are quite
lengthy, so we do not present them in the text. For inter-
ested readers, details of this procedure performed to acquire
the expression of the perturbative and non-perturbative con-
tributions are presented in Refs. [33,45]. Using the above-
mentioned procedures and then applying the Fourier trans-
form to the obtained expressions to transfer the position space
expressions to the momentum space, the QCD representation
of the correlation function is extracted. It should be noted that
the photon DAs utilized in this study only take into account
contributions from light quarks. However, in principle, the
photon can be emitted at a long-distance from the charm
quark. In technical terms, the matrix elements of nonlocal
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operators are proportional to the product of DAs, quark con-
densates, and some non-perturbative constants. Knowing that
the contribution of non-perturbative constants to our analy-
sis is negligible even in the case of light quarks, we can
neglect them in the case of heavy quarks. The heavy-quark
condensates are known to be proportional to 1/mQ . Due to
the large mass of the heavy quarks, such condensates are
largely suppressed for the heavy quarks [46]. Thus, our com-
putations excluded DAs containing heavy quarks, which are
long-distance contributions. We only considered the short-
distance photon emission from the heavy quarks, as described
in Eq. (15).

By separating the coefficients of structures (ε.p)(pμqν −
pνqμ) and (ε.p)qμqν from the QCD and hadronic sides of
the correlation function and equating them, we can determine
the magnetic and quadrupole moments of the XAV state. To
suppress the contributions of the higher states and continuum,
we perform double Borel transformation on the variables p2

and (p + q)2, and continuum subtraction. Note that Borel
transformations are performed by means of the equations

B
{

1[[p2 − m2
i ][(p + q)2 − m2

f ]
]
}

→ e−m2
i /M

2
1 −m2

f /M
2
2

(17)

in the hadronic side, and

B
{

1(
m2 − ū p2 − u(p + q)2

)α

}

→ (M2)(2−α)δ(u − u0)e
−m2/M2

, (18)

in the QCD side, where we use

M2 = M2
1 M

2
2

M2
1 + M2

2

, u0 = M2
1

M2
1 + M2

2

.

Here M2
1 and M2

2 being the Borel parameters in the initial and
final states, respectively. Since we have the same XAV in the
initial and final states, therefore we can set, M2

1 = M2
2= 2 M2

and u0 = 1/2, which leads to the our approximation being
sufficient to suppress higher states and continuum contribu-
tions. As the result of these computations, we get the follow-
ing sum rules for the magnetic and quadrupole moments of
the XAV state,

μXAVλ2
XAV

= e
m2

XAV
M2 �

QCD
1 (M2, s0), (19)

DXAVλ2
XAV

= m2
XAV

e
m2

XAV
M2 �

QCD
2 (M2, s0). (20)

For brevity, only the explicit expressions of the �
QCD
1 (M2,

s0) function are listed in the text, since the �
QCD
2 (M2, s0)

function is similar in form.

�
QCD
1 (M2, s0)

= 1

1536π6

[
m8

c

(
(ec + 4es)m

4
c I [−3]

+ 4(ec + 3es)m
2
c I [−2] + 6(ec + 2es)I [−1]

)

+ 4(ec + es)m
6
c I [0] + ecm

4
c I [1] + 16(ec + 2es)I [3]

]

+ mc〈g2
s G

2〉〈s̄s〉 f3γ

5184π2 (eu + ed)I [−2]ψa[u0]

+ 〈q̄q〉2(ed + eu)

192m2
cπ

2

(
m2

0m
4
c I [−2] + 4m2

c I [0]

− 2I [1]
)
I3[S] + mc〈g2

s G
2〉〈s̄s〉

165888π4

[
− 33es

(
m2

c I [−2]

− I [−1]
)
I4[S] − 33es

(
m2

c I [−2] − I [−1]
)
I4[S̃]

− 288esm
2
c I6[hγ ] × I [−2]

]
− 〈g2

s G
2〉 f3γ

13824m2
cπ

4

×
[

2m2
c

(
(ed0 + eu)mcms

(
m2

c I [−2] − I [−1]
)

− (ed

− 6es + eu)I [0]
)

+ (ed − 6es + eu)I [1]
]

× ψa[u0]

− mc〈s̄s〉
1152π4

[
(ed + eu) f3γm

2
0mcmsπ

2 I2[V]I [−2]

+ 144es
(
m8

c I [−3] + 2m6
c I [−2] + m4

c I [−1] + 4I [1]
)

× I6[hγ ]
]

+ f3γm4
c

3072π4

[
− (ed + eu)

(
5m6

c I [−3]

− 12m4
c I [−2] + 9m2

c I [−1] − 2I [0]
)
I2[V]

+ 48esm
2
c

(
m4

c I [−3] − 2m2
c I [−2] + I [−1]

)
ψa[u0]

]
,

(21)

where 〈q̄q〉, 〈s̄s〉 and 〈g2
s G

2〉 are u/d-quark, s-quark and
gluon condensates, respectively. The functions I [n], I1[A],
I2[A], I3[A], I4[A], I5[A] and I6[A] are defined as

I [n] =
∫ s0

m2
c

ds sne−s/M2

I1[A] =
∫

Dαi

∫ 1

0
dv A(αq̄ , αq , αg)δ

′(αq + v̄αg − u0),

I2[A] =
∫

Dαi

∫ 1

0
dv A(αq̄ , αq , αg)δ

′(αq̄ + vαg − u0),

I3[A] =
∫ 1

0
du A(u)δ′(u − u0),

I4[A] =
∫

Dαi

∫ 1

0
dv A(αq̄ , αq , αg)δ(αq + v̄αg − u0),
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I5[A] =
∫

Dαi

∫ 1

0
dv A(αq̄ , αq , αg)δ(αq̄ + vαg − u0),

I6[A] =
∫ 1

0
du A(u),

where A stands for the corresponding photon DAs. Here the
Dαi can be written as
∫

Dαi =
∫ 1

0
dαq̄

∫ 1

0
dαq

∫ 1

0
dαg δ(1 − αq̄ − αq − αg) .

(22)

3 Numerical results and discussions

This section presents numerical analyses for the magnetic
and quadrupole moments of the XAV state. The parame-
ters that are used in our calculations are as follows: mu =
md = 0, ms = 96+8.0

−4.0 MeV, mc = (1.27 ± 0.02) GeV,
mXAV = 2800 ± 75 MeV [23], 〈s̄s〉= 0.8〈q̄q〉 with 〈q̄q〉
=(−0.24 ± 0.01)3 GeV3 [47], m2

0 = 0.8 ± 0.1 GeV2,
〈g2

s G
2〉 = 0.88 GeV4 [48], and f3γ = −0.0039 GeV2

[44]. From Eqs. (19)–(20) it is concluded that the current
coupling constant of the XAV state is required to calculate
the magnetic and quadrupole moments. The current coupling
constant of this state is calculated in Ref. [23] and we will
use this value in our numerical analysis. One of the important
ingredients of the QCD light-cone sum rules for the magnetic
and quadrupole moments is the photon DAs. The expressions
of the DAs are borrowed from Ref. [44].

In addition to the aforementioned input parameters, there
are two free parameters in Eqs. (19)–(20): the Borel mass M2

and the continuum threshold parameter s0. To obtain reliable
QCD sum rule results, we require that the s0 dependence and
the M2 dependence of the magnetic and quadrupole moment
predictions should be weak. To achieve this, we need to care-
fully examine the convergence of the operator product expan-
sion (OPE) and the pole contribution (PC). The convergence
of the OPE is generally required to be sufficiently small to
ensure convergence of the operator product expansion series
i.e., convergence of OPE should be under control, and the PC
needs to be as large as possible to ensure the effectiveness of
the single-pole approach. The formulas below can be used
for the definition of these constraints:

PC = �(M2, s0)

�(M2,∞)
≥ 30%, (23)

R(M2) = �DimN(M2, s0)

�(M2, s0)
≤ 5%, (24)

where �DimN(M2, s0) is a sum of DimN = Dim(7 + 8 + 9).
After applying the above formulas, the obtained PC, conver-
gence of OPE, and working intervals of the M2 and s0 are

Table 1 The Borel windows, continuum threshold parameters, pole
contributions, and convergence of the OPE for the magnetic and
quadrupole moments of the XAV state

State s0 (GeV2) M2 (GeV2) PC (%) R(M2) (%)

XAV [10.5, 12.0] [2.8, 3.4] [53, 37] 3.73

presented in Table 1. It follows that the working intervals
determined for M2 and s0 satisfy the limitations imposed
by the PC and the convergence of OPE. For completeness,
the extracted predictions for the magnetic and quadrupole
moments of the XAV state are shown in Fig. 1. From this fig-
ure, it can be seen that the magnetic and quadrupole moments
of this state show good stability concerning the variation of
M2 in its working interval.

The magnetic and quadrupole moments of the XAV state
are determined by calculating them at different M2 and s0

from the interval given in Table 1 and averaging the obtained
results to the find mean values of these parameters. The final
results for magnetic and quadrupole moments are presented
as follows

μXAV = −0.89+0.14
−0.12 μN , (25)

DXAV = (−0.46+0.07
−0.06) × 10−2 fm2. (26)

The uncertainties in the results are due to the variation
of the parameters M2, s0, and the errors in the values of
the input parameters. By examining the magnetic moment
result, we can assume that the magnetic moment of the XAV

state is sufficiently large to be measured in future experi-
ments. In the case of the quadrupole moment, we obtain a
non-zero but small value, indicating a non-spherical charge
distribution. The predicted sign of the quadrupole moment
allows us to say that the XAV state has oblate charge distri-
butions. Since there are no experimental or theoretical pre-
dictions in the literature that we can compare, perhaps the
reader will have a better idea of the magnetic moment results
obtained if we compare the XAV state with the result of the
X1(2900) state. In Ref. [37], the magnetic moment of the
X1(2900) state was extracted through the QCD light-cone
sum rules by assuming that the X1(2900) state is consid-
ered as the diquark–antidiquark picture. The obtained result
is as μX1(2900) = 0.79+0.36

−0.39 μN . As you can see, the absolute
value of the result that we obtained is in the same order of
magnitude as the state that we have mentioned.

To gain a deeper understanding of the underlying quark–
gluon dynamics, it is useful to consider the contributions
made by the individual quark sectors to the magnetic and
quadrupole moments. When this has been done, we obtain
that the terms proportional to the ec contribute about 27% to
the total results, es is about 33%, eu is about 27%, and ed
about 13%.
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Fig. 1 Dependence of the magnetic and quadrupole moments of the XAV on M2 at fixed values of the continuum threshold s0

4 Summary and outlook

We systematically study the electromagnetic properties of
multiquark systems to improve our understanding of the
underlying quark–gluon dynamics. In this study, the elec-
tromagnetic properties of the theoretically predicted singly-
charmed state, XAV, with the quantum numbers JP = 1+ is
investigated within the framework of the QCD light-cone
sum rules method by considering the diquark–antidiquark
configuration of this state.

From the results obtained, it can be seen that the magnetic
moment is sufficiently large to be experimentally accessi-
ble, while the quadrupole moment is obtained as small but
non-zero values, indicating non-spherical charge distribu-
tions. A comparison of our predictions for the magnetic and
quadrupole moments of the XAV state with the predictions of
other phenomenological models, such as lattice QCD, quark
model, chiral perturbation theory, and so on, would be inter-
esting. The predicted results in this study for the magnetic
and quadrupole moments of this state, along with the results
for the mass, width, and other decay properties of this state
and the comparison of the acquired results with the existing
and future experimental data, can reveal the inner structure
of this state.
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