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Abstract In this paper we investigate new dyonic black
holes of massive gravity sourced by generalized quasitopo-
logical electromagnetism in arbitrary dimensions. We begin
by deriving the exact solution to the field equations defining
these black holes and look at how graviton’s mass, dimen-
sionality parameter, and quasitopological electromagnetic
field affect the horizon structure of anti-de Sitter dyonic black
holes. We also explore the asymptotic behaviour of the cur-
vature invariants at both the origin and infinity to analyze the
geometric structure of the resultant black holes. We also com-
pute the conserved and thermodynamic quantities of these
dyonic black holes with the help of established techniques
and known formulas. After investigating the relevancy of first
law, we look at how various parameters influence the local
thermodynamic stability of resultant black hole solution. We
also examine how thermal fluctuations affect the local sta-
bility of dyonic black holes in massive gravity. Finally, we
study the shadow cast of the black hole.

1 Introduction

Einstein’s theory of gravity (ETG) is a relativistic model that
describes the gravitational field. In this configuration, it is
presumed that the graviton has no mass. The ability to con-
struct a self-consistent notion of gravity in the case where
the graviton has mass is an expected question. Recent Ligo
experiment observations also imply that the graviton has a
nonzero mass [1]. Additionally, it is claimed that the Hub-
ble scale’s massive graviton may be the root cause for the
Universe’s accelerated expansion [2,3]. A family of nonlin-
ear massive gravity theories were developed in Refs. [4–6].
Note that these theories do not include ghost fields [7,8]. In
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the four dimensional massive gravity, Vegh [9] discovered a
nontrivial black hole solution with a negative cosmological
constant. This solution has also a Ricci flat horizon [10]. The
graviton’s mass was later discovered to have the same act
as lattice in case of holographic conductor model: typically,
the conductivity displays a Drude peak that resembles a delta
function when the graviton’s mass vanishes. In Refs. [11–15],
some holographic repercussions of the impact of the nonzero
graviton mass were also explored. The metal-insulator tran-
sition is another intriguing scenario that gives credibility to
the massive gravities [16]. The higher dimensional Vegh’s
black holes of massive gravity were explored in Ref. [17].

Massive gravities should be recognized as requiring not
just the dynamical metric gμν but also the fiducial refer-
ence metric fμν and non-derivative potentials �i ’s. It is
quite intriguing that a new class of massive gravities can
be developed when an appropriate choice for the metric fμν

is made [18]. For numerous fiducial metrics, including the
Minkowskian and singular reference metrics [8,19–22], the
dRGT version of massive gravity [5] emerges out to be a
ghost-free. Studies of various cosmological scenarios in mas-
sive gravity revealed that they are reliant on the selection of
the Minkowskian reference metrics [21–25]. In Refs. [26–
39], different black holes of the massive gravity and their
physical properties have recently been examined. Among
these, the anti-de Sitter black holes play a significant role
in various usages of gauge/gravity duality [10] and black
hole chemistry [40].

Recently Liu et al. introduced the quasitopological elec-
tromagnetism within the framework of Abelian gauge theo-
ries [41]. They altered the conventional Maxwellian model
by incorporating new terms into the Lagrangian. Remember
that these terms depend on the metric tensor and electromag-
netic 2 -form F[2] = d A[1]. These involve polynomials such
as
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V[2s] = F[2] ∧ F[2] ∧ · · · ∧ F[2]. (1)

The above polynomials seem like the Pontryagin densities,
and their integrals in even dimensions are truly topological.
The dynamics of the system can, however, be affected when
these 2s-forms are adopted for arbitrary dimensions. One can
attained this by using the squared norm

U (s)
[d] ∼ ∣

∣V[2s]
∣
∣2 ∼ V[2s] ∧ ∗V[2s]. (2)

Remember that the situation with s = 1 in Eq. (2) resem-
bles the standard kinetic term of Maxwell’s model. The con-
tributions of these invariants to the field equations are often
non-vanishing. The following two factors have led to the des-
ignation of this model as quasitopological electromagnetism.
First, as a result of the forms V[2s], i.e. the component pieces
of this model, have topological origin. Second, the spectra of
purely electric and magnetic solutions are in agreement with
the spectra of the solutions that correspond in Maxwell’s
theory. Investigating dyons, though, reveals amazing things.
Recently, the further development in this regard has been
examined as well so that the Abelian gauge field A[1] and
the higher-rank (s − 1)-form field B[s−1] are both taken into
account [42]. By using the relation H[s] = dB[s−1], one can
defined the field strength that relates to the value of B[s−1].
This generalized model may have several physical premises
according to the specifics of the situation. The fundamental
Kalb–Ramond 2-form B[2], the Ramond–Ramond s-forms,
or the 3-forms of the eleventh dimensional super-gravity are
some examples of higher rank fields formulating in string the-
ory. Additionally, it has been established that more prevalent
black holes can develop when the Maxwell field is coupled to
s-forms [42]. Recently, black hole configurations with scalar
hair in the background of Lovelock gravity and generalized
quasitopological electromagnetism have also been addressed
[43]. In this study, we are eager to investigate dyonic black
holes of massive gravity with generalized quasitopological
electromagnetism.

A striking illustration of this concept can be found in
the groundbreaking images of the space-time surrounding
supermassive black holes, captured by the Event Horizon
Telescope team [44]. This remarkable journey into unrav-
eling the enigmas of deep spacetime commenced in 2019
with the historic unveiling of the first image of the compact
object M87*. Continuing on this trajectory, the EHT team has
recently astounded us once again by documenting the inaugu-
ral visuals of another supermassive compact object situated
at the heart of our Milky Way galaxy-Sagittarius A* (Sgr
A*) [45]. Subsequently, numerous works have emerged in
this domain, reflecting the ongoing exploration and research
in this captivating field [46–145].

The outline of the paper is as follows. In Sect. 2, we cou-
pled massive gravity to generalized quasitopological elec-
tromagnetism and used the variational principle to construct

the updated equations of motion. In this configuration, a new
topological dyonic black hole solution of massive gravity is
generated. Section 3 addresses the thermodynamic proper-
ties of the resulting solutions. In Sect. 4, we look into how
thermal fluctuations alter the physical quantities of the black
hole. In Sect. 5, we study the shadow cast of the black hole.
Finally, Sect. 6 provides some concluding thoughts to wrap
up the paper.

2 Topological dyonic black holes

The action of the massive gravity with cosmological constant
� and generalized quasitopological electromagnetism can be
expressed as

I =
∫

dd x
√−g

[

R + m2
4

∑

i=1

ai�i (g, f) − 2� + LQT

]

,

(3)

in which LQT stands for the Lagrangian density of extended
quasitopological electromagnetic field and R signifies the
Ricci scalar. In addition, m denotes the mass of graviton, ai ’s
are the coupling constants, and �’s are signifying the non-
derivative potentials. Notably, these potentials are symmetric
polynomials that specify the eigenvalues of the d × d matrix
ζ

μ
ν = √

gμα fαν . These potentials can be addressed as

�1 = [ζ ], �2 = [ζ ]2 − [ζ 2], �3

= [ζ ]3 − 3[ζ ][ζ 2] + 2[ζ 3],
�4 = [ζ ]4 − 6[ζ 2][ζ ]2 + 8[ζ 3][ζ ] + 3[ζ 2]2 − 6[ζ 4].

(4)

The Lagrangian density of the generalized quasitopolog-
ical electromagnetism [42] is stated as

LQT = −1

4
Fρσ F

ρσ − 1

2s!Hν1ν2···νs H ν1ν2···νs − χLint , (5)

in which χ is the coupling constant and Lint designates the
interaction term, which is expressed as

Lint = δρ1···ρd
σ1···σd Fρ1ρ2 Hρ3···ρd Fσ1σ2 Hσ3···σd . (6)

Remember that the following forms are taken into consider-
ation for the formation of above Eq. (6), i.e.

Fρσ ∼ h′(r)δx0x1

ρσ ,

Hν1ν2···νs ∼ δx
2···xd

ν1ν2···νs ,
(7)

with s = d − 2, while Fμν and Hν1ν2···νs are purely electric
and purely magnetic, respectively. It is possible to obtain the
field equations characterizing quasitopological electromag-
netism through the use of Eqs. (5)–(7) in Eq. (3) as follows:

123



Eur. Phys. J. C           (2024) 84:378 Page 3 of 13   378 

∇γ F
γρ − 4χδργ ν1···νs

σ1σ2···σd Hν1···νs∇γ

(

Fσ1σ2 Hσ3···σd ) = 0, (8)

and

∇ρH
ρν1···νs−1

+2χs!δργβν1···νs−1
σ1···σd Fργ ∇β

(

Fσ1σ2 Hσ3···σd ) = 0. (9)

By varying Eq. (3) with regards to gμν , the equations of
motion of massive gravity sourced by quasitopological elec-
tromagnetic field can be derived as

Rμν − 1

2
gμνR + �gμν + m2Xμν = T(QT )

μν , (10)

with

Xμν = −a1

2

(

�1gμν − ζμν

)

−a2

2

(

�2gμν − 2�1ζμν + 2ζ 2
μν

)

− a3

2

×
(

�3gμν − 3�2ζμν + 6�1ζ
2
μν − 6ζ 3

μν

)

−a4

2

(

�4gμν − 4�3ζμν

+2�2ζ
2
μν − 24�1ζ

3
μν + 24ζ 4

μν

)

. (11)

Furthermore, the energy-momentum tensor of the quasitopo-
logical electromagnetic field is labeled by T

(QT )
μν and is spec-

ified as

T
(QT )
αβ = FαρF

ρ
β

− 1

4
gαβFρσ F

ρσ + 1

2(s − 1)!Hαν1···νs−1 H
ν1···νs−1
β

− 1

2(s!)2 δ
ν1···νsρ
σ1···σs (αgβ)ρHν1···νs Hσ1···σs + χgαβLint .

(12)

Here, we are attempting to figure out the dyonic black hole
solution of the field equations (10) by using the generalized
model of quasitopological electromagnetism. To execute this,
we are incorporating the following metric ansatz

ds2 = − f (r)dt2 + dr2

f (r)
+ r2dϒ2

d2
. (13)

Remember that we are employing d j = d − j for simplicity.
Meanwhile, dϒ2

d2
specifies the metric of the d2-dimensional

submanifold with constant curvature d2d3�, and can be pre-
sented as

dϒ2
d2

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

dθ2
1 + ∑d−2

j=2
∏ j−1

l=1 sin2 θldθ2
j , � = 1,

dθ2
1 + sinh2 θ1dθ2

2

+ sinh2 θ1
∑d−2

j=3
∏ j−1

l=2 sin2 θldθ2
j , � = −1,

∑d−2
j=1 dφ2

j , � = 0,

(14)

Remember that this sub-manifold is embellished with a mag-
netic field that is proportionated to its intrinsic volume form
such that

Hν1ν2···νm = ν
√

�δx
1···xm

ν1···νm . (15)

Similarly, for the purely electric case, we can write

Fαβ = h′(r)δtrαβ, (16)

where prime refers to the differentiation with respect to r .
Thereby, through the usage of Eqs. (15) and (16) one finds

r2d2
(

d2h
′(r) + rh′′(r)

)

−8χ(d2!)2q2(d2h
′(r) − rh′′(r)

) = 0. (17)

One may integrate the above equation to get

h′(r) = erd2

r2d2 + 8χ(d2!)2ν2 . (18)

Here the integration constants ν and e are respectively related
to magnetic and electric charges. Moreover, Eq. (18) spec-
ifies the screening of the electric field driven by the inter-
action with the magnetic part. Since the spacetime is pre-
supposed to have a d-dimensional metric (13), it is ben-
eficial to set up the extra dimensional reference metric as
fμν = Diag(0, 0, β2hi j ), with β > 0 and hi j conveying the
sector that refers to d2-dimensional submanifold in Eq. (14).

It is simple to estimate �i ’s in the form �k = βk

rk
∏k+1

j=2 d j

by employing this extended reference metric [17,146]. As
a result, by substituting Eq. (13), fiducial metric fμν , and
energy-momentum tensor (12) with Eqs. (15) and (18) in the
gravitational field equations (8), one may extract the follow-
ing solution

f (r) = � − μ

rd3
− 2�r2

d1d2

+m2
(
a1βr

d2
+ a2β

2 + a3β
3d3

r
+ a4β

4d3d4

r2

)

+ e2

2d2d3r2d3

× F1

([

1,
d3

2d2

]

,

[
3d − 7

2d2

]

,
−8χν2(�(d1))

2

r2d2

)

+ ν2

2d2d3r2d3
, (19)

where the integration constant μ refers to the geometric mass
of black hole and F1 denotes the hypergeometric function.
In four dimensional spacetimes, the resultant solution (19)
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yields a simpler form

f (r) = � − μ

r
− �r2

3

+ m2
(
a1βr

2
+ a2β

2 + a3β
3

r

)

+ ν2

4r2

+ e2

4r2 F1

([

1,
1

4

]

,

[
5

4

]

,
−32χν2

r4

)

,

(20)

which converts into four dimensional Reissner–Nordstrom
type solution of massive gravity for large values of r , i.e.,

f (r) = � − μ

r
− �r2

3

+m2
(
a1βr

2
+ a2β

2 + a3β
3

r

)

+ ν2 + e2

4r2 . (21)

The dependence of the resultant solution (19) on the geomet-
ric mass μ is shown in Fig. 1. The equation f (r) = 0 can be
utilized to figure out the inner and outer horizons. The posi-
tions of horizons correspond to those values of r at which the
curve connected to dyonic solution (19) crosses the horizon-
tal axis. Moreover, the event horizon rext and mass μext of an
extreme black hole can be worked out if one solves the equa-
tions f (r) = 0 and f ′(r) = 0, simultaneously [147]. Hence,
it is simple to obtain the geometric mass of an extreme black
hole as follows:

μext = rd3
ext

d1
[

2� + m2
(
a1βrext

d2
+ 2a2β

2 + 3a3β
3

rext
+ 4a4β

4

r2
ext

)

+ ν2

d3r
2d3
ext

+ e2

d3r
2d3
ext

×F1

([

1,
d3

2d2

]

,

[
3d − 7

2d2

]

,
−8χν2(�(d1))

2

r2d2
ext

)

+ e2r2
ext

2d2
(

r2d2
ext + 8χν2(�(d1))2

)

]

. (22)

Note that the event horizon of extreme black hole satisfies
the following equation

d3� − 2�r2
ext

d2
+ m2

(

a1βrext + d3a2β
2 + d3d4a3β

3

rext
+ d3d4d5a4β

4

r2
ext

)

− ν2

2d2r
2d3
ext

− e2r2
ext

2d2
(

r2d2
ext + 8χν2(�(d1))2

) = 0. (23)

Figure 1 shows that when geometric mass attains its extreme
value μext , the resultant dyonic black solution has only
one event horizon. The interesting scenario arises when
μ �= μext . In this case, the dyonic black holes of massive
gravity have both inner Cauchy and outer event horizons

Fig. 1 Plot of the resultant solution f (r) (Eq. (19)) for various values
of geometric mass. The other values have been taken as d = 4, � = −1,
� = −0.5, ν = 0.5, m = 0.05, e = 1, a1 = 1, a2 = 2, a3 = 1, a4 = 2,
β = 1, and χ = 1

even when μ = 0. This interesting behaviour of the met-
ric function is due to the assumption of massive graviton
in the action function. Figure 2 exhibits the behaviour of the
resultant solution in various dimensions. Notably, the horizon
structure of the resultant dyonic solution is also influenced
by the dimensionality parameter. It is demonstrated that the
higher dimensional black holes have larger Cauchy and event
horizons than the lower dimensional objects. In addition,
the impact of massive graviton on the resultant solution is
demonstrated in Fig. 3. We have noted earlier that the solu-
tion (19) describes dyonic black holes with inner and outer
horizons for any non-negative value of the black hole’s geo-
metric mass such that μ �= μext . However, there also exists
a critical value mc of graviton’s mass such that the resultant
solution describes a black hole with two horizons when the
mass of graviton is lesser than this critical value, an extreme
black hole having one horizon when the mass of graviton
takes the value mc, and naked singularity when graviton’s
mass exceeds the value mc. Similarly, electric and magnetic
charges have also unavoidable effects on the behaviour of
our resultant solution (19). Figures 4 and 5 demonstrate that
the radius of the Cauchy horizon grows when the magnitude
of these charges increases, however, the location of the outer
horizon remains unchanged.

The Ricci and Kretschmann invariants that correlate with
Eq. (13) are stated as

R(r) = (d2 − 5d + 6)
(� − f (r))

r2 − d2 f

dr2 − 2d2

r

d f

dr
,

(24)

and

K (r) = 2d2d3
(k − f (r))2

r4 −
(
d2 f

dr2

)2

+ 2d2

r2

(
d f

dr

)2

.

(25)
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Fig. 2 Plot of the resultant solution f (r) (Eq. (19)) in various dimen-
sions. The other values have been taken as μ = 1, � = −1, � = −0.5,
ν = 0.5, m = 0.05, e = 1, a1 = 1, a2 = 2, a3 = 1, a4 = 2, β = 1, and
χ = 1

Fig. 3 Dependence of the resultant solution f (r) (Eq. (19)) on the
graviton’s mass. The other values have been taken as d = 6, � = −1,
� = −0.5, ν = 0.5, μ = 1, e = 1, a1 = 1, a2 = 2, a3 = 1, a4 = 2,
β = 1, and χ = 1

Fig. 4 Impact of the magnetic charge on the resultant solution f (r)
(Eq. (19)). The other values have been taken as d = 6, � = −1,
� = −0.3, μ = 1, m = 0.05, e = 1, a1 = 1, a2 = 2, a3 = 1, a4 = 2,
β = 1, and χ = 1

Hence, using the resultant solution (19) in Eqs. (24)–(25),
one can show that

lim
r→∞ R(r) = 2d

d2
�, lim

r→∞ K (r) = 8d

d1d2
2

�2. (26)

Fig. 5 Behaviour of the resultant solution f (r) (Eq. (19)) for various
values of the electric charge. The other values have been taken as d = 6,
� = −1, � = −0.3, ν = 2.5, m = 0.05, μ = 1, a1 = 1, a2 = 2,
a3 = 1, a4 = 2, β = 1, and χ = 1

Similarly, it can also be shown that

lim
r→0

R(r) → ∞,

lim
r→0

K (r) → ∞.
(27)

The irregular behaviour of these curvature invariants at r = 0
indicates the presence of a true curvature singularity at this
position. Hence, Eqs. (26) shows that the metric function (19)
describes the new family of non-asymptotically flat black
holes of massive gravity sourced by generalized quasitopo-
logical electromagnetism. It should also be remembered that
the metric function (19) reduces to the higher dimensional
dyonic solution of ETG [42] when one puts m = 0.

3 Thermodynamics of dyonic black holes

Now we seek to figure out the thermodynamic and conserved
quantities of the resultant dyonic black holes (19). From
f (r+) = 0, it is feasible to exhibit the finite mass as

M = d2μ�d2

2
= d2�d2

2

[

�rd3+ − 2�

d1d2
rd1+ + ν2

2d2d3r
d3+

+ e2

2d2d3r
d3+

F1

([

1,
d3

2d2

]

,

[
3d2 − 1

2d2

]

,
−8χν2(�(d1))

2

r2d2+

)

+ m2
(
a1β

d2
rd2+ + a2β

2rd3+ +d3a3β
3rd4+ + d3d4a4β

4rd5+
)]

.

(28)

Note that �d2 labels the volume of d2-dimensional hyper-
surface. Calculation of Hawking temperature is crucial in
order to gain insight into the thermodynamic behaviour of
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Fig. 6 Behaviour of temperature (Eq. (31)) in various spacetime
dimensions. The other parameters are fixed as � = −0.3, ν = 2.5,
e = 10, m = 0.1, � = −1, a1 = 1, a2 = 2, a3 = 1, a4 = 2, β = 1,
and χ = 1

Fig. 7 Dependence of T (r+) (Eq. (31)) on graviton’s mass. The other
parameters are fixed as � = −0.3, ν = 2.5, e = 10, d = 7, � = −1,
a1 = 1, a2 = 2, a3 = 1, a4 = 2, β = 1, and χ = 1

the dyonic black holes provided by Eq. (19). Hence, one
might utilize the terminology

T = κs

2π
, (29)

where the quantity κs refers to the surface gravity and is
specified as

κs =
√

−1

2
(∇αXβ)(∇αX β). (30)

Here Xα symbolizes the time-like Killing vector field.
Thereby, one may get to

T (r+) = 1

4π

[
�d3

r+
− 2�r+

d2
− ν2

2d2r
2d−5+

− e2r+
2d2

(

r2d2+ + 8χν2(�(d1))2
)

+ m2
(

a1β + a2β
2d3

r+
+ d4d3a3β

3

r2+
+ d3d4d5a4β

4

r3+

)]

.

(31)

Figure 6 demonstrates that the event horizon rext of
extreme black hole (i.e. for which T (rext ) = 0) is grow-
ing larger when the dimensions of spacetime rise. Simi-

Fig. 8 Plot of T (r+) (Eq. (31)) for various values of magnetic charge.
The fixed values are chosen as � = −0.3, m = 0.05, e = 10, d = 5,
� = −1, a1 = 1, a2 = 2, a3 = 1, a4 = 2, β = 1, and χ = 1

Fig. 9 Impact of electric charge on T (r+) (Eq. (31)) for � = −0.3,
m = 0.05, q = 0.5, d = 5, � = −1, a1 = 1, a2 = 2, a3 = 1, a4 = 2,
β = 1, and χ = 1

larly, Fig. 7 illustrates how graviton’s mass influences T (r+).
Those values of r+ at which T (r+) flips from negative to a
positive sign correspond to first-order phase transition points.
In addition, the positivity of T (r+) suggests the physicality
of resultant dyonic black hole (19). It is also observed that
the four-dimensional dyonic black holes are more physical
than the higher dimensional objects. Likewise, as the mass of
graviton rises, the region concerning to physicality of objects
widens. Moreover, one can witness the implications of the
charges ν and e on T (r+) in Figs. 8 and 9, respectively.
It is portrayed that the extreme black hole’s horizon radius
ascends and first-order phase transition points shift to right
when the magnitudes of these charges go up. It is vital to
remember that when m = 0, the temperature of dyonic black
hole in ETG is regained. Correspondingly, when ν and e
are vanishing, the Hawking temperature of the neutral black
holes of massive gravity in diverse dimensions would be
encountered.

By utilizing the area law [148–150], the entropy of the
dyonic black hole (19) can be figured out as

S = �d2r
d2+

4
. (32)
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The electric and magnetic charges can be estimated by
employing the fluxes of F[2] and H[d2] at infinity, respec-
tively. Hence, one may introduce

e ∼
∫

∗F[2],

ν ∼
∫

H[d2],
(33)

with appropriate constants of proportionality. If e and ν are
considered as extensive thermodynamic variables then it is
easier to showcase the first law as

dM = TdS + �ede + �νdν, (34)

where the conjugate quantities that correspond to e and ν can
be respectively presented as

�e = e�d2

2d2d3r
d3+
F1

([

1,
d3

2d2

]

,

[
3d − 7

2d2

]

,
−8χν2(�(d1))

2

r2d2+

)

,

(35)

and

�ν = ν2�d2

2d3r
d3+

+ e2�d2r
d1+

2d2ν
(

r2d2+ + 8χν2(�(d1))2
)

− e2�d2

2d2νrd3+
F1

([

1,
d3

2d2

]

,

[
3d − 7

2d2

]

,
−8χν2(�(d1))2

r2d2+

)

.

(36)

The heat capacity can be defined as

CH = T (r+)
∂S

∂r+

(
∂T

∂r+

)−1∣
∣
∣
∣
e,ν

. (37)

Therefore, by plugging Eqs. (31) and (32) into Eq. (37), one
gets

CH = d2�d2r
d2+

[

�d2d3r2+ − 2�r4+ + H1(r+)
]

[

H2(r+) − 4�d2d3r2+ − 8�r4+
] , (38)

where

H1(r+) = d2m
2
(

a1βr
3+ + a2β

2d3r
2+ + d3d4a3β

3r+

+ d3d4d5a4β
4
)

− ν2

2r2d4+
− e2r4+

2
(

r2d2+ + 8χν2(�(d1))2
) ,

(39)

Fig. 10 Behaviour of heat capacity (Eq. (38)) in various spacetime
dimensions. The other parameters are fixed as � = −0.3, ν = 0.5,
e = 10, m = 0.05, � = −1, a1 = 1, a2 = 2, a3 = 1, a4 = 2, β = 1,
and χ = 1

Fig. 11 Dependence of heat capacity (Eq. (38)) on the graviton’s mass
various. The other parameters are fixed as � = −0.3, ν = 0.5, e = 10,
d = 6, � = −1, a1 = 1, a2 = 2, a3 = 1, a4 = 2, β = 1, and χ = 1

and

H2(r+) = (4d − 10)ν2

r2d4+

+ 2e2r4+
(

(2d − 3)r2d2+ − 8χν2(�(d1))
2
)

(

r2d2+ + 8χν2(�(d1))2
)2

− 4d2m
2
(

a2β
2d3r

2+ + 2d3d4a3β
3r+ + 3d3d4d5a4β

4
)

.

(40)

Figures 10, 11, 12, and 13 illustrate the plots of heat
capacity for several values of the dimensionality parame-
ter, graviton’s mass, magnetic charge, and electric charge,
respectively. The region of positive heat capacity conveys
the local stability of the resultant dyonic black hole of mas-
sive gravity. The points at which the curves linked toCH (r+)

meet with the r+-axis reflect the appearance of the first-order
phase transitions, whereas the points at which this quantity
is not regular reveal the emergence of second-order phase
transitions. It is detected that heat capacity has two singular
points, let us call them r1 and r2 such that r2 > r1. The smaller
black holes whose horizon radii falls in (0, r1) are stable. The
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Fig. 12 Plot of CH (r+) (Eq. (38)) for various values of magnetic
charge. Additionally, we have selected � = −0.3, d = 6, e = 10,
m = 0.8, � = −1, a1 = 1, a2 = 2, a3 = 1, a4 = 2, β = 1, and χ = 1

Fig. 13 Plot ofCH (r+) (Eq. (38)) for various values of electric charge.
The other parameters are fixed as � = −0.3, d = 6, ν = 2.5, m = 0.8,
� = −1, a1 = 1, a2 = 2, a3 = 1, a4 = 2, β = 1, and χ = 1

black hole whose event horizon radius belong to the inter-
val (r1, r2), however, is locally unstable. Besides, the objects
of larger sizes with horizon radii in the range (r2,∞) are
locally stable. Additionally, it has been recognized that when
the magnitudes of electric and magnetic charges increase, r1

grows while r2 shrinks. It is also noteworthy to point out that
the situation m = 0 in Eq. (38) refers to heat capacity of
dyonic black holes in ETG, whereas by plugging e = ν = 0
in this equation leads to the heat capacity of neutral black
holes in massive gravity.

4 Thermal fluctuations

Here, we are looking into how thermal fluctuations may
affect the local thermodynamic stability of resultant dyonic
black holes (19). The effects of thermal fluctuations leads
to the extended forms of various thermodynamic quanti-
ties, however, some quantities remain unaltered. The black
hole entropy when encounters first-order correction becomes

proportional to lnCV T 2 with

(

CV = 1
T 2

∂2S1
∂ζ 2

)

ζ=ζ0

and

ζ = 1/T [151]. Following [152–156], one may express

S0 = 1

T 2

(
∂2S1

∂ζ 2

)

ζ=ζ0

. (41)

Remember that S0 reflects the uncorrected entropy while S1

signifies the modified entropy as a result of thermal fluctua-
tions. This allows us to express the corrected entropy as

S1 = S0 − 1

2
ln

(

S0T
2
)

. (42)

It is also beneficial to introduce a correction parameter ξ in
the second term of Eq. (42). Thereby, the modified entropy
can be stated as

S1 = S0 − ξ

2
ln

(

S0T
2
)

. (43)

Thus by using Eq. (32) one can get

S1 = rd2+ �d2

4
− ξ

2
log

(
rd2+ �d2

4

)

− ξ log T (r+), (44)

in which T (r+) is the Hawking temperature of the dyonic
black hole calculated in Eq. (31). It is crucial to notice that one
of those entities that logarithmic correction cannot change is
temperature. The Helmholtz free energy is defined by the
equation

F = −
∫

S1dT = −
∫ [

rd2+ �d2

4

− ξ

2
log

(
rd2+ �d2

4

)

− ξ log T (r+)

]

H3(r+)dr+,

(45)

where

H3(r+) = −�d3

r2+
− 2�

d2

−m2

r4+

(

a2β
2d3r

2+ + 2d3d4a3β
3r+ + 3d3d4d5a4β

4)

+ (2d − 5)ν2

2d2r
2d2+

+ e2
(

(2d − 3)r2d2+ − 8χν2(�(d1))
2
)

(

r2d2+ + 8χν2(�(d1))2
)2 .

(46)

Likewise, the corrected mass is obtained as

M1 = F + T S1 = F + 1

4π

[
�d3

r+
− 2�r+

d2

− e2r+
2d2

(

r2d2+ + 8χν2(�(d1))2
) − ν2

2d2r
2d−5+

+m2
(

a1β + a2β
2d3

r+
+ d4d3a3β

3

r2+
+ d3d4d5a4β

4

r3+

)]

×
[
rd2+ �d2

4
− ξ

2
log

(
rd2+ �d2

4

)

− ξT (r+)

]

.

(47)
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Fig. 14 Plot of CH (r+) (Eq. (38)) for various values of ξ . The rest of
the parameters are chosen as follows: � = −0.3, �d2 = 1, e = 10,
d = 6, ν = 2.5, m = 0.8, � = −1, a1 = 1, a2 = 2, a3 = 1, a4 = 2,
β = 1, and χ = 1

Thereby, the corrected heat capacity can be obtained as fol-
lows

C1(r+) = dM1

dT
= T

dS1

dT

=
(

d2�d2r
d2+ − 2ξ

)

d2�d2r
d2+

CH (r+) − ξ, (48)

where CH is defined by Eq. (38).
Note that the substitution ξ = 0 gives us the heat capacity

CH from Eq. (48). The impact of thermal fluctuation param-
eter on corrected heat capacity is pictured in Fig. 14. The sta-
bility of dyonic black holes provided by Eq. (19) is reported
to be seriously impacted by the logarithmic correction in
entropy, while the phase transitions of the black holes are
unaffected by thermal fluctuations.

5 Shadow cast of dyonic black holes of massive gravity
sourced by quasitopological electromagnetic field

Here, we explore the shadow cast by dyonic black holes that
arise from massive gravity in four dimensions. These black
holes are influenced by a quasitopological electromagnetic
field.

The Lagrangian denoted as L(x, ẋ) = gμν

2 ẋμ ẋν , which
governs the paths taken by geodesics within a spacetime
metric characterized by spherically symmetric and static
attributes [159]

L(x, ẋ) = 1

2

(

f (r)ṫ2 − f (r)−1ṙ2 − r2
(

θ̇2 + sin2 θφ̇2
))

.

(49)

As is customary, employing the Euler–Lagrange equation
d
dλ

(
∂L
∂ ẋμ

)

− ∂L
∂xμ = 0 In the plane along the equator (θ =

π/2), two quantities remain conserved: the energy denoted

as E and the angular momentum represented by L

E = f (r)ṫ, L = r2φ̇. (50)

Upon considering the equation governing null-geodesics for
light, we arrive at:

f (r)ṫ2 − f (r)−1ṙ2 + r2φ̇2 = 0. (51)

Substituting the conserved quantities E and L , as indicated in
Eq. (50), into the aforementioned Eq. (51), yields the ensuing
orbit equation for photons:

(
dr

dφ

)2

= r2 f (r)

(
r2

f (r)

E2

L2 − 1

)

. (52)

and the potential is written as

(
dr

dφ

)2

= Vef f , (53)

with

Vef f = r4
(
E2

L2 − f (r)

r2

)

. (54)

Considering that the orbit equation exclusively relies on the
impact parameter b = L/E at the juncture where the trajec-
tory shifts (r = rph), we are obliged to impose the criteria
dr/ dφ|rph = 0 or equivalently Vef f = 0, V ′

e f f = 0, as
discussed in reference [157,158]. This leads to the subse-
quent relationship for the impact parameter at the turning
point:

b−2 = f (rph)

r2
ph

. (55)

To determine the radius rph of the photon sphere, it is nec-
essary to enforce the requirements dr/ dφ|rph = 0 and

d2r/dφ2|rph = 0. This results in the subsequent equations:

d

dr

(
r2

f (r)

)

rph

= 0, (56)

f ′ (rph
)

f
(

rph
) − 2

rph
= 0. (57)

By substituting Eq. (55) into Eqs. (56) and (57), one can
straightforwardly ascertain the position of the photon sphere
rph and the pivotal impact parameter bcrit . Consequently, the
structure of Eq. (52) can be reformulated as:

(
dr

dφ

)2

=
(

r4 f (rph)

r2
ph

− r2 f (r)

)

. (58)

When computing the shadow radius Rsh as perceived by an
observer positioned at r0, it is conventional to utilize the
angle αsh formed between the trajectory of the light ray and
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Fig. 15 Shadow cast by the black hole, with varying parameter ν. The
rest of the parameters are chosen as follows: � = 0, e = 1, d = 4„
m = 0.8, μ = 2, � = −1, a1 = a2 = a3 = a4 = 1, β = 1, and χ = 1

the radial direction, in the subsequent manner [157]:

cot θsh = 1
√

f (r)r2

dr

dφ

∣
∣
∣
∣
∣
r=r0

. (59)

and

cot2 θsh = r2
0 f (rph)

r2
ph f (r0)

− 1, (60)

in which1 and using bcr of (55), gives

sin2 θsh = b2
cr f (r0)

r2
0

. (61)

The shadow radius of the black hole concerning a station-
ary observer at r0 is given by:

Rsh = r0 sin θsh =
√
√
√
√

r2
ph f (r0)

f
(

rph
) , (62)

where for a static observer at far away distance reads as

Rsh = rph
√

f
(

rph
)

(63)

Since in limit r0 → ∞, then f (r0) → 1.
We have now reached a point where we can effectively

elucidate the influence of the underlying parameter ν on
the dimensions of the shadow radius within a framework
of spherical symmetry. In Fig. 15, we depict the shadows
produced by varying values of ν. Figure 15 shows the influ-
ence of the magnetic charge on the radius of the shadow. It
becomes clear that the parameter ν plays a pivotal role in
diminishing the size of the shadow until ν reaches a value
of 1.8. Beyond this threshold, a remarkable and rapid expan-
sion of the shadow becomes evident. It is clearly shown that

1 sin2 θsh = (1 + cot2 θsh)
−1.

Fig. 16 The shaded regions in dark gray and light gray correspond to
the areas consistent with the Event Horizon Telescope (EHT) horizon-
scale image of Sgr A* at 1σ and 2σ confidence levels, respectively for
� = 0, e = 1, d = 4„ m = 0.8, μ = 2, � = −1, a1 = a2 = 0,
a3 = a4 = 1, β = 1, and χ = 1

the shadow radius decreases when ν is increased, up to a
certain value, and then increases when ν is increased. Fig-
ure 16 displays the variation of the shadow radius concern-
ing the parameter ν in the black hole (solid curve) regimes.
Additionally, the graph incorporates constraints derived from
observational data, specifically the Event Horizon Telescope
(EHT) image of Sgr A*.

6 Summary and conclusion

In this study, we have investigated dyonic black holes of
massive gravity sourced by quasitopological electromagnetic
field in diverse dimensions. First, we have figured out the
exact solution of the field equations and looked at how the
graviton’s mass, dimensionality parameter, and electromag-
netic charges affected its geometrical properties. We have
concluded that the solution (19) describes dyonic black holes
with inner and outer horizons for any non-negative value of
the black hole’s geometric mass such that μ �= μext . Cor-
respondingly, when μ = μext , the dyonic black hole has a
single event horizon. Additionally, there also exists a critical
value mc of the graviton’s mass for which the solution (19)
has been demonstrated to describe black holes with inner
and outer horizons for m < mc, an extreme black hole for
m = mc, and naked singularities for m > mc. We have
also revealed that as the dimensionality parameter rises, the
radii of inner and outer horizons grow. Meanwhile, when
the magnitudes of charges ν and e are on the rise, the inner
horizon broadens while the outer horizon remains unaltered.
Furthermore, the solution addressing d-dimensional dyonic
black holes of ETG can be deduced if one plugs m = 0 in
Eq. (19). Similarly, the neutral black holes of massive gravity
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would be recovered by putting e = ν = 0 in the resultant
solution.

Next, we have examined thermodynamic properties of
dyonic black holes and their local stability. It is concluded
that based on the behaviour of temperature and selection of
the graviton’s mass, electric and magnetic charges, and the
dimensionality parameter, the smaller black holes may not
be physical while the larger black holes are physical. We
also noticed that the horizon radii of extreme black holes are
profoundly affected by variation of these parameters. Addi-
tionally, the first law of thermodynamics for the dyonic black
holes of (19) was also presented. Regarding the investigation
of local thermodynamic stability, we realized that there exists
two singular points r1 and r2 at which heat capacity is infi-
nite. These divergences correlate to second-order phase tran-
sitions of black holes. We have encountered that the zones
of local stability are (0, r1) and (r2,∞). However, the black
holes whose outer horizon radii belong to (r1, r2) are locally
unstable. In addition, the horizon of extreme black hole are
shown to be greater in higher spacetime dimensions. It has
also been noted that the charges ν and e have a significant
impact on the regions of local stability and phase transition
points. For instance, as the magnitudes of electric and mag-
netic charges are on rise, r1 grows while r2 shrinks. We have
additionally looked at how thermal fluctuations alter the ther-
modynamic quantities of the resultant dyonic black holes of
massive gravity. By employing the logarithmic correction to
the entropy of black hole, it became apparent that though
the phase transition points do not depend on this correction,
the zones of local stability are highly influenced by chang-
ing the values of ξ . Last, we are now poised to uncover the
impact of the parameter ν on the spherical symmetry shadow
size. In Fig. 15, shadows are displayed for various ν values.
Evidently, as ν increases, the shadow size initially decreases
until reaching ν = 1.8 after which it rapidly expands.

Study of the phenomenas such as critical behaviour, quasi-
normal modes, quantum evaporation and shadow cast of the
resultant dyonic black holes could be attractive. One can
also explore that how quasitopological electromagnetic field
affects the physical properties of rotating black branes of
massive gravity. Accordingly, physical characteristics of the
black holes of other modified gravities within the framework
of quasitopological electromagnetism may also be relevant.
These concepts have been set aside for our upcoming work.
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