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Abstract We quantize a homogeneous and isotropic uni-
verse for two models of modified teleparallel gravity: one
wherein an arbitrary function of the boundary term, namely
B, is present in the action, and in the other model, a scalar field
that is non-minimally coupled to both the torsion and bound-
ary term. In this regard, we study exact solutions of both
the classical and quantum frameworks by utilizing the corre-
sponding Wheeler–DeWitt (WDW) equations of the models.
To correspond to the comprehensive classical and quantum
levels, in the second model, we propose an appropriate ini-
tial condition for the wave packets and observe that they
closely adhere to the classical trajectories and reach their
peak. We quantify this correspondence using the de Broglie–
Bohm interpretation of quantum mechanics. According to
this proposal, the classical and Bohmian trajectories coin-
cide when the quantum potential vanishes along the Bohmian
paths. Furthermore, we apply the de-parameterization tech-
nique to our model in the realm of the problem of time in
quantum cosmological models based on the WDW equation,
utilizing the global internal time denoted as χ , which repre-
sents a scalar field.

1 Introduction

Current challenges in standard cosmology, such as the exis-
tence of dark energy, the accelerated expansion of the
universe, the inflation paradigm, and related issues, have
prompted researchers to propose and develop alternative the-
ories of gravity. There are various approaches to construct-
ing modified theories of gravity. One of the simplest meth-
ods involves modifying the Einstein–Hilbert action in stan-
dard general relativity (GR) or the corresponding Lagrangian
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by incorporating arbitrary functions of the scalars that exist
within the spacetime manifold. An example of such a modi-
fication is the well-known f (R) modified theory of gravity,
which incorporates an arbitrary function of the Ricci scalar
R [1–27].

A parallel approach to ordinary GR is the teleparallel
equivalent of general relativity (TEGR), where the geometri-
cal part of the action is constructed from the torsion scalar T
instead of the Ricci scalar. A modification of this theory—so-
called f (T ) gravity—was recently taken into consideration,
which incorporates an arbitrary function of the torsion scalar.
[28–78]. In the original TEGR theory and also in f (T ) grav-
ity, the primary dynamical variable is the tetrad or vierbein
field. This field serves as an orthonormal basis in the tangent
space. The Lagrangian in this theory has a quadratic depen-
dence on the torsion of the Weitzenböck connection. This
connection lacks curvature and implies absolute parallelism
in spacetime [79]. The action of f (T ) gravity involves only
the first derivatives of the vierbein, resulting in second-order
dynamical equations. This is in contrast to f (R) gravity,
where the dynamical equations are fourth-order at the field
equations level. Various cosmological scenarios have been
explored within f (T ) theories of gravity which can explain
both inflationary expansions in the early universe without
an inflaton field and accelerated expansion in the late times
[80–82].

The problem of initial conditions poses a significant chal-
lenge in cosmological models. Unlike ordinary classical sys-
tems, which can be solved by specifying initial conditions,
cosmological models lack external initial conditions that can
be applied to the Einstein field equations. This is due to the
absence of an external time parameter for the universe. One
potential solution to this problem is the utilization of quan-
tum cosmology, where the classical Einstein equations are
replaced by a quantum Schrödinger-like equation known as
the Wheeler–DeWitt (WDW) equation, along with appropri-
ate boundary conditions [83–85]. Within the framework of
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quantum cosmology, various modified gravity theories have
been explored, including f (T ) gravity [86], f (R) gravity
[87,88], massive gravity [89,90], rainbow gravity [91], con-
formally coupled scalar field gravity [92], Horava gravity
[93,94], and others (refer to [95–103] for further informa-
tion).

In addition to the issue of initial conditions, a significant
aspect concerning the WDW wave function is the “prob-
lem of time” [104–107]. Unlike conventional quantum the-
ory, the wave function in quantum gravity does not depend
on time. This reflects the fact that GR is a parameterized
theory, meaning its action remains unchanged under time
re-parameterization. Because of this problem, the canonical
quantization of GR results in a constrained system, where
the Hamiltonian is a combination of constraints known as
Hamiltonian and momentum constraints. One possible solu-
tion to this problem is to solve the constraint equation first,
which allows for the derivation of a set of genuine canoni-
cal variables. These variables can then be used to construct
a reduced Hamiltonian. Through this process of time re-
parameterization, the equations of motion are derived from
the reduced physical Hamiltonian, describing the system’s
evolution based on the chosen time parameter [108–113].

De-parameterization has emerged as a widely used tech-
nique to address the issue of time in canonical quantum grav-
ity. Given that coordinate time is observer-dependent and
lacks a corresponding operator after quantization, an alter-
native approach is adopted whereby a phase-space degree
of freedom is chosen as a measure of change for other
variables [114–122]. Prominent examples of internal time
include a free massless scalar field or a variable that quanti-
fies dust. Within the scope of this study, we employ the de-
parameterization to our model which is a teleparallel gravity
for a quantum cosmological model, utilizing the global inter-
nal time χ , which is represented by a scalar field.

Moreover, physicists have shown significant interest in
the investigation of analyzing and setting the wave packets
of the universe in the quantum cosmological background, as
well as their connection to the classical cosmology region.
Extensive efforts have been dedicated to developing a theory
that combines GR and quantum theory, known as quantum
gravity, and exploring its relationship with classical aspects.
Researchers have occasionally employed the semiclassical
for the WDW equation, leading to the consideration of oscil-
latory or exponentially decaying solutions in the configu-
ration space. These solutions correspond to allowed or for-
bidden regions, respectively, within the classical framework.
The determination of these regions relies primarily on the
imposition of initial conditions for the wave function of the
universe. In this work, we consider teleparallel gravity with
a general form of the boundary term and we quantize this
model for the special case of f (B) = B2. In continuing to
complete our study, we consider the scalar–tensor teleparallel

gravity in the quantum cosmology scenario to investigate the
wave packets and their connection to the classical cosmol-
ogy region. Additionally, we derive the Bohmian trajectory
for this particular model and also try to address the problem
of time in this model.

The remainder of the paper is structured as follows: Sec-
tion 2 provides a brief overview of the teleparallel equiva-
lence in general relativity. In Sect. 3 we modify teleparallel
action with a general form of the boundary term and we aim
to quantize the model for the special case of f (B) = B2.
Moving on to Sect. 4, we delve into the examination of a
modified teleparallel model which incorporates a scalar field
that is non-minimally coupled to both torsion and the bound-
ary term. In Sect. 5, we explore the quantization and wave
packets in the scalar–tensor teleparallel gravity, while Sect. 6
addresses the problem of time in this scenario. Finally, we
conclude the paper in the last section.

2 Teleparallel gravity

The TEGR stands as an equivalent formulation of GR,
referred to as the “teleparallel” equivalent. In contrast to the
conventional approach utilizing the torsionless Levi-Civita
connection, it utilizes the curvature-less Weitzenböck con-
nection. The fundamental components in this framework are
the four linearly independent vierbeins, which are parallel
vector fields known as teleparallel. A notable advantage of
this framework is that the torsion tensor is exclusively formed
from the first derivatives of the tetrad.

gμν = eaμe
b
νηab. (1)

The inverse tetrads are defined as

eμ
me

n
μ = δnm, eν

me
m
μ = δν

μ. (2)

And the Weitzenböck connection is given by

W a
μ ν = ∂μe

a
ν . (3)

Also, the torsion tensor is the antisymmetric part of the
Weitzenböck connection which reads as

T a
μν = W a

μ ν − W a
ν μ = ∂μe

a
ν − ∂νe

a
μ. (4)

In addition, one can define the torsion vector through the
contraction of the torsion tensor

Tμ = T λ
λμ. (5)

To derive the field equations of teleparallel gravity, we
examine the Lagrangian density below, which is subject to
variation with respect to the tetrad. Unlike general relativity’s
Ricci scalar R, we incorporate the torsion scalar T , and the
field equations of teleparallel gravity can be obtained from
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the following Lagrangian density by varying with respect to
the tetrad [123]

LT = e

16πG
SabcTabc, (6)

where

Sabc = 1

4

(
T abc − T bac − T cab

)
+ 1

2

(
ηacT b − ηabT c

)
.

(7)

One can define the torsion scalar T as

T = SabcTabc. (8)

To establish teleparallel gravity as an equivalent to GR, it is
necessary to establish a connection between the Levi-Civita
connection and the Weitzenböck connection. This connection
can be expressed through the following relation:

0	
μ
λρ = W μ

λ ρ − K μ
λ ρ, (9)

where K μ
λ ρ is defined as contortion tensor and is given by

2K λ
μ ν = T λ

μ ν − T λ
ν μ + T λ

μ ν. (10)

It can be observed that the contortion tensor exhibits anti-
symmetry in its final two indices. The Ricci scalar of the Levi-
Civita connection can be expressed in terms of the Weitzen-
böck connection as follows:

R = −T + 2

e
∂μ(eTμ). (11)

Then, one can rewrite it as

R = −T + B, (12)

where B = 2
e ∂μ(eTμ) is called the boundary term. From

Eq. (12) we can see that by taking the two connections
together, the torsion scalar T can be written such that it is
equal to the ordinary Ricci scalar, R, up to a boundary term.
This means that we obtain field equations that are equivalent
to the dynamical GR, also called TEGR; therefore, observa-
tions cannot be distinguished between GR and TEGR. This
boundary term is important because it contains the fourth-
order Ricci scalar terms, which are the boundary terms in the
GR action [124–126].

Thus, we have reviewed the TEGR in a preliminary
approach to establish a suitable structure for transitioning
to our proposed model known as scalar–tensor teleparallel
gravity, incorporating a boundary term.

3 Teleparallel gravity with a general form of boundary
term

In this section, we consider a Friedmann–Robertson–Walker
(FRW) universe in the context of teleparallel gravity with

a general form of boundary term, namely f (B). Thus the
proposed action can be written as1

S =
∫

[−T + f (B)] ed4x, (13)

where the quantity e is defined to be the determinant of the
tetrad eaμ, and is equivalent to the volume element of the
metric, e = √−g; T is the torsion scalar, and f (B) is an
arbitrary function of the boundary term B. We will take the
standard FRW metric as

ds2 = N 2(t)dt2

−a2(t)

(
dr2

1 − kr2 + r2(dθ2 + sin θ2dφ2)

)
, (14)

where N (t) is the lapse function, a(t) is the scale factor,
and k = 0,±1 plays the role of the three-dimensional space
constant curvature.

To continue, we must write an effective Lagrangian for
the model, and its variation with respect to the dynamical
variables leads to the appropriate equations of motion. Thus,
by taking the above action as representing a dynamical sys-
tem in which the scale factor a and boundary term B play
the role of independent dynamical variables, we can rewrite
the above action by considering the spatially flat FRW (14)
line element as

S =
∫

dtL(a, ȧ, B, Ḃ) =
∫

dt

{
Na3[−T + f (B)]

−λ

[
B + 6

N 2

(
ä

a
+ 2

ȧ2

a2 − Ṅ ȧ

Na

)] }
, (15)

where we have inserted the definition of boundary term B in
terms of scale factor a and its derivatives as a constraint in the
Lagrangian. This procedure allows us to remove the second-
order derivatives from action (15). The Lagrange multiplier
λ can be obtained by variation with respect to B, that is,
λ = Na3 f ′(B), in which a prime denotes the derivative
with respect to B. Thus, we obtain the following point-like
Lagrangian of the model

L = 6

N
aȧ2 + 6

N
a2ȧ Ḃ f ′′ + Na3( f − B f ′). (16)

To simplify this Lagrangian, we define the variable φ as
f ′(B) = φ, in terms of which the Lagrangian (16) reads

L = 6

N
aȧ2 + 6

N
a2ȧφ̇ − Na3V (φ), (17)

where we define V (φ) = B f ′ − f = Bφ − f .
To construct the Hamiltonian of the model, the momenta

conjugate to each of the above variables can be calculated
from the definition Pq = ∂L

∂q̇ . The Hamiltonian in terms of

1 Here we set c = h̄ = 16πG = 1.
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the conjugate momenta is given by

H = ȧ Pa + φ̇Pφ − L. (18)

Under this transformation the Hamiltonian can be written as

H = NH = N

[
Pa Pφ

6a2 − 1

6a3 P
2
φ + a3V (φ)

]
. (19)

We can obtain the classical dynamics that can be written by
the Hamiltonian equations as follows

ȧ = {a, H} = N

6

Pφ

a2 ,

Ṗa = {Pa, H}=N

[
1

3
a−3Pa Pφ−1

2
φa−4P2

φ−3a2V (φ)

]
,

φ̇ = {φ, H} = N

[
1

6

Pa
a2 − 1

3

Pφ

a3

]
,

Ṗφ = {Pφ, H} = N
[
−a3V ′(φ)

]
. (20)

In addition to the above equations, the Hamiltonian constraint
equation H = 0 is held. Therefore, by choosing the gauge
N = a, the classical equations of motion can read as

ȧ = 1
6a

−1Pφ, Ṗa = 1
3a

−2Pa Pφ − 1
2a

−3P2
φ − 3a3V (φ),

φ̇ = 1
6a

−1Pa − 1
3a

−2Pφ, Ṗφ = −a4V ′(φ).

(21)

The integrability of this system depends on how we choose
the form of f (B), which affects the potential V (φ) that it
determines. Thus, we should focus on this choice first. How-
ever, before choosing such a function, let us consider the
quantum cosmology of the model described above.

3.1 Quantization of the model

We will now study the quantum nature of the universe
described in the model. First, we write the WDW equation
using the Hamiltonian equation (19). Because the lapse func-
tion N is used as a Lagrange multiplier in this Hamiltonian,
the Hamiltonian constraint is H = 0. Therefore, when using
the Dirac quantization procedure, the quantum states of the
universe should be annihilated by the operator version of H,
which means that

H
(a, φ) =
[
Pa Pφ

6a2 − 1

6a3 P
2
φ + a3V (φ)

]

(a, φ) = 0,

(22)

where 
(a, φ) is the wave function of the universe. A remark
about the reduced Hamiltonian in the above procedure is the
factor-ordering problem when one embarks on constructing
a quantum mechanical operator equation. When dealing with
these types of Hamiltonians in quantum physics, care must be
taken when replacing the regular variables with their quan-
tum versions. This means that when replacing a variable and
its momentum with its operator versions, the order of the

replacements should be considered. So, to make sure the
operator is Hermitian, we can write the operator form for
Eq. (22) as
[

1

12

(
ar Paa

s + as Paa
r ) Pφ

− 1

6a3 P
2
φ + a3V (φ)

]

(a, φ) = 0, (23)

where the parameters α and β satisfy r + s = −2 denote the
ambiguity in the ordering of factors a and Pa in the first term
of (22). With the replacement Pa → −i ∂

∂a and similarly for
Pφ , the above equation reads
[

1

6
a−2 ∂2

∂a∂φ
− 1

6
a−3 ∂

∂φ

+1

6
a−3 ∂2

∂φ2 + a3V (φ)

]

(a, φ) = 0, (24)

leading to
[
aφ

∂2

∂a∂φ
+ φ

∂2

∂φ2

−φ
∂

∂φ
+ 6a6φV (φ)

]
ψ(a, φ) = 0. (25)

This equation has a combination of derivatives with respect to
the variables a and φ, and these variables also appear together
in the last part of the equation. Under these conditions, the
Eq. (25) cannot be solved by splitting it into separate parts.
Thus it is helpful to use these different variables instead:

u = a
√

φ, v = φ. (26)

In terms of these variables, Eq. (25) takes the form
[

1

4
u2 ∂2

∂u2 + 1

4
u

∂

∂u

+v
∂2

∂v2 − v
∂

∂v
+ 6u6v−2V (v)

]
ψ(u, v) = 0. (27)

Unfortunately, we cannot solve this equation using a formula
for any potential V (v) that represents the form of the function
f (B). In the next subsection, we will present a class of exact
solutions for this equation with f (B) = B2.

3.2 Quantum cosmology with the squared boundary term
f (B) = B2

By choosing f (B) = B2, we have φ = f ′(B) = 2B and
V (φ) = B f ′− f = B2. Hence, from (26) we obtain V (φ) =
1
4φ2 = 1

4v2. Therefore, Eq. (27) reduces to
[

1

4
u2 ∂2

∂u2 + 1

4
u

∂

∂u

+v
∂2

∂v2 − v
∂

∂v
+ 3

2
u6

]
ψ(u, v) = 0. (28)
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We can see that the variables u and v can be taken apart
from each other and we can solve Eq. (28) for each of them
separately. Thus, in what follows we restrict ourselves to
these two special cases. In this case we separate the solutions
of Eq. (28) into the form ψ(u, v) = U (u)W (v), leading to
[
u2 d2

du2 + u d
du + (

1 − ν2 + 6u6
)]

U (u) = 0,

[
v d2

dv2 − v d
dv

− ν2−1
4

]
W (v) = 0,

(29)

where we take ν2−1
4 as a separation constant.

The above equations have the following solutions in terms
of Bessel and hypergeometric functions for having well-
defined functions in all ranges of variables u and v:

U (u) = c1 J√
ν2−1
3

(√
2
3u

3
)

,

W (v) = vd1F1[5/4 − ν2/4, 2, v],
(30)

where c1 and d1 are integration constants. Thus, the wave
function of the WDW equation can be written as


ν(u, v) = c0v J√
ν2−1
3

(√
2

3
u3

)
F1[5/4 − ν2/4, 2, v],

(31)

where c0 is a constant. To understand the physical behav-
ior of the wave function, we plot its square in Fig. 1. This
plot shows that the wave function has a large peak near some
nonzero values of u and v, and smaller peaks after that. As the
value of u increases, the smaller peaks decrease. This means
that the wave function can predict how the universe started
from its most likely state. The wave function has a well-
defined behavior (sudden peak) near u ∼ 1, v ∼ 0.8 and
describes a universe, without a singularity problem, emerg-
ing out of nothing without any tunneling. However, when the

Fig. 1 The square of the wave function |ψ(x, y)|2

wave function has several peaks, it could mean that different
quantum states communicate with each other by tunneling.
Thus, our universe could have developed from different pos-
sible states and moved from one state to another in the past.
Bearing in mind that y = φ = f ′(B), this wave function
predicts that the universe will assume states with larger B in
its late time evolution.

4 Scalar–tensor teleparallel gravity with a boundary
term

In this section, we consider the modified teleparallel model
that incorporates a scalar field non-minimally coupled to both
torsion and the boundary term [123,127]:

S =
∫ [

f (φ)T + g(φ)B + 1

2
∂μφ∂μφ − V (φ)

]
e d4x .

(32)

In this case, V (φ) represents the potential of the scalar field,
while f (φ) and g(φ) are both functions of the scalar field
φ that exhibit smooth behavior. It is important to emphasize
that this action does not introduce a new theory, but rather
serves as a broader framework that encompasses and unifies
various existing theories. This unification is a rolling play
within the aforementioned action. To illustrate this, let us
consider the following example

f (φ) = 1 − αφ2, g(φ) = −βφ2, (33)

in which α and β are coupling constants. It is important to
highlight that by manually selecting the values of α and β,
we can recover scalar–tensor theories that are non-minimally
coupled with the torsion scalar (β = 0), as well as theories
with the boundary term (α = 0) and the quintessence theory
(α = β = 0). The latter models have been extensively exam-
ined in the scientific literature, ranging from cosmology to
astrophysical phenomena such as wormholes [128]. Addi-
tionally, the concept of traversable wormholes supported by
non-minimally coupled scalar fields was initially explored in
reference [80,81,129].

In this section, we take a minisuperspace FRW model with
choice k = 1 (closed FRW), and, considering the relation (4),
we can obtain the torsion scalar and the boundary term in the
closed FRW background as follows:

T = 6

N 2

(
− ȧ2

a2 + 1

a2

)
and B = − 6

N 2

(
ä

a
+2

ȧ2

a2 − Ṅ ȧ

Na

)
.

(34)

We consider the Hamiltonian constraint and its parametric
solutions by substituting Eqs. (14) and (33) into Eq. (32) and

introducing the variable χ =
(

aφ

2
√

3

)
. By discarding total
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time derivatives and integrating out the spatial degrees of
freedom, we obtain the following action:

S =
∫

dt

(
− ȧ2a

N
+ Na + aχ̇2

N
− N

χ2

a

)
. (35)

We set β = − 1
12 and α = 1

12 to derive the above action.
The point-like Lagrangian in the minisuperspace N , a, χ is
then given by

Lpoint-like = − ȧ2a

N
+ Na + aχ̇2

N
− N

χ2

a
. (36)

We can derive the Hamiltonian from the Legendre trans-
formation C = ȧ Pa −L, where PN does not appear because
it is the conjugate momentum of the non-dynamical variable
N . The Hamiltonian is given by

C = N

[
− P2a

4a
+ P2χ

4a
− a + χ2

a

]
= NH, (37)

where we have used Pa = − 2aȧ
N and Pχ = 2aχ̇

N as the
canonical momenta of a and χ , respectively, and C denotes
the Hamiltonian. Equation (37) implies the Hamiltonian con-
straint or the zero energy condition H= 0, which leads to the
cosmological equations. The Poisson brackets are defined as

{a, χ} = 0, {Pa, Pχ } = 0, {a, Pa} = 1 and {χ, Pχ } = 1.

(38)

From the Poisson brackets, we obtain the equations of
motion for the scale factor and the scalar field as follows:

ȧ = {a,C} = −N Pa/(2a),

Ṗa = {Pa,C} = 2N ,

χ̇ = {χ,C} = N Pχ/(2a),

Ṗχ = {Pχ,C} = −2Nχ/a. (39)

If we choose the gauge N = a, we find the following
solutions for the system:

a(t) = D sin(t),

χ(t) = D cos(t − θ0), (40)

where D and θ0 are constants. These solutions become sin-
gular at t = 0 and t = π , which correspond to the present
and future time, respectively. They are known as a Lissajous
ellipsis.

5 Quantization of the scalar–tensor teleparallel gravity
and wave packets

We will now delve into the quantum cosmology aspects of the
previously presented model. Having familiarized ourselves
with the approach for obtaining the quantized Hamiltonian,
the quantization procedure has been carried out by replacing

Pa with −i ∂
∂a and Pχ with −i ∂

∂χ
. Consequently, the WDW is

derived as Hψ = 0, which represents the operator version of
the Hamiltonian constraintH = 0 and provides a description
of the corresponding quantum cosmology. The Hamiltonian
constraint serves as a guiding principle in this context, and
is given by

H = 1

2
GABπ Aπ B + U(q) = 0. (41)

This Hamiltonian implies the WDW equation

H
 =
(

1

2
GAB

(
− i

∂

∂qA

)(
− i

∂

∂qB

)
+ U(q)

)

 = 0.(42)

Then, by defining the Laplace–Beltrami operator as

∇2 = 1√−G
∂A[√−G GAB ∂B], (43)

the final form of WDW equation reads as
(

−1

2
∇2 + U(q)

)

 = 0, (44)

where WDW metric G AB is defined by

G AB =
(−2 0

0 2

)
. (45)

Therefore, by using Eqs. (42)–(45), the WDW equation can
be expressed as

H
 =
{

∂2

∂χ2 − ∂2

∂a2 − χ2 + a2
}


 = 0. (46)

We have applied a specific factor ordering and simplified the
expression by absorbing a coefficient of

√
2 into the vari-

ables.
We can separate this partial differential equation into two

ordinary differential equations in terms of the minisuperspace
variables χ and a. The solution has the following form:


n(χ, a) = ψn(χ)ψn(a). (47)

By inserting this expression into Eq. (46) we have

d2ψn(χ)

dχ2 − χ2ψn(χ) = −Enψn(χ), (48)

and

d2ψn(a)

dχ2 − a2ψn(a) = −Enψn(a). (49)

Here, we used Ens as separation constants. The ψn(z) is
defined by expression

ψn(z) =
(

1

π

)1/4 [
Hn(z)√

2nn!
]
e−z2/2, (50)
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where Hn(z) is the well-known Hermite polynomial. The
general form of the wave packets that satisfy the WDW equa-
tion is as follows:


(χ, a) =
∑

n=even

Anψn(χ)ψn(a)

+i
∑
n=odd

Bnψn(χ)ψn(a). (51)

Moreover, to determine the solution, we need the initial wave
function and its derivative, which are given by


n(χ, 0) =
∑

n=even

Anψn(χ)ψn(0), (52)

∂
(χ, a)

∂a
|a=0 = i

∑
n=odd

Bnψn(χ)ψ́n(0). (53)

It should be noted that the coefficients An and Bn play a
crucial role in determining the initial wave function and
its derivative, respectively. In the context of a second-order
hyperbolic functional differential equation, such as Eq. (46),
these coefficients are considered to be arbitrary and inde-
pendent. However, if our objective is to construct a group of
wave packets that accurately simulate classical behavior, the
independence of Ans and Bns is no longer maintained.

Odd functions of a do not have a significant impact on
the structure of the initial wave function. However, they do
determine the slope of the wave function at a = 0. Our sub-
sequent endeavor involves examining the initial condition;
thus we focus on the differential equation for small values of
the scale factor. Substituting a = 0 into the WDW equation
yields the expression
{

∂2

∂χ2 − ∂2

∂a2 − χ2
}


 = 0. (54)

We can obtain the following differential equations by solving
this partial differential equation (PDE) with Eq. (47):

d2ξn(a)

da2 + Enξn(a) = 0, (55)

−d2ψn(χ)

dχ2 + χ2ψn(χ) = Enψn(χ). (56)

These Schrödinger-like equations have special solutions,
such as plane wave solutions for the first equation:

ξn(a) = αn cos
(√

Ena
)

+ iβn sin
(√

Ena
)

. (57)

In this expression, αn and βn are arbitrary complex num-
bers. Equation (55) is a Schrödinger equation with the energy
eigenvalue En , which corresponds to a simple harmonic
oscillator with well-known solutions. The general solution
of Eq. (54) has the form:

ψ(χ, a) =
∑

n=even

A∗
n cos(

√
Ena)ψn(χ)

+i
∑
n=odd

B∗
n sin(

√
Ena)ψn(χ). (58)

The solution above is only valid for small values of a. There-
fore, we can derive the initial wave function and its initial
slope as follows:

ψ(χ, 0) =
∑

n=even

A∗
nψn(χ), (59)

ψ ′(χ, 0) = i
∑
n=odd

B∗
n

√
Enψn(χ). (60)

We use the prime to indicate the derivative to the scale factor
a. As we stated earlier, we need to find a relation between the
coefficients to construct a wave packet with classical proper-
ties. We assume that the coefficients have the same functional
form [92,130–132]:

A∗
n = C(n) for n even,

B∗
n = C(n) for n odd, (61)

where C(n) is a function of n. Therefore, Ans and Bns are
given by

An = 1

ψn(0)
C(n) for n even,

Bn =
√
En

ψ ′
n(0)

C(n) for n odd. (62)

Note that in the above equation, without loss of general-
ity, we can impose the conditions to our initial conditions
ψn(0) �= 0 and ψ ′

n(0) �= 0. To construct the wave packet, we
have to chooseC(n) so that the initial wave function matches
the desired classical behavior.

By applying Eqs. (51) and (62), we can obtain the precise
form of the wave packet. The wave packet is given by

ψ(χ, a) =
∑

n=even

1

Hn(0)
C(n)

Hn(χ)Hn(a)

π
1
2 2nn!

e
−(a2+χ2)

2

+i
∑
n=odd

√
2n + 1

2nHn−1(0)
C(n)

Hn(χ)Hn(a)

π
1
4
√

2nn!
e

−(a2+χ2)
2 .

(63)

To simplify the calculation and maintain reasonable accu-
racy, we used only 140 terms in the summation instead of an
infinite number of terms, which is sufficient and acceptable
[133].

It is important to highlight that the coefficients used to
construct Fig. 2 result in the initial wave function exhibiting
two distinct peaks that are well separated. These peaks cor-
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Fig. 2 Left: the square of the wave packet |ψ(χ, a)|2 for C(n) =
ξn√
2nn! e

−|ξ |2
4 , ξ = |ξ |e−iθ0 , θ0 = π

8 and |ξ | = 4. Right: the contour

plot of the same figure with the classical path which inserted manually
as the thick dotted line. Note that the coefficients are chosen such that
the initial wave function has two well-separated peaks

respond to the classical values of χ at the beginning (t = 0)
and end (t = π ) of the system. Furthermore, Fig. 2 sug-
gests the presence of a smooth wave packet with a classical
behavioral crown on top of that. Figure 2 illustrates the wave

packet for a specific initial condition C(n) = ξn√
2nn!e

−|ξ |2
4 ,

where ξ = |ξ |e−iθ0 . However, it is worth noting that it is
possible to select any other suitable initial condition.

5.1 The quantum Bohmian trajectories

We have used the de Broglie–Bohm interpretation of quan-
tum mechanics to study the classical and quantum corre-
spondence. This interpretation has the advantage of showing
how classical behavior emerges naturally when the quantum
potential is negligible, as Bohm observed in 1952 [134]. We
can write the wave function in the polar form 
 = Rei S ,
where R = R(χ, a) and S = S(χ, a) are real functions of
the scale factor and the scalar field, respectively. Substituting
this wave function into Eq. (46), we obtain

− 1

R

∂2R

∂χ2 + 1

R

∂2R

∂a2 +
(

∂S

∂χ

)2

−
(

∂S

∂a

)2

+χ2 − a2 = 0,

(64)

∂2S

∂χ2 − ∂2S

∂a2 + 2

R

∂R

∂χ

∂S

∂χ
− 2

R

∂R

∂a

∂S

∂a
= 0. (65)

Then, by separating the real and imaginary parts of the wave
packet (51), we have


(χ, a) = x(χ, a) + iy(χ, a), (66)

where x and y are real functions of χ and a, which are given
by the equations

x(χ, a) =
∑

n=even

1

Hn(0)
Re[C(n)]Hn(χ)Hn(a)

π
1
2 2nn!

e
−(a2+χ2)

2

−
∑
n=odd

√
2n + 1

2nHn−1(0)
Im[C(n)]Hn(χ)Hn(a)

π
1
4
√

2nn!
e

−(a2+χ2)
2 ,

(67)

y(χ, a) =
∑
n=odd

√
2n + 1

2nHn−1(0)
Re[C(n)]Hn(χ)Hn(a)

π
1
4
√

2nn!
e

−(a2+χ2)
2

+
∑

n=even

1

Hn(0)
Im[C(n)]Hn(χ)Hn(a)

π
1
2 2nn!

e
−(a2+χ2)

2 .

(68)

Then, by a straightforward calculation, one can show that

R =
√
x2 + y2, (69)

S = arctan
( y

x

)
. (70)

We can trace the Bohmian trajectories by considering the
behavior of the scale factor and the scalar field, which are
derived by

Pχ = ∂S

∂χ
, (71)

Pa = ∂S

∂a
. (72)

The canonical momenta associated with the Lagrangian
(36) are Pχ = 2χ̇ and Pa = −2ȧ. Using the gauge choice
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N = a, we obtain

2χ̇ =
x

∂y

∂χ
− y

∂x

∂χ

x2 + y2 , (73)

2ȧ = −
x
∂y

∂a
− y

∂x

∂a
x2 + y2 . (74)

In the case of θ0 �= 0, the classical momentum is not constant
and one can indicate the classical trajectory by

P = 2D
√

sin2(t) + cos2(t − θ0). (75)

The shape of the wave packet reveals the classical momen-
tum. To see this, we apply the WKB approximation, which
relates the square of the wave function to the momentum in
the semiclassical limit:

ρ = 
∗
 ∝ 1

P
. (76)

One can infer from this equation that the probability density
is inversely proportional to P , i.e., the smaller the value of
P , the greater the probability density, and vice versa.

By utilizing the explicit form of the wave packet equa-
tions (67) and (68), one can solve these differential equa-
tions numerically to determine the time evolution of χ and a.
The lower portion of Fig. 3 illustrates the square of the wave

packet |ψ(χ, a)|2 for a specific functionC(n) = ξn√
2nn!e

−|ξ |2
4 ,

where ξ = |ξ |e−iθ0 , θ0 = π
8 , and |ξ | = 7. In the upper por-

tion of the figure, the trajectories of χ(t) and a(t) are depicted
for both classical (dashed line) and Bohmian (solid line) sce-
narios. Remarkably, the Bohmian quantities χ(t) and a(t)
obtained align closely with their classical counterparts. This
observation highlights the suppression of the quantum poten-
tial along the trajectory, which arises from the agreement
between classical and Bohmian outcomes [130].

The square of the wave packet |ψ(χ, a)|2 is depicted in
Fig. 4 along the classical (Bohmian) trajectory, which is char-
acterized by time and the inverse of the classical momentum
P−1 versus time. It is evident that the height of the wave
packet’s crest provides a qualitative representation of the
variation in classical momentum along the trajectory. The
lack of a strong correlation between these two quantities can
be attributed to the approximate nature of Eq. (76).

6 Time in the quantum cosmology of scalar–tensor
teleparallel gravity

In the preceding sections, we discussed our cosmological
framework, known as scalar–tensor teleparallel gravity. In
this section, our objective is to preserve the cosmological
constant � and the presence of a free massless scalar field

χ . To achieve this, we introduce the cosmological variables
V := a3, which serves as the canonical conjugate to the
Hubble parameter H . This relationship is expressed as

{H, V } = 1. (77)

The momentum pχ is canonically conjugated to the scalar
field χ . The cosmological constant � is canonically con-
jugated to a variable denoted as T , with a Poisson bracket
relation {T ,�} = 1 [135]. This finding challenges the con-
ventional understanding of the cosmological constant as a
fixed value in Einstein’s equation, akin to fundamental con-
stants like G. However, it is mathematically consistent to
treat � as the momentum of the variable T , even though
T does not appear in the action or Hamiltonian constraint
of the theory. As a consequence, the momentum � remains
conserved over time and manifests as a constant in the field
equations. It is important to note that this alternative for-
mulation, which introduces the canonical pair (T ,�), does
not alter the dynamics of the theory or attempt to explain
the mechanism behind dark energy. Instead, it offers a math-
ematically equivalent perspective that will become evident
from the subsequent equations derived. Consequently, the
introduction of the new parameter T provides an additional
option for a global internal time, which can be compared to
the more conventional global internal time χ .

For our aim, we insert cosmological constant � into
the constraint equation (37), and by writing it with Hubble
parameters H and N = 1 we have

C = −a3H2 + P2
χ

4a
− a + χ2

a
+ 2a3� = 0. (78)

We insert the volume V := a3 into constraint (78)

C = −V H2 + P2
χ

4V 1/3 − V 1/3 + χ2V−1/3 + 2V� = 0.

(79)

We define H to be canonically conjugate to volume
{H, V } = 1, and the cosmological constant � is canoni-
cally conjugate to a variable which we call T as {T ,�} = 1.
The new parameter T then presents to us a new option of a
global internal time. The proper time evolution of V is

dV

dτ
= {V,C} = 2V H. (80)

Therefore, one can derive the Hubble parameter H as

H = 1

2V

dV

dτ
= 1

2a3 3a2 da

dτ
. (81)

Thus, our proper time equation differs by a factor of 3
2 with

the usual H = ȧ
a , which implies that

C̃ = 3

2
C. (82)
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Fig. 3 Top: plot of χ(t) and a(t) for classical (dashed line) and Bohmian (solid line) trajectories. Bottom: the square of the wave packet |ψ(χ, a)|2
for C(n) = ξn√

2nn! e
−|ξ |2

4 , ξ = |ξ |e−iθ0 , θ0 = π
8 and |ξ | = 7

Fig. 4 The inverse of classical momentum P−1 (dashed line) and the
square of the wave packet |ψ(χ, a)|2 along the classical trajectory (solid

line) for C(n) = ξn√
2nn! e

−|ξ |2
4 , ξ = |ξ |e−iθ0 , θ0 = π

4 and |ξ | = 4

We first de-parameterize the model by using the global inter-
nal times χ . We begin by solving C = 0 for momentum Pχ

as follows:

Pχ (V, H,�, χ) = (4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)

1
2 .

(83)

In the following, we proceed with the quantization of the
model after de-parameterization. This involves the introduc-
tion of an operator denoted as pχ , which acts upon a Hilbert
space consisting of wave functions that are independent of
χ . An example of such a wave function is ψ(V, T ). For the
purpose of our semiclassical analysis, we assume that this
operator is Weyl-ordered. By employing the techniques out-
lined in references [135–137], we can calculate an effective
Hamiltonian through a formal expansion of the expectation
value as follows:

Hχ := 〈Pχ (V̂ , Ĥ , �̂, χ̂)〉 = 〈Pχ (V + (V̂ − V ), H

+(Ĥ − H),� + (�̂ − H), χ + (χ̂ − χ))

= Pχ (V, H,�, χ) +
∞∑

a1+a2+a3+a4=2

1

a1!a2!a3!a4!

× ∂a1+a2+a3+a4 Pχ (V, H,�, χ)

∂V a1∂Ha2Pχ (V,H,�,χ)∂�a3∂χa4

×�(V a1 Ha2�a3χa4). (84)

The expansions are in V̂ −V , Ĥ−H , �̂−�, and χ̂−χ . Now
the symbols V , H , �, and χ refer to expectation values of
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the corresponding operators. Note that we also used them as
symbols to indicate our basic variables. We have the moments
�(V H�χ) as independent variables, and it is symmetric
where, for example, �(H2) = �(H)2 is the square of the H -
fluctuation. When the cosmological constant is considered a
constant, the quantum state can be described as an eigenstate
of �, resulting in the vanishing of all moments that involve
�. However, despite this, we choose to retain these moments
in our equations to maintain a comprehensive approach. Our
analysis will focus solely on semiclassical approximations
of the order �, which encompasses corrections that are linear
in second-order moments or contain terms with an explicit
linear dependence on �. Higher-order moments and products
of second-order moments will be disregarded. Although the
elimination of higher-order terms may not always be explic-
itly stated, it is applicable throughout the entirety of this
paper. This approach is exemplified in our specific example.
Then we have Hχ as Eq. (98).

The expectation values and moments, viewed as functions
on the space of states, are subject to a Poisson bracket induced
by a commutator of operators. These Poisson brackets can
be obtained by following the definition and Leibniz rule:

{A, B} = 1

i�
〈[ Â, B̂]〉. (85)

With these definitions and the Leibniz rule we have

{�(H2),�(V 2)} = 4�(V H), (86)

{�(H2),�(V H)} = 2�(H2), (87)

{�(V 2),�(V H)} = −2�(V 2), (88)

{�(V 2),�(χH)} = −2�(Vχ), (89)

{�(V 2),�(�H)} = −2�(V�). (90)

Then, by following these Poisson brackets, the equations of
motion are given by Eqs. (99) and (100). Therefore, the term

dV

dχ
= {V, Hχ }, (91)

is given by Eq. (99), and

dH

dχ
= {H, Hχ } (92)

is obtained by Eq. (100).
Finally, the equations of motion for the moments

d�(V 2)

dχ
:= {�(V 2), Hχ }, (93)

are given by definition (101). These indicate that expecta-
tion values and moments are dynamically coupled. In the de-
parameterized setting, the absence of a quantum-corrected
expression for C arises from the fact that we performed the
quantization of Pχ after resolving C = 0. Consequently,
the inclusion of proper time in a de-parameterized setting
becomes ambiguous.

In the following, we introduce a new term to use a chain
rule for finding the proper time equations.

hχ := P2
χ

4V 1/3 + �(P2
χ )

4V 1/3 + 2

9
V−7/3�(V 2)

−1

6
PχV

−4/3�(V Pχ ), (94)

which leads to

dχ

dτ
= {χ, hχ } = Pχ

2V 1/3 − 1

6
V−4/3�(V Pχ ), (95)

for which one can see the full definition in Eq. (102).
Then, by using the chain rule, one can obtain the proper-

time equations as follows:

dV

dτ
= dV

dχ

dχ

dτ
= 2V H + �(. . .), (96)

and

dH

dτ
= dH

dχ

dχ

dτ
=

(
1

4V 1/3

)(
16

3
H2 3

√
V

−32�
3
√
V

3
+ 8

3 3
√
V

)
+ �(. . .). (97)

Hence, utilizing this de-parameterized approach enables us
to derive the proper-time equations for the modified telepar-
allel model. In this model, a scalar field is non-minimally
coupled to both torsion and the boundary term. It is impor-
tant to mention that we did not write the term �(. . .) and
their coefficients in the previous equations due to their exten-
sive nature. However, one can easily obtain these terms by
straightforwardly multiplying dV

dχ
, dχ

dτ
, and dH

dχ
. Note that due

to the length of the calculations in this section, we include
some of them in Appendix A.

7 Conclusion

In this work, we conducted an examination of a quantum
cosmology model within the framework of the modified
teleparallel gravity with a boundary term. First, we consid-
ered teleparallel gravity with a general form of the boundary
term and we quantized this model for the special case of
f (B) = B2. In this particular model, the wave function of
the WDW equation has the ability to forecast the initial state
of the universe based on its highest probability. Nevertheless,
in cases where the wave function exhibits multiple peaks, it
implies that various quantum states are interacting through
the process of tunneling. Consequently, it suggests that our
universe might have originated from diverse potential states
and transitioned between different states in the past. The out-
comes of this model are summarized in Fig. 1, which illus-
trates a significant peak near certain nonzero values of u and
v, followed by smaller peaks. As the value of u increases, the
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magnitude of these smaller peaks decreases. This indicates
that the wave function has the ability to predict the initial
state of the universe based on its most probable configura-
tion. However, the presence of multiple peaks in the wave
function suggests the possibility of communication between
distinct quantum states through tunneling. Consequently, it
implies that our universe could have evolved from various
potential states and transitioned between different states in
the past.

In the next section, we examine a model that includes
a scalar field non-minimally coupled to both torsion and the
boundary term. The wave packet of the closed FRW universe
was obtained for this model, and the quantization process led
to the derivation of the Hamiltonian. This Hamiltonian gave
rise to the formulation of the WDW equation, which can be
interpreted as an oscillator-ghost-oscillator differential equa-
tion with known solutions. The outcomes of this model are
illustrated in Fig. 2, showing the square of the wave packet
and the contour plot of the same graph. It is crucial to empha-
size the reliance on the coefficients used to construct Fig. 2,
which resulted in the initial wave function displaying two
distinct, well-separated peaks. These peaks correspond to the
classical values.

Following the method employed to construct the wave
packets, the Bohmian trajectories were determined through
the de Broglie–Bohm interpretation of quantum mechan-
ics. It is important to note that the Bohmian trajectories
are significantly influenced by the wave function of the sys-
tem, resulting in different trajectories based on various lin-
ear combinations of eigenfunctions. On the other hand, the
underlying WDW equation represents a second-order hyper-
bolic functional differential equation, allowing us the flexi-
bility to choose both the initial wave function and the initial
slope of the wave function. By selecting the initial conditions
thoughtfully, classical solutions were obtained. The square
of the wave packet can be seen in Fig. 4 along the clas-
sical (Bohmian) trajectory, which is characterized by time
and the inverse of the classical momentum versus time. It is
clear from Fig. 4 that the height of the wave packet’s crest
offers a qualitative representation of the variation in classical
momentum along the trajectory.

Ultimately, the issue of time was addressed, and through
the utilization of the de-parameterization technique, which
incorporates a global internal time denoted as a scalar field,
the proper time equations for the scalar–tensor teleparallel
gravity were derived within a semiclassical approach.
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Appendix A: Some calculations related to Sect. 6

In this appendix, we present several enduring equations from
the text.

Hχ =
(

4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

) 1
2

+1

4

(
16

9
V

−2
3 H2 − 8

9
V− 4

3 − 32

9
V− 2

3 �

)

×
(

4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

)− 1
2

�
(
V 2)

−1

8

(
16

9
V

−2
3 H2 − 8

9
V− 4

3 − 32

9
V− 2

3 �

)2

×
(

4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

)− 3
2

�
(
V 2)

+
[

4V
4
3

(
4V

4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

)− 1
2

+8V
8
3 H2

(
4V

4
3 H2+4V

2
3 −4χ2−8V

4
3 �

)− 3
2
]
�

(
H2)

−
[

16V
8
3

(
4V

4
3 H2+4V

2
3 − 4χ2 − 8V

4
3 �

)− 3
2
]
�

(
�2)

−
[

4

(
4V

4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

)− 1
2

+16χ2
(

4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

)− 3
2
]
�

(
χ2)

+16

3
HV

1
3

(
4V

4
3 H2+4V

2
3 −4χ2−8V

4
3 �

)− 1
2

�
(
V H

)

−2V
4
3

(
16

3
V

1
3 H2 + 8

3
V− 1

3 − 32

3
V

1
3 �

)

×
(

4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

)− 3
2

�
(
V H

)

−32

6
V

1
3

(
4V

4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

) 1
2

�
(
V�

)

+2V
4
3

(
16

3
V

1
3 H2 + 8

3
V− 1

3 − 32

3
V

1
3 �

)
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×
(

4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

)− 3
2

�
(
V�

)

−4χ

(
16

3
V

1
3 H2 + 8

3
V− 1

3 − 32

3
V

1
3 �

)

×
(

4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

)− 3
2

�
(
Vχ

)

−32HV
8
3

(
4V

4
3 H2 + 4V

2
3 − 4χ2

−8V
4
3 �

)− 3
2

�
(
H�

) − 32HχV
4
3

×
(

4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

)− 3
2

�
(
Hχ

)

−16χV
4
3

(
4V

4
3 H2 + 4V

2
3 − 4χ2

−8V
4
3 �

)− 3
2

�
(
χ�

)
. (98)

The term dV
dχ

is given by

dV

dχ
= {V, Hχ } = − 4V

4
3 H

(4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)

1
2

−
[

8H

9V 2/3
√

4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

−
HV 4/3

(
16H2

9V 2/3 − 32�
9V 2/3 − 8

9V 4/3

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

]
�(V 2)

+
[ 8H

(
16H2

9V 2/3 − 32�
9V 2/3 − 8

9V 4/3

)

9V 2/3
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

−
3HV 4/3

(
16H2

9V 2/3 − 32�
9V 2/3 − 8

9V 4/3

)2

2
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

]
�(V 2)

× 16HV 8/3

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2 �(H2)

− 16HV 8/3

(
4H2V 4/3 + 4V 2/3 − 8V 4/3 − 4χ2

)3/2 �(H2)

+ 96H3V 4

(
4H2V 4/3 + 4V 2/3 − 8V 4/3 − 4χ2

)5/2
�(H2)

− 192HV 4

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2
�(�2)

−
[

16HV 4/3

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

+ 192HV 4/3χ2

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

]
�(χ2)

+
[

64H2V 5/3

3
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

− 16 3
√
V

3
√

4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

]
�(V H)

+
[

64HV 5/3

3
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

−
24HV 8/3

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

]
�(V H)

− 192HV 8/3χ(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2
�(χ�)

+ 64HV 5/3

3
√

4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2
�(V�)

−
[

64HV 4/3

3
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

−
24HV 7/3

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

]
�(V�)

+
[

128H 3
√
Vχ

3
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

−
48HV 4/3χ

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

]
�(Vχ)

+
[

32V 8/3

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

− 384H2V 4

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

]
�(H�)

+
[

32V 4/3χ(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

− 384H2V 8/3χ(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

]
�(Hχ),

(99)

dH
dχ

is obtained by

dH

dχ
= {H, Hχ } =

16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

2
√

4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

+
[ − 32H2

27V 5/3 + 64�

27V 5/3 + 32
27V 7/3

4
√

4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

−
(

16H2

9V 2/3 − 32�
9V 2/3 − 8

9V 4/3

) (
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

8
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

]

×�(V 2)

+
[3

(
16H2

9V 2/3 − 32�
9V 2/3 − 8

9V 4/3

)2 (
16
3 H2 3

√
V− 32�

3√V
3 + 8

3 3√V

)

16
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

]

×�(V 2)
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−
[(

− 32H2

27V 5/3 + 64�

27V 5/3 + 32
27V 7/3

) (
16H2

9V 2/3 − 32�
9V 2/3 − 8

9V 4/3

)

4
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

]

×�(V 2)

+
[

64H2V 5/3

3
(
4H2V 4/3 + 4V 2/3 − 8V 4/3 − 4χ2

)3/2

−
12H2V 8/3

(
16
3 H2 3

√
V − 32 3√V

3 + 8
3 3√V

)

(
4H2V 4/3 + 4V 2/3 − 8V 4/3 − 4χ2

)5/2

]
�(H2)

+
[

16 3
√
V

3
√

4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

−
2V 4/3

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

]
�(H2)

+
[ 24V 8/3

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

− 128V 5/3

3
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

]
�(�2)

+
[ 24χ2

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

+
2

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

]
�(χ2)

+
[

16H

9V 2/3
√

4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

−
8H 3

√
V

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

3
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

]
�(V H)

+
[ 3V 4/3

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)2

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

]
�(V H)

−
[ 8 3

√
V

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

3
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

+
2V 4/3

(
16H2

9V 2/3 − 32�
9V 2/3 − 8

9V 4/3

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

]
�(V H)

−
[ 8 3

√
V

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

3
√

4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

+16
√

4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

9V 2/3

]
�(V�)

+
[ 2V 4/3

(
16H2

9V 2/3 − 32�
9V 2/3 − 8

9V 4/3

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

−
3V 4/3

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)2

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

]
�(V�)

+
[ 8 3

√
V

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

3
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

]
�(V�)

+
[ 6χ

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)2

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

−
4χ

(
16H2

9V 2/3 − 32�
9V 2/3 − 8

9V 4/3

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

]
�(Vχ)

+
[ 48HV 8/3

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

− 256HV 5/3

3
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

]
�(H�)

+
[48HV 4/3χ

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

− 128H 3
√
Vχ

3
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

]
�(Hχ)

+
[ 24V 4/3χ

(
16
3 H2 3

√
V − 32�

3√V
3 + 8

3 3√V

)

(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)5/2

− 64 3
√
Vχ

3
(
4H2V 4/3 − 8�V 4/3 + 4V 2/3 − 4χ2

)3/2

]
�(χ�),

(100)

and equations of motion for the moments are given by the
definition

d�(V 2)

dχ

:= {�(V 2), Hχ } = −4[4V 4
3 (4V

4
3 H2 + 4V

2
3 − 4χ2

−8V
4
3 �)−

1
2 + 8V

8
3 H2(4V

4
3 H2 + 4V

2
3 − 4χ2

−8V
4
3 �)−

3
2 ]�(V H) − 32

3
HV

1
3 (4V

4
3 H2 + 4V

2
3

−4χ2 − 8V
4
3 �)−

1
2 �(V 2)+4V

4
3

(
16

3
V

1
3 H2+8

3
V− 1

3

−32

3
V

1
3 �

)
(4V

4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)−

3
2

×�(V 2) + 64HV
8
3 (4V

4
3 H2 + 4V

2
3 − 4χ2

−8V
4
3 �)−

3
2 �(V�) + 64HχV

4
3 (4V

4
3 H2 + 4V

2
3

−4χ2 − 8V
4
3 �)−

3
2 �(Vχ). (101)

The term for dχ
dτ

is given by

dχ

dτ
= 1

2V 1/3 (4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)

1
2

+1

4

(
16

9
V

−2
3 H2 − 8

9
V− 4

3 − 32

9
V− 2

3 �

)

×(4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)−

1
2 �(V 2)
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−1

8

(
16

9
V

−2
3 H2 − 8

9
V− 4

3 − 32

9
V− 2

3 �

)2

×
(

4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

)− 3
2

�(V 2)

+
[

4V
4
3 (4V

4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)−

1
2

+8V
8
3 H2(4V

4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)−

3
2

]
�(H2)

−[16V
8
3 (4V

4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)−

3
2 ]

×�(�2) −
[

4(4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)−

1
2

+16χ2(4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)−

3
2

]
�(χ2)

+16

3
HV

1
3 (4V

4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)−

1
2 �(V H)

−2V
4
3

(
16

3
V

1
3 H2 + 8

3
V− 1

3 − 32

3
V

1
3 �

)

×(4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)−

3
2 �(V H)

−32

6
V

1
3 (4V

4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)

1
2 �(V�)

+2V
4
3

(
16

3
V

1
3 H2 + 8

3
V− 1

3 − 32

3
V

1
3 �

)

×
(

4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

)− 3
2

�(V�)

−4χ

(
16

3
V

1
3 H2 + 8

3
V− 1

3 − 32

3
V

1
3 �

)

×
(

4V
4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �

)− 3
2

�(Vχ)

−32HV
8
3 (4V

4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)−

3
2 �(H�)

−32HχV
4
3 (4V

4
3 H2 + 4V

2
3 − 4χ2 − 8V

4
3 �)−

3
2 �(Hχ)

−16χV
4
3 (4V

4
3 H2 + 4V

2
3 − 4 − 8V

4
3 �)−

3
2 �(χ�)χ2

−1

6
V−4/3�(V Pχ ). (102)
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