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Abstract We compute the counterterms necessary for the
renormalization of the one-loop effective action of massive
gravity from a worldline perspective. This is achieved by
employing the recently proposed massive N = 4 spinning
particle model to describe the propagation of the massive
graviton on those backgrounds that solve the Einstein equa-
tions without cosmological constant, namely on Ricci-flat
manifolds, in four dimensions. The model is extended to
be consistent in D spacetime dimensions by relaxing the
gauging of the full SO(4) R-symmetry group to a parabolic
subgroup, together with the inclusion of a suitable Chern–
Simons term. Then, constructing the worldline path integral
on the one-dimensional torus allows for the correct calcula-
tion of the one-loop divergencies in arbitrary D dimensions.
Our primary contribution is the determination of the Seleey–
DeWitt coefficients up to the fourth coefficient a3(D), which
to our knowledge has never been reported in the literature.
Its calculation is generally laborious on the quantum field
theory side, as a general formula for these coefficients is
not available for operators that are non-minimal in the heat
kernel sense. This work illustrates the computational effi-
ciency of worldline methods in this regard. Heat kernel coef-
ficients characterize linearized massive gravity in a gauge-
independent manner due to the on-shell condition of the back-
ground on which the graviton propagates. They could serve as
a benchmark for verifying alternative approaches to massive
gravity, and, for this reason, their precise expression should
be known explicitly.
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1 Introduction

Massive gravity has garnered considerable interest in theo-
retical physics as a compelling modification of the gravita-
tional theory since its first formulation by Fierz and Pauli in
1939 [1,2]. The investigation of this subject reached a pinna-
cle in recent years with the establishment of a well-defined
non-linear theory known as dRGT theory [3–5]. Alongside
these advancements, significant effort has also been devoted
to investigating the quantum aspects of massive gravity, par-
ticularly in computing the one-loop divergences [6,7]. It is
not surprising that massive gravity, like general relativity,
is a non-renormalizable theory, given that its Lagrangian is
constructed based on the Einstein–Hilbert one, which is well
known to produce diverging terms at one-loop that cannot be
absorbed into the parameters of the action [8–11]. A viable
approach to address the problem involves focusing on the
theory at the linear level, namely on the Fierz-Pauli (FP) the-
ory. In its simplest form, the FP theory is characterized by a
relativistic action for a massive spin 2 particle on a flat space-
time and can be consistently extended to describe a massive
graviton propagating on a curved Einstein background [12].
This formulation of linearized massive gravity may serve as
the starting point to investigate several aspects of the quantum
behavior of the theory. A prominent example of such a possi-
bility is represented by the study of the vDVZ discontinuity,
which arises when taking the massless limit already at the
classical level [13,14]. Interestingly, even in cases where the
vDVZ discontinuity seems absent at the classical level, it has
been shown to reappear at the quantum level. For instance,
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this has been established by calculating the one-loop gravi-
ton vacuum amplitude for a massive graviton and showing
that it does not reproduce the result for the massless case
in the limit m → 0 [15]. More recently, and most relevant
to the subject of this work, the heat kernel coefficients up to
the third coefficient a2(D) of linearized massive gravity have
been computed in [16], providing the tools for an in-depth
exploration of the quantum theory at the one-loop level.

In this work, our goal is to reproduce and extend these
results by evaluating the one-loop divergences of massive
gravity through a worldline approach. Recently, a world-
line representation of the massive graviton has been real-
ized relying on the so-called O(N ) spinning particle mod-
els. These mechanical models have proved to be successful in
achieving a first-quantized formulation of quantum field the-
ories (QFT), describing the propagation of particles with spin
s = N

2 in four spacetime dimensions, offering an alternative
perspective to conventional second-quantized field theories
[17–19]. The coupling of such models to curved backgrounds
faced various challenges until an approach based on BRST
quantization was successfully applied for the description of
Yang–Mills [20] and Einstein gravity [21] by means of the
N = 2 and N = 4 supersymmetric spinning models, respec-
tively. Subsequently, this approach has been applied to the
case of massive gravity using the massive N = 4 spinning
particle [22]. The mass was introduced through a dimen-
sional reduction à laKaluza–Klein of the higher-dimensional
massless model – see [23,24] for similar applications – pro-
viding a first-quantized description for a massive graviton
propagating on a curved background. To be more precise,
the worldline model furnishes a first-quantized formulation
of the linear theory of massive gravity from the QFT side,
which describes the propagation of massive spin 2 particle on
a non-flat background. Along the way, one finds that quan-
tum consistency of the model requires the background metric
to satisfy Einstein’s equations of motion with cosmological
constant set to zero. A crucial aspect of the derivation hinges
on recognizing that the associated BRST system is consis-
tent only upon a suitable truncation of the BRST extended
Hilbert space. This raises serious challenges when attempt-
ing to construct the worldline path integral on the circle. In
particular, it turns out that all the unwanted states are in prin-
ciple allowed to propagate in the loop. Therefore, finding the
correct method to implement the projection on the massive
gravity contribution becomes essential.

This is the issue we propose to solve in this note by adopt-
ing a similar approach to that employed for the pure gravity
case in [25], where the problem was addressed by modify-
ing the measure on the moduli space, left over by the gauge-
fixing, in such a way to project the full Hilbert space to the one
of the spin 2 particle. This modification ensures that the gravi-
ton remains as the sole propagating degree of freedom. To
test the model, we couple it to a curved Ricci-flat background

and construct the path integral on the one-dimensional torus,
providing a worldline representation of the one-loop effec-
tive action of massive gravity. In this way, it is possible to
compute the diverging part of the effective action through the
determination of the Seleey–DeWitt (SdW) coefficients. We
extend previous calculations up to the fourth heat kernel coef-
ficient, commonly referred to as a3(D), which parametrizes
a class of divergences that start to appear in D ≥ 6 dimen-
sions and which was previously not known in the literature.
Let us emphasize that the diverging terms in the one-loop
effective action, evaluated on-shell, are gauge-independent
and characterize unambiguously the linearized theory. There-
fore, they could serve as a benchmark for verifying alternative
approaches to massive gravity, and their precise expression
should be known explicitly.

The paper is organized as follows. In Sect. 2 we review the
free massive N = 4 spinning particle model and its quanti-
zation on the circle. We specifically focus on how different
gaugings of the internal R-symmetry group allow for extract-
ing different degrees of freedom. Eventually, we are able to
modify the measure on the moduli space to project into the
massive graviton state and extend the analysis to D space-
time dimensions. In Sect. 3 we provide a representation of the
one-loop effective action of massive gravity in the worldline
formalism and compute the on-shell counterterms related to
the coefficients an(D) for n = 0, 1, 2, 3, providing a com-
parison with the existing literature. Finally, our conclusions
are presented in Sect. 4.

2 Extracting degrees of freedom

In this section, the quantization on the circle of the free mas-
sive N = 4 spinning particle with various gaugings of the
SO(4) R-symmetry is analyzed. The aim is to determine how
the path integral extracts physical degrees of freedom from
the Hilbert space. Once this is established, it will be possible
to isolate specifically the degrees of freedom associated with
the massive graviton.

The graded phase space of the massless N = 4 super-
symmetric worldline model consists of bosonic (xM , pM )

and fermionic (�M
I ) coordinates, where M = 0, . . . , D is a

spacetime vector index and I = 1, 2, 3, 4 is a SO(4) internal
index. The target space is a (D+1)-dimensional Minkowski
space MD+1 and t denotes a parameter that labels positions
along the worldline, which is embedded in spacetime by the
functions xM (t). The phase space action is given by

S =
∫

dt

[
pM ẋM + i

2
�I

M�̇M
I − e

2
H − i X I QI

]
(2.1)

with (e,X ) being a one-dimensional supergravity multiplet
enforcing the first-class constraints (H, Q) that generate
through Poisson brackets the N = 4 superalgebra on the
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worldline

{QI , QJ }PB = −2i δI J H {QI ,H}PB = 0. (2.2)

The latter algebra is computed by using the graded Poisson
brackets of the phase space coordinates {xM , pN }PB = δMN
and {�I

M , �N
J }PB = −iδNMδ IJ , fixed by the symplectic term of

the action [26]. The constraints H := p2 and QI := �M
I pM

must be introduced to ensure the mass-shell condition and to
remove unphysical degrees of freedom, eliminating negative
norm states. From the latter higher-dimensional theory, the
lower-dimensionalmassivemodel is derived as follows. First,
it is convenient to take complex combinations of the original
four real Grassman variables �M

I (t) and the four gravitinos
X I (t) as follows (i = 1, 2)

ξM
i := 1√

2
(�M

i + i �M
i+2) , ξ̄Mi := 1√

2
(�M

i − i �M
i+2) ,

χi := 1√
2
(Xi + i Xi+2) , χ̄ i := 1√

2
(Xi − i Xi+2) .

(2.3)

Then, employing the so-called Scherk-Schwarz mechanism
[27], the model is dimensionally reduced on a flat spacetime
of the form MD × S1. In practice, one gauges the compact
direction xD , corresponding to S1, by imposing the first-class
constraint pD = m while setting

xM = (xμ, xD) , pM = (pμ, pD) , ξM
i = (ψ

μ
i , θi ) ,

ξ̄Mi = (ψ̄μi , θ̄ i ). (2.4)

We refer the reader to [22,24] for further details on the deriva-
tion. The worldline phase space action of the massive N = 4
spinning particle is given by

S =
∫

dt

[
pμ ẋ

μ + iψ̄μ · ψ̇μ + i θ̄ · θ̇

− e

2
H − iχ · q̄ − i χ̄ · q

]
(2.5)

where a dot indicates a contraction of the internal indices. The
worldline action (2.5) displays many symmetries. Specifi-
cally, the local symmetries are worldline reparametrizations
generated by the Hamiltonian (H) and four worldline super-
symmetries generated by the supercharges (q, q̄), where

H := pμ pμ + m2

qi := ψ
μ
i pμ + mθi q̄ i := ψ̄ iμ pμ + mθ̄ i . (2.6)

Let us stress that their presence is essential to describe rela-
tivistic massive particles in target space as they ensure uni-
tarity: for this very reason said symmetries have been made
local. The aforementioned worldline supergravity multiplet
(e, χ, χ̄) acts as a set of Lagrange multipliers for the first-
class constraints (2.6).

Upon quantization, the worldline coordinates obey the fol-
lowing (anti)commutation relations fixed by their classical
Poisson brackets

[xμ, pν] = i δμ
ν {ψ̄μi , ψν

j } = δij η
μν {θ̄ i , θ j } = δij .

(2.7)

By choosing a Fock vacuum annihilated by (ψ̄ i
μ, θ̄ i ), a

generic state |
〉 in the Hilbert space can be identified with
the wavefunctions


(x, ψi , θi ) =
D∑

n1,n2=0

1∑
m1,m2=0


μ[n1]|ν[n2](x) ψ
μ1
1

. . . ψ
μn1
1 θ

m1
1 ψ

ν1
2 . . . ψ

νn2
2 θ

m2
2 (2.8)

namely a collection of tensor fields with the symmetries of
(n1, n2) bi-forms. We used the condensed notation for anti-
symmetrized indices μ[n] := [μ1 . . . μn] and a vertical bar
to separate indices with no symmetry relations.

The spectrum (2.8) contains way too many states, which
is reflected on the corresponding BRST system, found to
be consistent only upon a suitable truncation of the BRST
Hilbert space. While this works for BRST cohomology, the
problem reappears at the one-loop level, since in principle
all the unwanted states may propagate in the loop. Our task
is thus to find a way to implement the projection on the mas-
sive gravity sector. The first step in this direction consists of
restricting the spectrum to the n1 + m1 = 1, n2 + m2 = 1
subspace. Indeed, it has been shown [25] that the massless
sector contains the massless NS-NS spectrum of closed string
theory, and corresponds to the level (n1, n2 |m1,m2) =
(1, 1 | 0, 0) fields 
μ|ν . The latter decomposes into a gravi-
ton, an antisymmetric Kalb-Ramond two-form, and a dilaton


μ|ν(x) = hμν(x) + Bμν(x) + δμν φ(x) (2.9)

with the graviton identified with the symmetric and traceless
component. Due to the mass improvement, we anticipate the
spectrum in the level (m1,m2) �= (0, 0) to include also the
associated Stückelberg fields (
μ,
ν,
), specifically two
massless vector fields and a scalar [28,29], allowing for the
propagation of the massive graviton and the massive Kalb-
Ramond degrees of freedom alongside the dilaton. This will
be confirmed through the analysis of the worldline path inte-
gral.

In order to implement the aforementioned projection, the
R-symmetry of the model has to be appropriately exploited.
Notice that the action (2.1) has a manifest global SO(4) sym-
metry that rotates the fermions, generated by the fermion
bilinears

JI J := i �M
I �JM (2.10)

while in the complex basis (2.3) and with the decomposition
(2.4) only the subgroup U(2) ⊂ SO(4) is kept manifest as
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rigid symmetry of the action (2.5). As a result, the SO(4)
generators split as JI J ∼ (J j

i , Ki j ,Gi j ) and their explicit
realization is1

J j
i := ψi · ψ̄ j + θi θ̄

j ,

Ki j := ψ̄ i · ψ̄ j + θ̄ i θ̄ j ,

Gi j := ψi · ψ j + θi θ j ,

(2.11)

where we used a dot · to indicate contraction on spacetime
indices. Ki j is the so-called trace operator while Gi j imple-
ments the insertion of the metric; they both vanish for i = j
[21,24]. On the other hand, J j

i generate the U(2) subgroup,
and upon quantization become quantum operators2

Ĵ j
i = ψ̂i · ˆ̄ψ j + θ̂i

ˆ̄θ j − D+1
2 δ

j
i (2.12)

where we employed the Weyl ordering to resolve ambigui-
ties, matching the path integral regularization used. It is worth
noticing that the shift D+1

2 is a quantum ordering effect.
The crucial point is that it is possible, although not strictly

necessary, to make the R-symmetry local. Differently from
worldline supersymmetries, the R-symmetry has not to be
gauged for unitarity; however, it can be used to perform alge-
braic projections on the desired spectrum by appropriately
gauging only a specific subgroup R ⊂ SO(4). At the level
of the worldline action, this corresponds to introducing the
appropriate worldline gauge fields3 aR(t), by the insertion
of a term

SR = −
∫

dt aR JR (2.13)

acting as Lagrange multipliers for the classical constraints
JR. In the following, we seek to unveil the massive grav-
ity content with different choices of the R subgroup, which
extracts degrees of freedom from the worldline path integral.
Setting up the worldloop path integral

The path integral on worldlines with the topology of a
circle – dubbed “worldloop” – is defined as

� =
∫
S1

DG DX

Vol(Gauge)
e−SE[X,G] (2.14)

where we denoted the worldline gauge fieldsG = (e, χ, χ̄, a)

and the coordinates with supersymmetric partners X =(
x, ψ, ψ̄, θ, θ̄

)
. The action appearing in (2.14) is the action

in Euclidean configuration space (SE = −i S), obtained by
a Wick-rotation to Euclidean time t → −iτ accompanied
by the Wick rotations of the gauge fields aR → −iaR,
just as done in [30] for general N . From now on we will

1 See appendix B of [21] for a detailed derivation.
2 We used hats to stress that the expression refers to operators in that
given order; however, throughout the text, we will often avoid the use
of hats for quantum operators, so as not to burden the notation further.
3 Here we use R as a mere label.

drop the subscript on SE as no confusion should arise. The
overcounting from summing over gauge equivalent config-
urations, which causes the path integral to diverge, is for-
mally taken into account by dividing by the volume of the
gauge group. To regularize the path integral one has to fol-
low a gauge-fixing procedure. We use the Faddeev-Popov
(��) method to extract the volume of the gauge group and
to gauge-fix completely the supergravity multiplet up to some
moduli while evaluating the determinants stemming from the
associated �� ghosts [31], as we will outline in the follow-
ing.

The einbein is gauge-fixed to a constant, namely e(T ) =
2T , where T is often called “Schwinger proper time”, while
the gravitinos (χ, χ̄) are antiperiodic and gauge-fixed to zero,
leaving no additional moduli. The path integral (2.14) multi-
plied by − 1

2 corresponds to the QFT effective action and can
be recast in the following form

� = −1

2

∫ ∞

0

dT

T
e−m2T ZR(T ) (2.15)

where the integration over the Schwinger proper time arises
from the gauge-fixing of the einbein e. The explicit expres-
sion of the density ZR(T ) and of the gauge-fixing conditions
for the worldline gauge fields aR depends on the subset R
being gauged. We start our analysis with the simplest case of
gauging the R = U(1) × U(1) subgroup to set the grounds
for the general case.

2.1 Gauging of the U(1) × U(1) subgroup

The U(1) × U(1) subgroup corresponds to the generators

Ji := ψi · ψ̄ i + θi θ̄
i (i not summed). (2.16)

The gauging of the U(1) × U(1) subgroup is realized by
means of two abelian worldline gauge fields ai (t). At the
level of the worldline action, this corresponds to

SU(1)×U(1) = −
∫

dt ai (Ji − qi ) (2.17)

where two independent Chern–Simons (CS) couplings qi =
3−D

2 , that convert the classical constraints (Ji − qi ) into

the operatorial constraints (N̂i − 2),4 have been included
to project on the gravity sector. The whole supergravity mul-
tiplet is gauge-fixed as

G̃ = (T, 0, 0, ãi ) with ãi :=
(

α

β

)
(2.18)

where α, β ∈ [0, 2π ] are two angles representing additional
moduli related to the gauge fields. Inserting the �� deter-
minants to eliminate the volume of the gauge group, and

4 With N̂i := N̂ψi + N̂θi = ψ̂i · ˆ̄ψ i + θ̂i
ˆ̄θ i being the number operators

counting the number of fermionic oscillators with a fixed flavor index.
The U(1) × U(1) generators explicitly read Ĵi := N̂i − D+1

2 .

123



Eur. Phys. J. C           (2024) 84:339 Page 5 of 12   339 

setting appropriately the overall normalization, the partition
function in (2.15) explicitly reads

ZU(1)×U(1)(T ) =
∫ 2π

0

dα

2π

∫ 2π

0

dβ

2π

(
2 cos α

2

)−2

×
(

2 cos β
2

)−2
Tr

[
e−T Ĥ eiα(N̂ψ1+N̂θ1−2)+iβ(N̂ψ2 +N̂θ2 −2)

]
.

(2.19)

A few comments are in order. The two gauge fields ai pro-
duce the integration over the angular moduli (α, β), while
the SUSY ghosts account for the cosine factors. The path
integral over the “matter” sector

∫
PBC

Dx
∫

ABC

Dψ̄Dψ

∫
ABC

Dθ̄Dθ e−Sgf [X,G̃] (2.20)

has been put into an operatorial form as a trace – with Ĥ = p̂2

for the free theory and with N̂ being the operators counting
the number of oscillators with a fixed flavor index – over
the Hilbert space consisting of differential forms of arbitrary
degree, contained in the Taylor coefficients of the wavefunc-
tions 
(x, ψi , θi ). The path integration over bosonic vari-
ables is evaluated by fixing periodic boundary conditions
(PBC), while the fermionic path integral is performed by
choosing antiperiodic boundary conditions (ABC) on each
flavor of fermionic fields. Finally, the gauge-fixed action
reads

Sgf [X, G̃] =
∫

dτ

⎡
⎣ 1

4T
ẋμ ẋμ + m2T +

∑
i=1,2

ψ̄
μ
i (∂τ + i ãi )ψ

i
μ

+
∑
i=1,2

θ̄i (∂τ + i ãi )θ
i + i

∑
i=1,2

ãi qi

⎤
⎦ . (2.21)

Having set up the worldloop, we are in the position of ana-
lyzing the degrees of freedom of the wordline model. Firstly,
note that the Hilbert space can be decomposed in terms of
the eigenvalues (n1, n2) and (m1,m2) of the pairs of num-
ber operators (N̂ψ1 , N̂ψ2) and (N̂θ1 , N̂θ2) respectively. Con-
sequently, the trace can be decomposed in terms of

N1 = n1 + m1 ,

N2 = n2 + m2 ,
(2.22)

reproducing the double grading of the massless N = 4 spin-
ning particle [25]

tN1,N2(T ) := TrN1,N2

[
e−T Ĥ

]
. (2.23)

The path integral (2.19), using the Wilson line variables z :=
eiα and ω := eiβ , becomes5

ZU(1)×U(1)(T ) =
∮

dz

2π i z

∮
dω

2π iω

z

(z + 1)2

ω

(ω + 1)2∑
N1,N2

tN1,N2(T ) zN1−2ωN2−2. (2.24)

Then, we can trace back the contributions from the θs through
the following identification

∑
N1,N2

tN1,N2 ≡
D∑

n1,n2=0

1∑
m1,m2=0

T m1,m2
n1,n2

(2.25)

where T m1,m2
n1,n2 denotes the trace restricted to some specific

eigenvalues (n1, n2 |m1,m2) of the fermionic number oper-
ators. Let us highlight how the “massless to massive decom-
position” works. Upon modular integration, the massless par-
tition function includes only the following contributions

ZU(1)×U(1) = t1,1 − 2 t1,0 − 2 t0,1 + 4 t0,0 (2.26)

while the other possible values of (N1, N2) yield zero. Keep-
ing in mind the decomposition (2.22)–(2.25), in the following
denoted with arrows, we get the massive improvements listed
below

t1,1
m−−→ T 0,0

1,1 + T 0,1
1,0 + T 1,0

0,1 + T 1,1
0,0 ,

t1,0
m−−→ T 0,0

1,0 + T 1,0
0,0 ,

t0,1
m−−→ T 0,0

0,1 + T 0,1
0,0 ,

t0,0
m−−→ T 0,0

0,0 .

(2.27)

The above partition function can then be decomposed into its
irreducible spacetime components. The degrees of freedom
for the free theory are given by

T m1,m2
n1,n2

= 1

(4πT )D/2

(
D

n1

)(
D

n2

)
(2.28)

where the factor (4πT )−D/2 corresponds to the free parti-
cle position and will be omitted in the following. On the
other hand, the binomials count the number of DOFs and
correspond to the transverse polarizations of the tensor 
μ|ν ,
yielding

ZU(1)×U(1) = Zhμν + ZAμ + Zϕ + ZBμν + ZCμ + Zφ

= (D − 1)2 (2.29)

5 The modular integration is performed over the circle |z| = 1, with
the singular point z = −1 pushed out of the contour, the same goes for
ω. Discussion on the regulated contour of integration for the modular
parameters can be found in [32].
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where

Zhμν + ZAμ + Zϕ = (D + 1)(D − 2)

2
(2.30)

corresponds to a massive graviton, i.e. a massless graviton
Zhμν along with the two Stückelberg fields, a massless vector
field ZAμ and a scalar field Zϕ

6

Zhμν ≡ T 0,0
1,1 − T 0,0

2,0 − 2T 0,0
1,0 = D(D−3)

2 , (2.31)

ZAμ ≡ T 0,1
1,0 − 2T 1,0

0,0 = D − 2 , (2.32)

Zϕ ≡ T 1,1
0,0 = 1 , (2.33)

while

ZBμν + ZCμ = (D − 1)(D − 2)

2
(2.34)

is the massive Kalb-Ramond field, corresponding to the
massless contribution plus the massless vector Stückelberg

ZBμν ≡ T 0,0
2,0 − 2T 0,0

0,1 + 3T 0,0
0,0 = (D−2)(D−3)

2 , (2.35)

ZCμ ≡ T 1,0
0,1 − T 0,1

0,0 = D − 2 , (2.36)

and with

Zφ ≡ T 0,0
0,0 = 1 (2.37)

being the dilaton. One can check that the (m1,m2) = (0, 0)

sector correctly reproduces the massless spectrum of the
Hilbert space contained in the N = 4 spinning particle
model, which coincides with the massless NS-NS sector of
closed strings, while the (m1,m2) �= (0, 0) sector corre-
sponds to the massive improvements, namely the associated
Stückelberg fields.

2.2 Full SO(4) group gauging

In the following, we gauge the entire R-symmetry group.
The analysis will show that this choice produces not only the
massive graviton in the spectrum but also some unwanted
contributions. One has to find a way to project the latter away
to finally construct a worldline path integral specifically for
the massive graviton.

The gauging of the full set of generators is achieved
through a one-dimensional Yang–Mills field aI J (t) acting
as a Lagrange multiplier in (2.5). Explicitly

SSO(4) = −1

2

∫
dt aI J JI J (2.38)

or, taking into account the splitting (2.11),

SSO(4) = −
∫

dt

(
a j
i J

i
j + 1

2
ai j K

i j + 1

2
ai jGi j

)
. (2.39)

6 Eventually, one could identify them as a single massive vector Stück-
elberg carrying D − 1 degrees of freedom.

Note that, contrary to the previous case, there is no room for
Chern–Simons couplings here. It is necessary then to restrict
the analysis to D = 3 spacetime dimensions at first, to cor-
rectly repdouce a graviton state. This is related to the BRST
quantization performed in [22], where it was discussed how
the physical wavefunction of the spinning particle lies in the
kernel of the operator Ĵ i

i – which is the quantum operator
corresponding to (2.16) including the contribution from the
BRST bosonic superghosts – only in three spacetime dimen-
sions. Even if it has been shown how to reproduce a first-
quantized massive gravity theory in four spacetime dimen-
sions by demanding the physical states to have a fixed U(1)
× U(1) charge of − 1

2 , in the present case the latter condition
could be satisfied only upon adding a Chern–Simons term,
which is not possible when the full gauging is considered.
At the end of the analysis, it shall then be discussed how to
overcome this obstruction.

The starting point is the path integral (2.15), with the

gauge-fixing G̃ =
(
T, 0, 0, ã j

i

)
producing now the follow-

ing action

Sgf [X, G̃] =
∫

dτ

[
1

4T
ẋμ ẋμ + m2T + ψ̄ iμ (

δi j∂τ + i ãi j
)
ψ j

μ

+θ̄ i
(
δi j∂τ + i ãi j

)
θ j

]
(2.40)

with

ã j
i :=

(
α 0
0 β

)
. (2.41)

In the present case, one has to introduce the non-abelian ��

ghosts associated with the whole SO(4) group, whose path
integration modifies the path integral (2.19) with the inclu-
sion of the sine factors previously calculated in [30]. In terms
of Wilson variables the path integral explicitly reads7

ZSO(4)(T ) = 1

4

∮
dz

2π i z

∮
dω

2π iω

z

(z + 1)2

ω

(ω + 1)2 p(z, ω)

∑
N1,N2

tN1,N2(T ) zN1−2ωN2−2 (2.42)

where p(z, ω) is the measure on the moduli space arising
from the full gauging and reads

p(z, ω) := 4 − 2zω − 2

(
z

ω
+ ω

z

)
+ z2

+ω2 − 2

zω
+ 1

z2 + 1

ω2 . (2.43)

To unveil the projection of the various components of the
full measure, it is possible to follow the “massless to massive
decomposition” described in the previous subsection. Take as

7 Note that we factored out the 1
4 also stemming from the path integral

over the SO(4) �� ghosts for simplicity.
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an illustrative example the first monomial of (2.43). It yields
the following contribution upon modular integration

4
∮ ∮

−−→ t1,1 − 2 t1,0 − 2 t0,1 + 4 t0,0

m−−→ T 0,0
1,1 + T 0,1

1,0 + T 1,0
0,1 + T 1,1

0,0

− 2T 0,0
1,0 − 2T 0,0

0,1 − 2T 1,0
0,0 − 2T 0,1

0,0 + 4T 0,0
0,0

≡ ZU(1)×U(1) . (2.44)

The first arrow implies a modular integration, while the sec-
ond one denotes the massless to massive decomposition as
previously discussed. As for the remaining monomials, the
outcome is as follows:

− 2zω
∮ ∮

−−→ − 1
2 t0,0

m−−→ − 1
2 T

0,0
0,0 ≡ − 1

2 Zφ ,

(2.45)

− 2

(
z

ω
+ ω

z

) ∮ ∮
−−→ −(t2,0 − 2 t1,0 + 3 t0,0)

m−−→ −
(
T 0,0

2,0 + T 1,0
1,0 − 2T 0,0

1,0 − 2T 1,0
0,0 + 3T 0,0

0,0

)

≡ − (
ZBμν + ZCμ

)
, (2.46)

z2 + ω2
∮ ∮

−−→ 0 , (2.47)

for the first half of p(z, ω). It is evident that, as for the mass-
less case, the above monomials are enough to construct a
measure capable of projecting only into the massive grav-
ity sector. We list here the contributions stemming from the
other monomials for completeness: we have

− 2

zω

∮ ∮
−−→ − 1

2 t2,2 − 2 t1,1 − 9
2 t0,0 + 2 t2,1 − 3 t2,0 + 6 t1,0

m−−→ − 1
2 T 0,0

2,2 − 1
2 T 0,1

2,1 − 1
2 T 1,0

1,2 − 1
2 T 1,1

1,1

− 2T 0,0
1,1 − 2T 0,1

1,0 − 2T 1,0
0,1 − 2T 1,1

0,0

− 9
2 T 0,0

0,0 + 2T 0,0
2,1 + 2T 0,1

2,0

+ 2T 1,0
1,1 + 2T 1,1

1,0 − 3T 0,0
2,0 − 3T 1,0

1,0 + 6T 0,0
1,0 + 6T 1,0

0,0

≡ − 1
2 ZA2,2 − ZA2,1 − 1

2 ZA1,1 , (2.48)

1

z2 + 1

ω2

∮ ∮
−−→ 1

2 t3,1

− t2,1 + 3
2 t1,1 − 5 t1,0 − t3,0 + 2 t2,0 + 4 t0,0

m−−→ + 1
2 T 0,0

3,1 + 1
2 T 0,1

3,0 + 1
2 T 1,0

2,1

+ 1
2 T 1,1

2,0 − T 0,0
2,1 − T 0,1

2,0 − T 1,0
1,1 − T 1,1

1,0

+ 3
2 T 0,0

1,1 + 3
2 T 0,1

1,0 + 3
2 T 1,0

0,1 + 3
2 T 1,1

0,0

− 5T 0,0
1,0 − 5T 1,0

0,0 − T 0,0
3,0 − T 1,0

2,0

+ 2T 0,0
2,0 + 2T 1,0

1,0 + 4T 0,0
0,0

≡ 1
2 ZA3,1 + 1

2 ZA3,0 + 1
2 ZA2,1 + 1

2 ZA2,0 . (2.49)

The above contributions can be interpreted in terms of bi-
forms Ap,q with corresponding partition functions

ZAp,q =
p,q∑

k,l=0

(−)k+l(k + 1)(l + 1) tp−k,q−l (2.50)

previously analyzed in [25]. Indeed, they coincide with the
same topological contributions of the massless path integral,
A2,2 and A3,1, along with the respective massive improve-
ments, which contribute to the effective action on non-trivial
backgrounds and have to be projected out. It is immediate to
see that the following polynomial

P(3)(z, ω) := 4 − 2

(
z

ω
+ ω

z

)

−4zω + 2
(
z2 + ω2

)
= 2(z − ω)2(zω − 1)

zω
(2.51)

does the work indeed, producing

P(3)(z, ω)

∮ ∮
−−→ ZU(1)×U(1) − ZBμν

−ZCμ − Zφ = Zhμν + ZAμ + Zϕ. (2.52)

The measure (2.51) coincides with the one implemented to
construct the path integral for themassless graviton, although
they work in different spacetime dimensions. This should not
come as a surprise in retrospect: our analysis has shown that
the introduction of the mass ensures that every single contri-
bution to the partition function gets “Stückelberged” while
evaluating the trace on the larger Hilbert space, without the
arising of unexpected terms. Consequently, the same mea-
sure eliminates both the unwanted contributions and their
Stückelberg companions at once.

As discussed in [25], the measure (2.51) can be related
to a precise gauging of the R-symmetry group, specifically
the gauging of the parabolic subgroup of SO(4) (see [33] for
its application in worldline models for higher spin particles).
It consists of the subgroup generated by J j

i and the trace
Ki j while excluding the insertion of the metric Gi j , which
produces a measure

Ppar(z, ω) := 2(z − ω)2(zω − 1)

z3/2ω3/2 . (2.53)

This choice leaves room for a Chern–Simons term in the
Euclidean action, which can be chosen to correctly reproduce
the whole measure, i.e.

SCS = iq
∫

dτ aii with q = −1

2
(2.54)
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which results in a modification of Ppar(z, ω) through the fol-
lowing multiplicative term

PCS(z, ω) := z1/2ω1/2 �⇒
P(3)(z, ω) = Ppar(z, ω)PCS(z, ω). (2.55)

As previously discussed, the measure P(3)(z, ω) fails in going
beyond three spacetime dimensions and one has to find a way
to improve it. Notably, the presence of the Chern–Simons
term allows us to go to arbitrary dimensions tuning the CS
coefficient appropriately, i.e.

q −→ q + 3 − D

2
(2.56)

with the latter improvement producing the operatorial con-
straints (N̂i−2) in arbitrary dimensions. The correct measure
(2.51) becomes

P(z, ω) := 2(z − ω)2(zω − 1)

zω
z
D−3

2 ω
D−3

2 (2.57)

which is of course different from the massless D-dimensional
measure. The phase space action with the parabolic gauging
reads

S =
∫

dt

[
pμ ẋ

μ + iψ̄μ · ψ̇μ + i θ̄ · θ̇ − e

2
H − iχi q̄

i − i χ̄ i qi

−1

2
ai j K

i j − a j
i (J ij − qδij )

]
. (2.58)

3 One-loop massive gravity in the worldline formalism

In this section, we perform the quantization of the corre-
sponding non-linear sigma model which couples a massive
spin 2 particle to background gravity. It will lead to the com-
putation of the counterterms necessary for the renormaliza-
tion of the one-loop effective action of massive gravity using
the worldline formalism.

To achieve a representation of the QFT effective action
of massive gravity from (2.14) we need to couple the mas-
sive N = 4 spinning particle to a curved target space met-
ric gμν(x). As a result, the action (2.58) gets covariantized
through the deformation of the worldline SUSY charges as
follows

qi −→ �i := −i ψa
i eμ

a πμ + mθi

q̄ i −→ �̄i := −i ψ̄ i a eμ
a πμ + mθ̄ i

(3.1)

with the covariant momentum being

πμ := pμ − iωμ ab ψa · ψ̄b. (3.2)

Worldline fermions carry flat Lorentz indices so that ψ
μ
i :=

eμ
a (x) ψa

i , introducing a background vielbein eaμ(x) and the
torsion-free spin connection ωμ ab. The correct deformation

of the Hamiltonian requires more consideration: the spin-
ning particle coupled to gravity does not exhibit a first-class
algebra, specifically the following anticommutator does not
close8

{�i , �̄ j } = −δ
j
i

(
∇2 − m2

)
− Rμνλσ ψ

μ
i ψ̄ν jψλ · ψ̄σ

(3.3)

hence it is not immediate to identify a suitable deformed
Hamiltonian. The BRST analysis of [22] indicates to consider
the following expression

H := ∇2 − m2 + Rμνλσ ψμ · ψ̄νψλ · ψ̄σ . (3.4)

The latter Hamiltonian is necessary to achieve nilpotency of
the BRST charge on the relevant physical subspace of the
full BRST Hilbert space, in the massive worldline model.
Furthermore, it turns out that the background metric has to
be on-shell with cosmological constant set to zero, i.e.

Rμν(x) = 0. (3.5)

Note that within the massless BRST quantization of [21] one
has to introduce also a non-minimal coupling to the scalar
curvature 2

D R inside the Hamiltonian (3.4), since for the pure
gravity case a non-zero cosmological constant is admitted.
In the present case, such a coupling is inevitably zero.

In the following, we will evaluate perturbatively the mas-
sive path integral considering the BRST system as the start-
ing point and keeping in mind that the results can be trusted
only upon projection on Ricci-flat manifolds (3.5). Indeed,
as previously commented, the presence of a non-trivial grav-
itational background obstructs the first-class character of the
constraints algebra, and a more appropriate way of thinking
about the model is to consider it as a genuine BRST system
from the start, regardless of being derived from a gauge-
invariant classical predecessor.

The one-loop effective action �[gμν] of massive grav-
ity corresponds to the worldloop path integral of the mas-
sive N = 4 spinning particle action S[X,G; gμν], with
schematic form

�[gμν] =
∫
S1

DG DX

Vol(Gauge)
e−S[X,G; gμν ] (3.6)

where the full action S[X,G; gμν] is the one in (2.58) with
the suitable covariantizations (3.1)–(3.4). The gauging of the

8 The covariant derivatives are defined as ∇̂μ := ∂μ + ωμ ab ψa · ψ̄b

and are related to the covariant momenta πμ through ∇̂μ = ig
1
4 πμg− 1

4 .
The metric determinant factors account for a self-adjoint operator [34].
The Laplacian is defined as

∇2 := gμν∇̂μ∇̂ν − gμν �λ
μν ∇̂λ

with �λ
μν being the Christoffel symbols [21,35]. For notational sim-

plicity, we have used non-hermitian operators, keeping in mind that

hermiticity is obtained by a similarity transformation A → g
1
4 Ag− 1

4

on the quantum variables.
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parabolic subgroup, the gauge-fixing G̃ =
(
T, 0, 0, ã j

i

)
and

the path integration over the �� ghost proceeds as outlined
in the previous sections. Factorizing out the exponential of
the mass, the worldloop path integral becomes

�[gμν] = −1

2

∫ ∞

0

dT

T
e−m2T Z(T ) (3.7)

where the partition function is

Z(T ) = 1

4

∮
dz

2π i z

∮
dω

2π iω

z

(z + 1)2

ω

(ω + 1)2 P(z, ω)

∫
PBC

Dx

×
∫

ABC

Dψ̄Dψ

∫
ABC

Dθ̄Dθ e−Sgf [X,G̃; gμν ] . (3.8)

The gauge-fixed nonlinear sigma model action reads9

Sgf [X, G̃; gμν] =
∫

dτ

[
1

4T
gμν(x) ẋ

μ ẋν

+ ψ̄ai
(
δ
j
i Dτ + i ã j

i

)
ψaj + θ̄ i

(
δ
j
i ∂τ + i ã j

i

)
θ j

− T Rabcd(x) ψ̄a · ψbψ̄c · ψd
]

,

(3.9)

where we denoted the covariant derivative with spin connec-
tion ωμ ab(x) acting on the fermions by

Dτψ
a
i := ∂τψ

a
i + ẋμωμ

a
b ψb

i . (3.10)

At this point, the perturbative evaluation of the path integral
has to be treated with care: in particular, one has to fac-
torize out the zero modes and expand in Riemann normal
coordinates, as carefully discussed in [36] for the massless
counterpart of (3.8). We will avoid repeating the same con-
siderations here since the technicalities are the same. The
partition function results in

Z(T ) =
∮

dz

2π i

∮
dω

2π i
μ(z, ω)

∫
dDx

√
g(x)

(4πT )
D
2

〈
e−Sint

〉

(3.11)

where the expectation value – with normalization one, i.e.
〈1〉 = 1, and propagators given in Appendix B of [36] –
has to be evaluated using the Wick theorem on the free path
integral, with the free action given by the quadratic part of
(3.9), while higher order terms form the interacting action

9 To correctly define the path integral, one has to adopt a regularization
scheme. In this work we exploit the calculations of [36], where dimen-
sional regularization (DR) on the worldline was adopted. This choice
produces a counterterm VCT = 1

4 R for the case of four worldline super-
symmetries [37]. However, such a term is vanishing upon going on-shell
(3.5). Let us mention further that, in order to perform calculations, it
is necessary to include “metric ghosts” to keep translational invariance
of the path integral measures and to renormalize potentially divergent
worldline diagrams [34].

Sint, for which the expansion in powers of proper time T has
to be truncated to the desired order. In (3.11) we kept track
inside of μ(z, ω) of all the modular factors: these are

(i) the parabolic measure along with the D-dimensional
Chern–Simons term, together giving rise to P(z, ω)

(2.57),
(ii) the z

(z+1)2
ω

(ω+1)2 factors corresponding to the gauging
of worldline supersymmetries,

(iii) the poles 1
z

1
ω

arising from the integral measures over
the moduli,

(iv) the 1
4 factor previously factored out.

(v) In addition, the path integrations over the fermionic
coordinates

∫
Dψ̄Dψ

∫
Dθ̄Dθ are responsible for the

following extra factors:

μ(z, ω) := 1

4

1

(z + 1)2

1

(ω + 1)2

P(z, ω)
(z + 1)D+1

z(D+1)/2

(ω + 1)D+1

ω(D+1)/2
. (3.12)

In particular, the factors (z+1)D

zD/2
(ω+1)D

ωD/2 comes from the
normalization of the fermionic path integral over the
ψs [32]. The extra z+1

z1/2
ω+1
ω1/2 instead is justified by the

fact that the θs are free in (3.9) and can be integrated
over producing an additional determinant [23].

The whole measure can be recast in the following form

μ(z, ω) = 1

2

(z + 1)D−1

z3

(ω + 1)D−1

ω3 (z − ω)2(zω − 1)

(3.13)

and corresponds to a shift D → D+1 of its massless counter-
part. To make explicit the Seleey–DeWitt coefficients arising
from the perturbative expansion, one can introduce the dou-
ble expectation value

〈〈
e−Sint

〉〉
=

∮
dz

2π i

∮
dω

2π i
μ(z, ω)

〈
e−Sint

〉
. (3.14)

The SdW coefficients an(D) parameterize the divergences as〈〈
e−Sint

〉〉
= ∑∞

n=0 an(D) T n , therefore the partition function

can be rewritten as follows

Z(T ) =
∫

dDx

√
g(x)

(4πT )
D
2

∞∑
n=0

an(D) T n . (3.15)

3.1 One-loop divergences

Let us start by checking the computation of the correct
degrees of freedom of a massive graviton in D spacetime
dimensions. This is given by the double expectation value of
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the SdW coefficient a0(D, z, ω) = 1. Its projected partner

a0(D) = 〈〈1〉〉 =
∮

dz

2π i

∮
dω

2π i
μ(z, ω)

= (D + 1)(D − 2)

2

∣∣∣∣
D=4

= 5 (3.16)

gives indeed the massive graviton’s physical polarizations.
This confirms that the measure μ(z, ω) correctly projects
only onto the degrees of freedom of a massless graviton (hμν)

plus the Stückelberg fields (Aμ, ϕ) introduced in order to
restore gauge invariance.

Let us comment on the fact that if we were to insert
inside (3.12) the measure P(3)(z, ω) without the improved
D-dimensional Chern–Simons (2.51), we would get the cor-
rect DOFs only in three spacetime dimensions while failing
to go beyond that.

The computation of the higher-order SdW coefficients
proceeds exactly as in the massless case since the θs have
been integrated away. The only care one should take is to use
the improved measure (3.12). With these prescriptions and
with the worldline diagrams of [36] it is possible to evaluate
the counterterms up to the third order, i.e.

Z(T ) =
∫

dDx

(4πT )
D
2

√
g(x)

[
a0(D) + a1(D) T

+ a2(D) T 2 + a3(D) T 3 + O(T 4)

]
. (3.17)

The results on Ricci-flat spaces are reported as follows. The
exponentiation of all the connected diagrams and the subse-
quent Taylor expansion to the desired order yields

〈
e−Sint

〉
= 1 + T 2 α2 R2

μνρσ + T 3 (
β3 Rμνρσ R

ρσαβ Rαβ
μν

+γ3 Rαμνβ R
μρσνRρ

αβ
σ

) + O(T 4) . (3.18)

where the curvature invariants of order k in the Rie-
mann tensor are multiplied by the coefficients αk(z, ω, D),
βk(z, ω, D) and γk(z, ω, D), explicitly given by [36]

α2 = 1

180
+ 1

2

(
ω2

(ω + 1)4 + z2

(z + 1)4 + 4ωz

(ω + 1)2(z + 1)2

)

− 1

12

(
ω

(ω + 1)2 + z

(z + 1)2

)
, (3.19)

β3 = 17

45360
− z

180(z + 1)2 − ω

180(ω + 1)2

+ (z − 1)2z2

6(z + 1)6 + (ω − 1)2ω2

6(ω + 1)6

− 2ωz2

(ω + 1)2(z + 1)4 − 2ω2z

(ω + 1)4(z + 1)2 , (3.20)

γ3 = 1

1620
− z

90(z + 1)2 − ω

90(ω + 1)2 + z2

3 (z + 1)4

+ ω2

3 (ω + 1)4 + − 4ω3

3(ω + 1)6 − 4z3

3(z + 1)6 . (3.21)

One can immediately recognize the unprojected SdW coeffi-
cients multiplying the respective powers of proper time. The
final step consists of performing the modular integrals. The
calculation of the various terms in the perturbative expansion
delivers the following coefficients in the perturbative series
(3.17), including the newly found a3(D)

a0(D) = (D + 1)(D − 2)

2
, (3.22)

a2(D) = D2 − 31D + 508

360
R2

μνρσ , (3.23)

a3(D) = 17D2 − 521D − 15658

90720
Rμνρσ R

ρσαβ Rαβ
μν

+ D2 − 37D − 1118

3240
Rαμνβ R

μρσνRρ
αβ

σ .

(3.24)

The expressions above are understood to be gauge-independent,
as they have been calculated on Ricci-flat spaces, i.e. the
background metric is on-shell. The coefficients (3.22)–
(3.24), including the newly computed coefficient a3(D),
allow for further investigations of the issue of divergences
in the quantum theory of massive gravity. The type of diver-
gences arising emerge naturally from the representation of
the one-loop effective action with a short proper time expan-
sion: from (3.17) we have

�[gμν] = −1

2

∫ ∞

0

dT

T 1+ D
2

e−m2T
∫

dDx

(4π)
D
2

√
g(x)

×
[
a0 + a1T + a2T

2 + a3T
3 + O(T 4)

]
. (3.25)

While the IR divergences are absent due to the presence of the
mass, playing the role of a regulator, the UV divergences10

arise from the T → 0 limit of the proper time integration.
In four spacetime dimensions, the different powers of T

give rise to the quartic, quadratic, and logarithmic diver-
gences parametrized by a0, a1, a2, respectively. In QFT
dimensional regularization only the logarithmic divergences
are visible. From (3.23) we have

a2|D=4 = 10

9
R2

μνρσ . (3.26)

The latter numerical value for the one-loop four-dimensional
logarithmic divergence of massive gravity coincides pre-
cisely with that calculated in [15]. In four dimensions R2

μνρσ

is a total derivative and can be eliminated from the effec-
tive action. Thus, one may conclude that the one-loop log-

10 To relate the 1
ε

pole of dimensional regularization in QFT with our
result, one has to evaluate the proper time integral term by term in (3.25),
to display the gamma function dependence, as discussed in [36].
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arithmic divergences of massive gravity without cosmologi-
cal constant vanish. More generally, the a2 coefficient in D
dimensions has been recently evaluated in [16] and is cor-
rectly reproduced by our result (3.23). Finally, it is worth
noting that the coefficient a3 gives rise to a finite term in the
four-dimensional effective action.

In D = 6, the coefficient a3 provides an additional diver-
gence, the logarithmic one in that dimension

a3|D=6 = − 649

3240
Rμνρσ R

ρσαβ Rαβ
μν

−163

405
Rαμνβ R

μρσνRρ
αβ

σ . (3.27)

We stress that this coefficient is gauge-independent, as the
background is taken on-shell, and thus any other method of
calculation should reproduce the same value. While the two
curvature invariants in the previous expression are generally
independent of each other, in six dimensions there exists an
integral relation that connects them [38] and the result can
be expressed as follows

a3|D=6 = 1

1080
Rμνρσ R

ρσαβ Rαβ
μν , (3.28)

encoding the one-loop logarithmic divergences of massive
gravity in six dimensions.

4 Conclusions

In this work, we have realized the worldline path integral on
the circle of the massive N = 4 spinning particle, providing
a model capable of describing a massive graviton propagat-
ing on Ricci-flat spacetimes of arbitrary dimensions. The key
point in the derivation has been to realize that the gauging of a
parabolic subgroup of the SO(4) R-symmetry group, together
with a suitable Chern–Simons coupling, which worked for
the massless model is able to reproduce the correct result
despite the mass improvement. The analysis indicates that
the degrees of freedom extracted by the path integral undergo
a “Stückelbergization”, leading to immediate identification
of the massless graviton together with the associated Stück-
elberg fields, a vector and a scalar, within the spectrum of the
particle model. We then applied the model to furnish a world-
line representation of the effective action of massive gravity,
reproducing the divergences of one-loop linearized massive
gravity with vanishing cosmological constant in arbitrary
dimensions. We computed the counterterms on-shell, so they
furnish gauge-independent quantities which could serve as
a benchmark for verifying alternative approaches to massive
gravity. We checked the correct reproduction of the heat ker-
nel coefficients an(D) for n = 0, 1, 2 comparing our results
with those present in the literature. Finally, our main contribu-
tion was the determination of the Seleey–DeWitt coefficient

a3(D), which to our knowledge has never been computed in
the literature.

There are several promising directions for future explo-
ration. One avenue involves relaxing the R-symmetry con-
straints to allow the propagation in the loop of the N = 0
supergravity, i.e. not only the graviton but also the dila-
ton and the Kalb-Ramond field, provided that the associ-
ated BRST system is first correctly realized, following the
methodology outlined in [39]. Another avenue of interest
lies in extending these constructions to more exotic spaces,
such as non-commutative spaces, thereby realizing a covari-
ant path integral for (spinning) particle models [40,41], or
complex spaces, by employing the worldline models known
as U(N ) spinning particles [42,43], which may offer a fruit-
ful first-quantized description of gravitational theories on
Kähler manifolds once coupled to a curved background met-
ric.
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