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Abstract Kiselev metric in the static and rotating form is
widely used to test different aspects of the dark energy (DE)
effects. We consider a DE Kiselev spacetime, predicting the
reduction to the Kerr black hole (BH) solution under suitable
conditions on the DE parameters and in this frame we study
the effects of the dark energy on BHs and disks accretion.
Elaborating a close comparison with the limiting vacuum
Kerr spacetime, we focus on thick accretion disks around
the central BH in the Kiselev solution, both co-rotating and
counter-rotating with respect the central BH. We examine
different aspects of BH accretion energetics by focusing on
quantities related to the accretion rates and cusp luminosity,
when considered the DE presence, related to the pure Kerr
central BH. Our findings show that in these conditions heavy
divergences with respect to the vacuum case are expected for
the DE metrics. A known effect of the Kiselev metric is to
lead to a false estimation the BH spin, we confirm this char-
acteristic from the fluids dynamics analysis. Remarkably our
results show that DE is affecting differently the accretion
physics, and particularly the accretion rate, according to the
fluid rotation orientation with respect to the central spinning
attractor, leading in some cases to an under-estimation of the
BH spin mass ratio. These contrasting aspects emerging in
dependence on the fluids rotational orientation can be a dis-
tinguishing general DE feature which could lead to a revised
observational paradigm where DE existence is considered.

1 Introduction

We focus on geometrically thick disks around a spinning cen-
tral black hole (BH) in a dark energy (DE) Kiselev spacetime,
having the limiting Kerr BH spacetime for vanishing values
of the metric DE parameter [1,2]. The dark energy DE influ-
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ence on the BH accretion disk physics is investigated in this
frame examining co-rotating and counter-rotating accretion
tori orbiting the central spinning BH.

The issue of DE presence in our Universe is all in the
ascertainment that the matter and energy content in the cur-
rent Universe appears into the components of approximately
68 (72)% dark energy, 28 (23)% dark matter DM and less
than 4 (4.6)% baryonic matter (according to the standard cos-
mological model). These percentages often are revised by
new observations and alternative analyses (see also [3] for a
recent analysis constraining the fraction of early dark energy,
present during the early ages of the Universe). Dark energy
in empty space (or vacuum energy) may explain the Uni-
verse accelerating expansion. This unknown and undefined
component of the observable Universe is usually described
by a general relativistic (GR) onset, featuring a repulsive
cosmological constant or quintessence (an inhomogeneous,
dynamical, canonical scalar field with negative pressure).
Dark energy fuels and engineries the Universe expansion,
with the velocity of expansion constantly under scrutiny and
debated. The new evaluation in [4] supports prevailing mod-
ern cosmological theories with two-thirds (66.2%) of dark
energy and one-third matter (33.8%) mostly represented by
the dark matter component. There are two main basic issues
surrounding the concept of missing energy in our Universe:
the identification of the origin and hypothetical form of the
missing energy, and how exactly it relates to the cosmolog-
ical expansion when considered as driver of the accelerated
expansion.

There are different DE models currently debated. For
example, the so called constrained interacting dark energy
(CIDER) model, which consists in a conformally coupled
quintessence model mimicking a �CDM expansion, pro-
posed in [5] – see also [6,7] for new analysis and cosmolog-
ical simulations. An interesting actual DE model envisages
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DE as a quantity with its own evolution that could be different
in diverse cosmological eras, in particular during the early
Universe, having therefore an early DE (shortly after the Big
Bang) form distinct from a late-time DE form. According
to [8], an early DE could explain the crisis in cosmology
(“Hubble tension”). Interestingly, in [9], the early DE is set
in a unified frame with dark matter, focusing on a phase
transition in the early Universe where a new form of early
DE undergos a phase transition when the Universe expanded
(New Early Dark Energy).

Recent study in [10], analyzing observations of Galaxy
clusters made by the eROSITA X-ray instrument,1 shows
that DE appears to be distributed uniformly across space and
time, i.e. DE energy density is uniform in space and con-
stant in time, suggesting DE could be described by a simple
constant–cosmological constant introduced and later aban-
doned by A. Einstein and related to the vacuum energy by
Zeldovich [11]. The same results evaluate theDE component
as 76% of Universe total energy density.

There is today no clear interpretation on the DE origin.
The missing energy may have a quantum origin, it may be
related to the quantum structure of the spacetime, and DE
is often modelled as an expression of the so-called vacuum
energy. Nevertheless, so far DE calculations from quantum
field theory, do not reproduce the observed cosmological
constant (“cosmological constant enigma”). Different pro-
posals for a new DE interpretation are therefore constantly
investigated, for example in the work [12], basing on the
vacuum polarizability of the vacuum from an assumed zero-
point fluctuation. Recently, some authors claimed in [13,14]
evidence of BHs as the DE source. One interesting aspect in
this proposal is that Einstein’s gravity was ultimately claimed
to provide theDE source. The second notable (and more con-
troversial) aspect in this scenario, consists in the details of
the DE connection to BHs and the consequent description
of the BH nature. The analysis proposes that stellar remnant
BHs are the DE astrophysical origin, providing therefore the
source for accelerating expansion at z ∼ 0.7. Black holes
gaining mass, growing over time, are a DE source contain-
ing vacuum energy blocking also the central singularities to
form. From the point of view of our work, it has to be noted
that this research connects BHs to DE and above all BHs
mass accretion to DE (although it is resolved assuming an
interior of theBH devoid of singularity and source of vacuum
energy). Today BHs appear 7–20 times larger than nine bil-
lion years BHs. Form the comparison between distant young
galaxies with local (dormant) giant elliptical galaxies evolv-
ing in the early Universe, BHs showed in the past a mass
growth much larger than predicted by actual mechanisms of
accretion or mergers. Data analysis showed the agreement
between the size of the Universe and the BH mass implying,

1 https://www.mpe.mpg.de/eROSITA.

according to this analysis, that vacuum energy “contained in
the” BH might be correlated to the amount of DE in the Uni-
verse, consequently BHs became coupled to the Universe
expansion, and the BHs mass accretion problem would be
related to (explained by and explaining) the Universe expan-
sion (cosmological coupling).

In this work we investigate theDE effects onBH accretion
disks and BH accretion physics when DE is modeled in the
framework of Kiselev spacetime, where GR Kerr metric is
deformed by DE, governed by a pair of parameters (α, k), α

for the deformation model,2 and parameter k, “DE” parame-
ter, which is interpreted as a measure of the DE effect on the
BH3 – [22,23].

The influence of dark energy as described by the well
known Kiselev family of exact solutions has been discussed
extensively in the literature. It was first discovered for spher-
ical symmetric BHs (for BHs surrounded by anisotropic
fluids4) [22], a broad variety of general aspects of these
solutions have been already addressed, their features as DE
mimickers have been scrutinized, as well as aspects of mat-
ter and particles dynamics, for different values of the met-
ric parameters (α, k), and different extensions of the origi-
nal metric. More generally, the causal structure and stabil-
ity, the horizons properties, and the BH thermodynamics of
the Kiselev spacetimes have been detailed for the DE case,
which is described by certain range of the metric param-
eter α. Geodesic motion, gravitational lensing, BH shadow
profiles, fundamental frequencies of motion have been inves-
tigated. To our knowledge, our work is the first investigation
of orbiting accretion discs in Kiselev spacetimes, highlight-
ing divergences from the standard GR onset that could be
inferred from current observations of accretion around spin-
ning attractors (for example, tori energetics and the inner
edge location). While in this analysis we will study in depth
the structure of horizons, geodesic structure and the station-
ary limits for all values of the parameter k (and the spacetime
dimensionless spin a > 0), a review of the general aspects

2 An interesting aspect of some DE models, as discussed in [9] is
to provide a unified explanation and model for the DE content and
DM content of our Universe. Kiselev spacetime is often considered as
DM model for a different value of α parameter. In this analysis we
acknowledge this aspect, including in Appendix C some comments for
a different choice of Kiselev model parameter. However in [15], the
quintessence and perfect fluids dark matter interpretation of Kiselev
spacetime is contested.
3 Note that for the limit case of DE represented by the relic cosmo-
logical constant the accretion tori and disks were extensively studied
in [16–21].
4 Despite the claims in most of literature the Kiselev BH is neither per-
fect fluid, nor is it quintessence. In [15], the (cosmological) quintessence
interpretation of Kiselev spacetime has been contested (but rather it
would consist of some kind of anisotropic fluid). Kiselev solution has
been considered for α = −1/3, to describe the dark matter effects, and
radiation for α = 1/3, or dust for α = 0.
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of the Kiselev solutions is beyond the scope of our work, and
we refer to the extensive literature, partly reported below, on
the subject. More in details, there is an extensive literature
focusing on different aspects of the DEKiselev solutions, for
metric parameters range we consider here, i.e., parameter of
the equation of state (EoS) α ∈]− 1,−1/3[ (in the literature
it is frequent to use also notation ω for the EoS parameter
α, the ratio of pressure and energy density of the DE – with
α ∈] − 1/3, 0[ for an asymptotically flat solution, α = 1/3
for radiation, α = 0 for dust and some kind of dark matter
for α = −1/3). In particular, the case α = −2/3 is broadly
studied (see also [22] and references below), for the relative
simplicity of treatment and the structure of the cosmological
horizons (we refer, for comparison and further insights on
this case and the general aspects of the DE Kiselev space-
times, to the present literature, which mostly concentrates on
this case).

Hence, a detailed analysis of the Kiselev solution sta-
bility for different values of the metric parameters can be
found in [24], superradiance and instabilities in the BH
spacetime solutions are investigated with the dynamics of
a probe scalar field in the BH spacetime. More general issue
of Kiselev spacetime stability is also addressed in [25–30],
with the analysis of the Quasi-Normal Modes (QNMs) spec-
trum (massless scalar perturbations, the late-time tails struc-
ture), and some thermodynamical aspects with superradi-
ance and stability, the massive scalar superradiant scattering.
Quasi-Periodic Oscillations (QPOs),QNMs and shadows of
(Bardeen–)KiselevBH are also explored in [31]. In this anal-
ysis discussion of the horizons structure can be also found
with a detailed investigation of the dynamics of both neu-
tral and electrically charged test particles (with fundamen-
tal Keplerian frequencies and harmonic oscillations), pho-
ton spheres, scalars invariants, bolometric luminosity. Orbits
and shadows for different parameter ranges are also studied
in [26,30,32–43], with a focus on the BH thermodynamics,
phase transitions, causal structure, including the exploration
of several extensions of the Kiselev solutions. A focus on
the BHs thermodynamics is for example also in [44] and
[45] with an investigation of the thermodynamic stability for
Kerr–Newmann–NUT–Kiselev–AdS BH in Rastall gravity –
see also [46].

While rotating BHs and “quintessence” (the Kiselev solu-
tions) were studied in depth in [47], the rotating KiselevBHs
in f (R, T ) gravity has been also explored, with the study of
Penrose diagrams, in [48]. In [49] deflection and gravita-
tional lensing of null and timelike signals in the weak field
limit of the Kiselev BH spacetime have been explored with
perturbative methods. Analysis in [50] discusses properties
of the total stress energy for the generalized Kiselev BHs.
In [51] Kerr–Newman–AdS BH in DE has been investigated
with a generalized Kiselev rotating BH spacetime. Optical
effects, as lensing, or spin precession have been also explored

to distinguish BH from naked singularity (NS) solutions in
Kiselev spacetimes – see [52–61]. A study of the state equa-
tions for massless spin fields in static spherical spacetime
filled with quintessence (Kiselev spacetime) is in [62].

Therefore, following the literature, we explore the Kiselev
rotating BH solution for the parameter of state α = −2/3,
focusing on more complex and general aspects of the Kiselev
DE effects in a scenario which is relatively simple to manage
analytically. (However, for completeness and comparison we
also include in Appendix C an analysis of the Kiselev solu-
tion for α = −1/3, which has been considered to describe
some dark matter effects.). We then proceed exploring the
entire range of values of the constant k, which is the metric
parameter regulating the DE effects having the Kerr space-
time limit for k = 0. We shall study the spacetime hori-
zons structure and Lense–Thirring effects, considering the
ergosurfaces for all values of the parameter k and BH spin
a > 0 (including a > M describing, in the limit k = 0, Kerr
NSs). The geodesic structure and the fluids specific angular
momentum, �(a, k; r), regulating the tori behavior (stability
and morphology) will be discussed for all values of (a, k). On
the basis of these general considerations, traced on the results
obtained for any value of k and a, we will focus eventually
on three values of (a, k) selecting, without loss of general-
ity, representative values of spin and k for the tori numerical
analysis.

More specifically, considering the results on the horizons
structure, stationary limits and geodesic structure (analysis
of specific angular momentum), for any a and k, we will
select three values of k: the limiting case k = 0 and two
other cases which we have considered for the numerical inte-
gration. We then study, for any a ∈ [0, 1], both co-rotating
and counter-rotating tori with respect to the central attrac-
tor. Tori morphological and topological characteristics and
tori energetics will be discussed. Finally, for any selected
value of k, we will consider a specific value for the spin a,
showing examples of the general case, visualizing, in specific
cases, the general results discussed from the analysis of the
background geodesic structure. Both co-rotating and counter-
rotating disks, with respect to the central attractor, have been
studied for quiescent and cusped tori, orbiting close and far
from the central attractor, and in the spacetime ergoregions,
including open structures associated to thick tori, having mat-
ter funnels along the spinning BH rotational axis, for any
range of tori parameters (�, K ). In this way we consider tori
for all values of specific angular momentum (given as general
function of k and a) and the tori parameter K , regulating the
tori stability. From the analysis of the spacetimes geodesics
structure, regulating thick tori dynamics, we can trace gen-
eral considerations (for all values of k and a) on the accretion
disk physics, fixing the cusps (tori instability points) and the
location of maximum pressure points in the disks. From the
observation of these properties we can select specific val-
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ues of the parameter k, proceeding with the analysis of some
exemplificative cases.

General Relativistic Hydrodynamics (GRHD) models of
geometrically thick barotropic tori considered in this analy-
sis allow to analyze the energetics associated to tori and their
processes, for example the mass accretion rate, as related to
the tori morphological characteristics. The adoption of these
models, having the limiting case of geometrically thin Keple-
rian disks, is also advantageous for their notable adaptability
to more complex cases, as General Relativistic Magneto-
Hydrodynamics (GRMHD) tori. Furthermore, being gov-
erned by the geodesic structure of the spacetime, we are
able to trace general considerations, from the analysis of the
geodesics circular orbits in the background spacetime, also
in a multi-parametric metric scenario as we are considering
here.

The physics of accretion disks around BHs is capable to
engine the most energetic processes of our Universe, with
extremely large radiative energy output and ejection of matter
in jet-like structures. Here, the orbiting tori are described by
fully general relativistic models of stationary toroidal orbit-
ing configurations. Polish Doughnuts (PD) models are char-
acterized by very high (super-Eddington) accretion rates and
high optical depth and they are often associated to the back-
ground of a central SMBH. The advantages in the adoption
of these models, especially in the analytical investigation of
the BH accretion physics, are multiple. Despite their relative
simplicity, these configurations have been often adopted as
the initial conditions in the set up for simulations of the MHD
(magnetohydrodynamic) accretion structures [63–66], show-
ing also predictions on accretion (and jets emission) dynam-
ics that closely adhere, under various aspects, to the GRHD
evolution of the tori showing, in several circumstances, the
prevalence of the hydrodynamics components of the force
balance with respect to the dissipative effects or the influence
of magnetic fields especially in thick tori orbiting in the strong
gravitational field of the SMBH attractors. A second advan-
tage consists in the relative technical simplicity consisting of
two fundamental aspects. Tori symmetries are particularly
fitting for the models under investigations in this study. The
configurations are axisymmetric and stationary and, where
the background spacetime is axisymmetric and stationary,
their GRHD equations are fully integrable and governed by
an effective potential function governing the pressure gradi-
ents in the disks. The model is designed upon the assumption
that the gravitational component of the central attractor is pre-
dominant in the force balance of the disk with respect to other
factors in determining the equilibrium phases as well as the
instability leading to accretion. In details, the tori equatorial
and symmetry plane coincides with the equatorial plane of
the central axisymmetric central attractor [67–69]. Tori mor-
phology and stability are essentially governed by the pres-
sure gradients on the equatorial plane, where the thin (Kep-

lerian) disks can be considered as limiting configurations
regulated fully by the background geodesic structure. The
tori, described by purely hydrodynamic (barotropic) models,
are governed by the equipressure (equidensity) surfaces that
can be closed, giving stable equilibrium configurations, and
open, giving unstable, jet-like (proto-jets) structures caused
by the relativistic instability due to the Paczynski mecha-
nism where the effects of strong gravitational fields are dom-
inant with respect to the dissipative ones and predominant to
determine the unstable phases of the systems [63,70–74], see
also [65,66,75–79]. This implies that the time scale of the
dynamical processes (regulated by the gravitational and iner-
tial forces) is much lower than the time scale of the thermal
ones (heating and cooling processes, radiation) that is lower
than the time scale of the viscous processes. The entropy
is constant along the flow and, according to the von Zeipel
condition, the surfaces of constant angular velocity � and
of constant specific angular momentum � coincide [80–83].
This implies that the rotation law � = �(�) is independent
of the equation of state [84,85]. The special case of cusped
equipotential surfaces is related to the accretion phase onto
the central attractor [67–69,74,86]. The outflow of matter
through the cusp occurs due to an instability in the balance
of the gravitational and inertial forces and the pressure gradi-
ents in the fluid, i.e., by the so called Paczynski mechanism
of violation of mechanical equilibrium of the tori [69].

Many features of the tori dynamics and morphology like
their thickness, their stretching in the equatorial plane, and
the location of the tori are predominantly determined by the
geometric properties of spacetime via a fluid effective poten-
tial function. These features make these models particularly
suitable in the spacetimes considered in this investigation
where DE is geometrized as a metric deformation of the Kerr
spacetime. DE has a clear impact in the tori structure. Con-
sequently, DE will influence the energetic characteristics of
the BH in accretion and the disk characteristics, as accretion
rates or cusp luminosity [87–89]. DE affects the cusp forma-
tion and cusp location with respect to the central attractor,
modifying the disk accretion throat, constraining the thick-
ness of the accretionary flow and the maximum amount of
matter swallowed by the central BH, leading to a variation
of the central BH energetics, as cusp luminosity, and the
accretion rates. In this work we also study the mass-flux, the
enthalpy-flux (related to the temperature parameter), the flux
thickness, or the cusp luminosity, the disk accretion rate, and
the mass flow rate through the cusp.

More in details the plan of the article is as follows:
thick disks in axially symmetric spacetimes are discussed
in Sect. 2. The Kerr metric is introduced in Sect. 2.1, while
the Polish doughnut tori models are examined in Sect. 2.2.
The Kerr spacetime extended geodesic structure and tori con-
struction are the subject of Sect. 2.2.1. Notes on tori morphol-
ogy and energetics follow in Sect. 2.2.2, where we discuss the
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maximum thickness of a disk accretion throat, and aspects
of the accretion tori energetics. The concepts introduced, the
considerations outlined and the procedures adopted in this
first part of the work are therefore used as the basis analysis
and comparison in the following second part of the article,
Sect. 3, where we explore tori orbiting around a central spin-
ning DE Kiselev BH. In Sect. 3.1 Kiselev metric is intro-
duced.

In Sect. 3.2, following closely the case of tori orbiting
in the Kerr background, we investigate the accretion tori
orbiting in the Kiselev spacetime. We split the constant k
range of values in positive and negative values and in each
of these ranges we select an exemplificative numerical value
to fix the ideas and proceed with the numerical integration.
Hence the case of DE parameter k = −0.05 is considered in
Sect. 3.2.1, while in Sect. 3.2.2 the situation for a DE param-
eter k = 0.0025 is discussed. Finally, conclusions follow in
Sect. 4. In Appendix A are more details on the Kiselev space-
time characteristics. We discuss some general properties as
horizons and ergoregions for all values of metric parameters
k and α, we then concentrate on the case α = −2/3 for a
DE Universe, and we study in details the horizons structure
and the ergoregions for all values of k and spin a (includ-
ing a > M), considering two alterative analysis. Following
the analysis of the horizons structure we then investigate the
cases of extreme BHs.

In Appendix B, following closely the case of tori orbiting
in the Kerr background, discussed in the first part of the anal-
ysis, we trace some general considerations on the spacetime
geodesics structure and the fluid specific angular momentum
regulating tori structure, for all a and k. Some comments
on the Kiselev model within a different choice of the state
parameter α are in Appendix C. To simplify the reading we
also introduced Table 2 containing the main notation and
quantities used throughout this paper.

2 Thick disks in axially symmetric spacetimes

We study geometrically thick tori in the axially symmetric
DE Kiselev spacetime considered as a DE-induced defor-
mation of the Kerr geometry. Therefore it is useful here to
review the properties of the Kerr metric and the construction
of tori in this geometry. In Sect. 2.1 the Kerr metric is intro-
duced, while the Polish doughnut tori models are discussed
in Sect. 2.2. The Kerr spacetime extended geodesic structure
and tori construction are focused in Sect. 2.2.1. Tori morphol-
ogy and tori energetics are addressed in Sect. 2.2.2, focusing
on the maximum thickness of a disk accretion throat, and
exploring different aspects of the accretion tori energetics.
The concepts introduced in this section will be used also in
the second part of this work, outlining the procedures that
will be adopted in Sect. 3 where we will explore tori orbiting

around a central spinning DE Kiselev BH. Then the case of
tori orbiting a central Kerr BH will be taken as comparison,
the axially symmetric DE Kiselev spacetime in fact reduces
to the Kerr spacetime for some limiting values of the metric
parameters.

2.1 The Kerr metric

In the Boyer–Lindquist (BL) coordinates {t, r, ϑ, ϕ}, the Kerr
line element reads:

ds2 = −
(

1 − 2Mr

	

)
dt2 + 	



dr2 + 	dϑ2

+
[
(r2 + a2) + 2Mra2

	
sin2 ϑ

]
sin2 ϑdϕ2

−4rMa

	
sin2 ϑdtdϕ, (1)

where


 ≡ a2 + r2 − 2rM; 	 ≡ a2(1 − sin2 ϑ) + r2, (2)

with r ∈ [0,+∞), t ∈ [0,+∞), ϑ ∈ [0, π ] and ϕ ∈
[0, 2π ]. In the following we will consider also the quantity
σ ≡ sin2 ϑ ∈ [0, 1].

The Kerr solution is a vacuum, asymptotically flat, axially
symmetric (and stationary) solution of the Einstein equations,
describing the spacetime around a gravitational source, spin-
ning along its symmetry axis, with ADM mass parameter M ,
and spin parameter a ≡ J/M (the specific angular momen-
tum, the rotational parameter associated to the central object),
while J is the total angular momentum.

The Kerr metric describes black holes (BHs) for spin a ∈
[0, M] and naked singularities (NSs) for a > M , with the
limiting static solution of the Schwarzschild spacetime for
a = 0 and the extreme Kerr BH solution for a = M .

There are two horizons at r− < r+, solutions of 
 = 0,
respectively given by

r± ≡ M ±
√
M2 − a2. (3)

The spacetime has, for a �= 0, an outer and inner stationary
limits r±

ε (ergosurfaces), which can be found as solutions of
gtt = 0, respectively

r±
ε ≡ M ±

√
M2 − a2(1 − σ), (4)

where r+ < r+
ε on ϑ �= 0 and r+

ε = 2M in the equato-
rial plane ϑ = π/2. Static observers cannot exist inside the
ergoregion, however particles crossing the stationary limit
and escaping back into the region r ≥ r+

ε are possible. In the
following we shall consider the motion on the BH equatorial
plane (σ = 1), which is a metric symmetry plane and the
equatorial (circular) trajectories are confined on the equato-
rial plane as a consequence of the metric tensor symmetry
under reflection through the plane ϑ = π/2.
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The constants of the equatorial geodesic motion are

E = −(gtϕϕ̇ + gtt ṫ), L = gϕϕϕ̇ + gtϕ ṫ,

gabu
aub = −μ2, (5)

with ua ≡ {ṫ, ṙ , ϑ̇, ϕ̇}, where q̇ indicates the derivative of
any quantity q with respect the proper time (for μ = 1) or
a properly defined affine parameter for the light-like orbits
(for μ = 0). In Eq. (5) quantities E and L represent the total
energy and momentum of the test particle coming from radial
infinity, as measured by a static observer at infinity. The rela-
tivistic angular velocity and the specific angular momentum
are

� ≡ uϕ

ut
= − Egϕt + gttL

Egϕϕ + gϕtL = − gtϕ + gtt�

gϕϕ + gtϕ�
,

� ≡ L
E = −uϕ

ut
= −gϕϕuϕ + gϕt ut

gtt ut + gϕt uϕ
= −gtϕ + gϕϕ�

gtt + gtϕ�
,

(6)

respectively. The particles counter-rotation (co-rotation) is
defined by La < 0 (La > 0) and fluid counter-rotation (co-
rotation) is defined by �a < 0 (�a > 0).5

In the following, where more convenient, we use dimen-
sionless units,6 where M = 1. In Table 2 we also show the
main notation and quantities used throughout this paper with
links to associated sections or definitions.

2.2 Geometrically thick tori

In this analysis we examine geometrically thick tori, focus-
ing in particular on the Polish doughnut (PD) models. These
are analytic and general relativistic toroidal models, well
known and used in a variety of situations, especially in axis-
symmetric spacetimes.

In particular we specialize on the general relativistic
hydrodynamics (GRHD) toroidal configurations, centered on

5 Definition of co-rotation and counter-rotation motion in Kerr NSs
should be attentively discussed. In test particles analysis and accretion
tori models, for slowly spinning NSs (a ∈]M, 1.3[), there are circu-
lar geodesic orbits with (E ≤ 0,L ≤ 0) and (E ≥ 0,L ≤ 0) on the
equatorial plane (in the ergoregion). These solutions correspond to the
relativistic angular velocity (the Keplerian velocity with respect to static
observers at infinity dϕ/dt) � > 0; therefore, in this sense, they are all
co-rotating with respect to the static observers at infinity – see, for exam-
ple, [90–95]. In the ergoregions of the slowly spinning Kerr NSs with
a ∈]M, 1.29M[, solutions �− ≶ 0, with negative energy or negative
particle momentum L, or zeros energy and momentum(E = 0,L = 0),
are possible [91–95]. This possibility has not been explored in the anal-
ysis of DE models where we concentrate on the BH solutions.
6 We adopt the geometrical units c = 1 = G and the (−,+,+,+)

signature, Latin indices run in {0, 1, 2, 3}. The radius r has unit of
mass [M], and the angular momentum units of [M]2, the velocities
[ut ] = [ur ] = 1 and [uϕ] = [uϑ ] = [M]−1 with [uϕ/ut ] = [M]−1

and [uϕ/ut ] = [M]. For the seek of convenience, we always consider
the dimensionless energy E and effective potential [Vef f ] = 1 and an
angular momentum per unit of mass [L]/[M] = [M].

the BH equatorial plane. The orbiting configurations have
symmetry plane coincident with the BH equatorial plane.
The toroids are constant pressure surfaces composed of per-
fect fluids with a barotropic equation of state (p = p(�)),
where the functional form of the angular momentum and
entropy distribution, during the evolution of dynamical pro-
cesses, depends on the initial conditions of the system and
not on the details of the dissipative processes [72,73,96,97].

Tori are assumed to have constant fluid specific angular
momentum �. Assuming orbital motion with uϑ = 0 and
ur = 0, the torus can be parametrized with � =constant
and, because of the symmetries, the continuity equation is
identically satisfied, and the toroidal surfaces are defined by
the Euler equation only (the tori are stationary and axial-
symmetric), which can be expressed in terms of a fluid effec-
tive potential Vef f (r; �, a) – see Appendix B.

The fluid specific angular momentum �, fixes pressure gra-
dients (from the Euler equation) and the maximum density
points in the disk, which are determined by the gradients of
an effective potential function for the fluid. More precisely,
the angular momentum distributions �± : ∂r Vef f = 0, on the
equatorial plane ϑ = π/2, govern the extremes of the pres-
sure, where (−) is for co-rotating and (+) counter-rotating
fluids showed in Fig. 2, left panel.

2.2.1 Extended geodesic structure and tori construction

The boundary of any stationary, barotropic, perfect fluid body
is determined by an equipotential surface, i.e., the surface of
constant pressure.

The equipotential surfaces can be closed, giving stable
equilibrium configurations (quiescent tori), or closed cusped
(self-crossed) accreting tori and open cusped solutions, giv-
ing unstable, jet-like structures (proto-jets) – (see Fig. 2).

The center, rcenter , is the maximum point of pressure and
density in the torus (corresponding to the minimum point of
the fluid effective potential with respect to the radius r ).

Surfaces cusps r× on the equatorial plane are the minimum
points of pressure and density in the torus (and the maximum
points of the fluid effective potential with respect to the radius
r ). At the cusps the matter can be considered pressure free,
and matter can freely falling into the BH.7

7 Accretion in the cusped tori is caused by the mechanic instability due
to the Paczynski mechanism [74]. The outflow of matter occurs through
the torus cusp, due to an instability in the balance of the gravitational
and inertial forces, and the pressure gradients in the fluid. The mass
loss in the Roche lobe overflow regulates also the accretion rate in the
innermost part of torus. This self-regulated process locally stabilizes the
accreting torus from the thermal and viscous instabilities and it glob-
ally stabilizes the torus from the Papaloizou&Pringle instability (which
eventually can also combine with a concurrent magnetorotational insta-
bility) [67,72,74,98,99].
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Fig. 1 Kerr spacetime. Gray region is the outer ergoregion. Black
region is theBH. All quantities are dimensionless.mbo is for marginally
bound circular orbit (blue curves), mco is for marginally circu-
lar orbit (cyan curves), mso is for marginally stable circular orbit
(darker blue curves). Right panel: Radii of the Kerr geodesic struc-

ture {r±
mco, r

±
mbo, r

±
mso} and radii {r±

(mco), r
±
(mbo)}, defined in Table 2, for

counter-rotating (+) orbits (right panel) and for co-rotating (−) orbits
(left panel) as functions of the BH spin a. σ = 1 corresponds to the
equatorial plane, where σ ≡ sin2 ϑ ∈ [0, 1]

Fig. 2 Kerr BH spacetime. Left panel: fluid specific angular momen-
tum �±(r), defined in Eq. (B3) for co-rotating (−) (solid) and counter-
rotating (+) orbits (dashed) as function of the radius r for different BH
dimensionless spin a signed on the panel. (Blue curves correspond to
spin a = 0.999, black curve corresponds to the Schwarzschild space-
time with a = 0.) We adopt the notation Q• for any quantity evaluated
at r•. mso is for marginally stable circular orbit, gray curve corresponds

to �±(a±
mso), where a±

mso(r) : r±
mso(a) = r . Right panel: fluid specific

angular momentum �±
mbo, on the marginally bound circular orbit (blue

curves), �±
mco, on marginally circular orbit (cyan curves), �±

mso, eval-
uated on the marginally stable circular orbit (darker blue curves) as
functions of the BH spin a. Co-rotating fluids momenta (−) are solid
curves, and counter-rotating (+) are dashed curves. All quantities are
dimensionless

The spacetime equatorial circular geodesic structure con-
strains the accretion disk physics governing the tori cusps
and centers locations. In the Kerr geometry the geodesic
structure is constituted by the marginally circular orbit for
timelike particles r±

mco ≡ r±
γ , which is also a photon circular

orbit, the marginally bound orbit, r±
mbo, and the marginally

stable circular orbit, r±
mso – see Figs. 1 and 2. The situation

is detailed in Table 1, where we introduced also the radii
(r±

(mbo), r
±
(mco)), governing the location of the tori centers,

and defined in Table 2 – see Figs. 1 and 2.

2.2.2 Notes on tori morphology and energetics

The energetics of the geometrically thick tori (as the accretion
rate or the cusps luminosity) orbiting super-massive BHs is
constrained by the tori morphology.

In this section we examine the maximum thickness of a
disk accretion throat (opening of the cusp) providing infor-
mation on different aspects of the accretion process energet-
ics.

The maximum thickness of a disk accretion throat
In general the accretion throat thickness is maximum for

disks with low magnitude of the specific angular momentum
�, that is for � � ∓�±

mso – [93–95].
In Fig. 2 we show the distribution of specific angular

momentum �± and in Figs. 3 and 4 we show solutions
�±(x, y, a) of ∂yVef f (a; z, y, �) = 0 (with r = √

y2 + z2

and σ = (sin ϑ)2 = y2/(z2 + y2)). These curves con-
nect the torus centers to the tori geometrical maxima (at
y = r > r±

mso), and the cusp r× to the accretion flow throat
geometrical extremes, as shown in the figures. This implies
that the curves provide an estimation of the maximum throat
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Table 1 Kerr BH spacetime. Geodesic structure and orbiting config-
urations. It refers to the analysis of Sect. 2.2.1. Proto-jets are associ-
ated to (not-collimated) open structures, with matter funnels along the
BH rotational axis – see [73,100–103]. � is the fluid specific angu-
lar momentum. mbo is for marginally bound circular orbit, mco is
for marginally circular orbit, mso is for marginally stable circular
orbit. Radii of the Kerr geodesic structure {r±

mco, r
±
mbo, r

±
mso} and radii

{r±
(mco), r

±
(mbo)} are in Table 2 for counter-rotating (+) orbits and for

co-rotating (−) orbits. (We adopt the notation q• ≡ q(r•) for any

quantity q evaluated on a radius r•.) Cusp r× is the minimum point
of pressure and density in the configuration corresponding to the max-
imum point of the fluid effective potential. The center rcenter is the
maximum point of pressure and density in the configuration, corre-
sponding to the minimum point of the fluid effective potential. At the
cusp (r ≤ r×) the fluid may be considered pressure-free. Fluid effec-
tive potential defines the function K (r) = Vef f (�(r)). Cusped tori
have parameter K = K× ≡ K (r×) ∈]Kcenter , 1[⊂]Kmso, 1[, where
Kcenter ≡ K (rcenter ). See also Figs. 1 and 2

L1 ≡ ∓L±
1 ≡ [∓�±

mso,∓�±
mbo[ quiescent (i.e. not cusped) and cusped tori

r±
center ∈]r±

mso, r
±
(mbo)]; r±× ∈]r±

mbo, r
±
mso] (K±× < 1)).

L2 ≡ ∓L±
2 ≡ [∓�±

mbo,∓�±
mco[ quiescent tori and proto-jets

r±
center ∈]r±

(mbo), r
±
(mco)]; r±× ∈]r±

mco, r
±
mbo] (K±× > 1).

L3 ≡ ∓L±
3 ≡ ∓�± ≥ ∓�±

mco quiescent tori

r±
center > r±

(mco).

Table 2 Lookup table
containing the main notation
and quantities used throughout
this paper. Links to associated
sections, definitions or figures
are also listed. There is
q• ≡ q(r•) for any quantity q
evaluated on a radius r•

σ ≡ sin2 ϑ ∈ [0, 1] Sect. 2.1

a metric spin parameter Sect. 2.1

r± outer-inner BH horizons respectively Eq. (3) – Appendix A

r±
ε outer-inner ergosurfaces respectively Eq. (4) – Appendix A

L test particles angular momentum (constant of motion) Eq. (5)

E test particles energy (constant of motion) Eq. (5)

� ≡ L/E specific angular momentum (constant of motion) Eq. (6)

� is the relativistic angular velocity Eq. (6)

Counter-rotating (+) orbits and for co-rotating (−) orbits Sect. 2.2

�+ counter-rotating specific angular momentum Sect. 2.2

�− co-rotating or counter-rotating specific angular momentum Sect. 2.2

Vef f fluid effective potential Sect. 2.2 and Eq. (B1)

�±(r; a) distribution of specific angular momentum Sect. 2.2 – Eq. (B3)

�±(x, y, a) solutions of ∂yVef f (a; y, z, �) = 0

There is �±(x, y, a) = �±(r; a) on the equatorial plane Sect. 2.2.2

K tori parameter Sect. 2.2.2 – Table 1

K (r, a) distribution of tori parameter K Sect. 2.2.2 – Table 1

Radius rcenter is the toroids center Table 1

Radius r× is the toroids cusp Table 1

Radius r±
mbo is the marginally bound circular orbit Table 1- Sect. B1

Radius r±
mco is the marginally circular orbit Table 1-Sect. B1

Radius r±
mso is the marginally stable circular orbit Table 1-Sect. B1

�±
mco = �±(r±

mco) respectively Table 1 – Sect. B1

�±
mbo = �±(r±

mbo) respectively Table 1 – Sect. B1

�±
mso = �±(r±

mso) respectively Table 1 – Sect. B1

Radius r±
(mbo) : �±(r±

mbo) = �±(r±
(mbo)) ≡ �±

mbo Table 1

Radius r±
(mco) : �±(r±

mco) = �±(r±
(mco)) ≡ �±

mco Table 1

φ̄ ≡ −φ regulate the mass-flux, the enthalpy-flux Sect. 2.2.2

(related to the temperature parameter) and the flux thickness

χ̄ ≡ −χ regulate the cusp luminosity, the disk accretion rate Sect. 2.2.2

The mass flow rate through the cusp i.e., mass loss accretion rate

α parameter of the dark energy equation of state (EoS) Eq. (7)

k Kiselev dark energy parameter Eq. (7)
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Fig. 3 Kerr spacetime with spin a = 0.9. All quantities are dimen-
sionless. Tori models: equidensity surfaces and surfaces of constant
�, for co-rotating (−)-left panel and counter-rotating (+)-right panel,
related to the analysis of Sect. 2. Black region is the central BH,
gray region is the outer ergoregion, there is r = √

z2 + y2 and σ =
(sin ϑ)2 = y2/(z2 + y2), and � is the fluid specific angular momen-
tum. Right panel: solutions of equation �+ : ∂yVef f (a; y, z, �) =
0, (Vef f (a; y, z, �) is the fluids effective potential) coincident with
�+(x, y, a) =constant, represented as blue solid curve for � = �+

mbo
and solid black curve for � = �+

mso − 0.01. Curves connect the cen-
ter of maximum density and pressure with the tori geometrical max-

ima in the range y = r > r+
mso, and the cusp r× (minimum of pres-

sure), fixed by momentum �+ =constant with the minima of the matter
throat, providing thus indication of tori (and matter throat) thickness.
Gray solid curve are equidensity surfaces for � = �+

mso − 0.01, and
blue dashed curves are for � = �+

mbo. Left panel: solutions of equation
�− : ∂yVef f (a; y, z, �) = 0, coincident with �−(x, y, a) =constant,
represented as cyan solid curve for � = �−

mbo and solid black curve
for � = �−

mso + 0.01. Gray solid curve are equidensity surfaces for
� = �−

mso + 0.01, and cyan dashed curves are for � = �−
mbo. (Fluid

specific angular momentum �±
mbo, is evaluated on the marginally bound

circular orbit, �±
mso is evaluated on the marginally stable circular orbit.)

Fig. 4 Kerr spacetime. Tori models: equidensity surfaces and surfaces
of constant �, for co-rotating (−) and counter-rotating (+) fluids, related
to the analysis of Sect. 2. Black region is the central BH, gray region
is the outer ergoregion, there is r = √

z2 + y2 and σ = (sin ϑ)2 =
y2/(z2 + y2), and � is the fluid specific angular momentum. All quan-
tities are dimensionless. Left and center panels show the solutions
�± : ∂yVef f (a; y, z, �) = 0, (Vef f (a; y, z, �) is the fluids effective
potential) coincident with �±(x, y, a) =constant, for counter-rotating
(center panel) and co-rotating tori (left panel) for different �± signed on
the curves in a KerrBH spacetime with spina = 0.9. Curves connect the
center of maximum density and pressure with the tori geometrical max-
ima in the range y = r > r±

mso, and the cusp r× (minimum of pressure),
fixed by momentum �± =constant with the minima of the matter throat,

providing thus indication of tori (and matter throat) thickness. Fluid
specific angular momentum �±

mbo, is evaluated on the marginally bound
circular orbit r±

mbo, �±
mso is evaluated on the marginally stable circular

orbit r±
mso. Radii (r±

mbo, r
±
mso) and marginally circular orbit r±

mco (which
is also a photon orbit r±

mco = r±
γ ) are shown as vertical lines. Momenta

� are in the range L±
2 ≡ [∓�±

mbo,∓�±
mco], for proto-jets (dotted-dashed

green curves), and rangeL±
1 ≡ [∓�±

mso,∓�±
mbo], for cusped tori (dashed

black curves). Right panel: solutions �± : ∂yVef f (a; y, z, �) = 0, coin-
cident with �±(x, y, a) =constant, for counter-rotating (dashed) and
co-rotating tori (solid) for � = �±

mso, in the Schwarzschild BH (a = 0)
spacetimes (black curve), Kerr BH spacetime with spin a = 0.9 (blue
curves) and a = 0.9991 (green curves)

thickness – see [93–95]. Hence, the amount of matter swal-
lowed by the BH from the accreting torus is constrained by
the value � = �±

mso. In the Kerr spacetime, �±
mso depends on

the BH dimensionless spin only and, as clear from Fig. 4,
the throat thickness increases with the BH spin, reaching its
maximum at a = M , approaching the BH with increasing
spin, for co-rotating fluids.

General considerations on the accretion tori energetics
From the fluid effective potential, the function K (r) =

Vef f (�(r)) is defined (where cusped tori have parameter K =
K× ≡ K (r×) ∈]Kcenter , 1[⊂]Kmso, 1[, where Kcenter ≡
K (rcenter )) – see Tables 2 and 4.

Some energetic characteristics of the accreiting tori can
be related to the geometrical thickness of the super-critical
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Fig. 5 Kerr BH spacetime with spin a = 0.9. All quantities are dimen-
sionless. Solid (dashed) curves show the situation for the co-rotating
– (−) (counter-rotating – (+)) fluids with specific angular momentum
� = �− (� = �+). Black (gray) curves are for momenta � = �±

mso∓0.01
(� = �±

mso), where �±
mso is the fluid specific angular momentum evalu-

ated on the marginally stable circular orbit r±
mso respectively. Left panel

shows the quantity φ̄ ≡ −φ ≡ ln Vef f related the φ-quantities (Vef f
is the fluid effective potential here evaluated at the torus cusp r ). Right
panel shows the quantity χ̄ ≡ −χ = r φ̄/�, related the χ-quantities

(r is the torus cusp radius, � is the fluid relativistic angular momen-
tum evaluate at the torus cusp), at different fluid momenta � signed
close to the curves. Follows the discussion of Sect. 2.2.2. ((While each
radius represents a possible cusp, the curves are extended to a larger
radial range for graphical convenience.). The φ-quantities regulate the
mass-flux, the enthalpy-flux (related to the temperature parameter), and
the flux thickness. χ-quantities regulate the cusp luminosity, the disk
accretion rate, and the mass flow rate through the cusp i.e., mass loss
accretion rate

tori flows, that is tori with parameter K = Ks ∈]K×, 1[,
and their accretion throat – [87–89,93–95,104]. Hence, the
analysis of tori morphology provides a wide estimation of
these characteristics for more refined tori models.

φ-quantities We can estimate fluid thickness considering
introducing quantity φ ≈ ln Ks − ln K×. In the Kerr
spacetime φ has a limiting value, considering r±× ≈ r±

mso
(correspondent to slow momenta magnitude �±

mso) and
rs ≈ r±

mbo, where φ ≈ − ln K±
mso.

To make our arguments more precise, we consider poly-
tropic tori having pressure p = κ�1+1/n (γ ≡ 1 + 1/n)
is the polytropic index and κ is a polytropic constant).
The mass-flux, the enthalpy-flux (related to the tempera-
ture parameter), and the flux thickness can be estimated
as φ-quantities, having general form φ(r×, rs, n) =
β1(n, κ)(ln Ks − ln K×)β2(n), where {β1(n, κ), β2(n)}
are functions of the polytropic index and constant8.

χ -quantities We examine also the χ -quantities, having gen-
eral form χ = φ(r×, rs, n)r×/�(r×); where �(r×) is
the relativistic angular frequency at the tori cusp r× where
the pressure vanishes. The χ -quantities regulate the cusp
luminosity, measuring the rate of the thermal-energy car-

8 More specifically the φ-quantities are: the enthalpy − flux =
D(n, κ)(ln Ks − ln K )n+3/2; the mass − flux = C(n, κ)(ln Ks −
ln K )n+1/2 and the fraction of energy produced inside the flow,
L̄×/L̄ = B/A(ln Ks − ln K×)/(ηc2), and not radiated through the
surface but swallowed by central BH(L̄ is the total luminosity, and
(D(n, κ), C(n, κ),A(n, κ),B(n, κ)) are functions of the polytropic
index and polytropic constant) Ṁ is the total accretion rate where, for
a stationary flows, Ṁ = Ṁ× and η ≡ L/Ṁc2 is the efficiency.

ried at the cusp, the disk accretion rate, and the mass flow
rate through the cusp (i.e., mass loss accretion rate)9.

In this analysis we assume β1 = β2 = 1, and in the Kerr
spacetime we consider the extreme cases, fixing the cusp
location at a point r× ≈ r±

mso (i.e. � = �±
mso) and we set the

maximum throat thickness and location with the limit K =
Ks ≈ 1 correspondent to rs ≈ r±

mbo accordingly. Within
these assumptions φ-quantities are simply reduced to φ =
− ln Vef f and the χ -quantities are χ = −φr×/�×. It has
been convenient to consider in Fig. 5 quantities φ̄ = −φ and
χ̄ = −χ as for specific angular momentum � ≈ �±

mso, for co-
rotating and counter-rotating fluids orbiting BH spacetimes
with spin a = 0.9. In the following section we consider again
(φ̄, χ̄) evaluated the DE effects, as governed by the Kiselev
spacetimes with respect to the GR case of Kerr geometry in
Figs. 5 and 4.

3 Accretion disks orbiting dark energy Kiselev spinning
BHs

In this section we analyze accretion tori orbiting spinning
BHs in DE Kiselev spacetime models, where the metrics, for
some values of the DE parameters, reduces to the Kerr BH

9 More specifically, the χ-quantities are: the cusp luminosity
L× = B(n, K )r×(ln Ks − ln K×)n+2/�(r×), the disk accretion
rate ṁ = Ṁ/ṀEdd (compared to the characteristic Edding-
ton accretion rate); the mass flow rate through the cusp Ṁ× =
A(n, K )r×(ln Ks − ln K×)n+1/�(r×), where (A(n, κ),B(n, κ)) are
functions of the polytropic index and polytropic constant.
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geometry. In Sect. 3.1 we introduce the Kiselev solutions. In
Sect. 3.2 we examine the equatorial circular geodesic struc-
tures, the specific fluid angular momentum distribution, the
tori structure and accretion disks energetics for co-rotating
and counter-rotating tori, in the Kiselev spacetime, compared
to the dynamics in the Kerr spacetime considered in Sect. 2.2.

3.1 The Kiselev spacetimes

Kiselev spherically symmetric static geometry has been a
popular toy model adopted in different contexts [22]. The
Kiselev rotation extension, we consider here, was introduced
in [23]. There is

gtt = a2σ − 
K

	
, gtϕ = aσ

[

K − (

a2 + r2
)]

	
,

gϕϕ =
σ

[(
a2 + r2

)2 − a2σ
K

]
	

,

grr ≡ 	


K
, gϑϑ = 	 with 
K ≡ 
 − kr1−3α; (7)

where α is an EoS parameter for the matter distribu-
tion embedding the central BH. The parameter k,“DE-
parameter”, is an integration constant regulating the DE
effects, where the Kerr limit is for k = 0.

Following most of the literature we set the parameter of
state α = −2/3, which allows to consider the more com-
plex and general aspects of the Kiselev DE spacetimes (as,
for example, the horizons structure) in a relatively simple
scenario, and we refer to the extensive literature on different
aspects of this spacetime family and matter dynamics.

Hence, for a broad analysis of the Kiselev metric and for
this choice of metric parameter we refer to Appendix A and
for example, to [23–47,49,51–62]. In Appendix A we pro-
ceed with the analysis of the spacetime properties within this
choice of the α parameter and spin a > 0 by considering
the ergosufaces and detailing the conditions for the horizons
existence, then examining the extreme BH Kiselev space-
times. This analysis constitutes the basis for the investigation
of the tori properties in Sect. 3.2.

3.2 Accretion tori around a Kiselev spinning BH

DE affects the orbiting fluids, modifying the Kerr axially
symmetric geometry, the geodesic structure and the fluid
effective potential. Therefore, following the procedure and
considerations outlined in Sect. 2.2, in here we provide an
estimate of the DE effects on tori structure, following a two
steps analysis:

1. In the first step we study the radii limiting the tori con-
struction: the co-rotating and counter-rotating space-
time geodesic equatorial structures as functions of the

spin a ∈ [0, 1], and as defined through the fluid effec-
tive potential in Eq. (B1) and the angular momentum
distribution in Eq. (B2) modified by the DE pres-
ence and compared to the case in absence of DE.
We then analyze the fluid specific angular momen-
tum �±, the tori parameter K± and the test particle
(Keplerian) angular momentum L± as functions of
r , (for co-rotating and counter-rotating structures, for
a ∈ [0, 1]) compared with the Kerr spacetime. This
investigation allows to trace the main properties of
the orbiting toroids and to proceed with the analysis
of the tori and their energetics.

2. In the second step, we consider the construction of
orbiting tori, discussing their morphology, and in
particular the tori geometrical thickness, the distri-
bution of the pressure critical points in the fluids
and the tori energetics, following the investigation
in Sect. 2.2.2 and distinguishing the co-rotating and
counter-rotating cases. We will investigate also the
possibility of toroids in the spacetimeBH ergoregion.

In Appendix B1 are more details on the geodesics struc-
ture and tori construction for α = −2/3. Considering the
results on the horizons structures of Table 5 and Eq. (A10),
and ergoregions in Tables 3 and 4, we split the DE parameter
k range in positive and negative values (with the discrimi-
nant case k = 0 corresponding to the Kerr spacetime): in
Sect. 3.2.1 we analyze the case with DE parameter k ≤ 0,
while in Sect. 3.2.2 the situation for DE parameter k ≥ 0 is
explored.

To fix the ideas, two exemplificative cases are selected:

i) DE parameter k = −0.05, explored in Sect. 3.2.1,
and

ii) DE parameter k = 0.0025, addressed in Sect. 3.2.2.

Within this choice of the k parameter, the geodesic structure,
the fluid specific angular momentum and the tori effective
potential are examined for all values of the spin a ∈ [0, M].
However, to clarify our arguments, disks properties as tori
thickness, location of the extreme points of pressure in the
disks, and tori energetics will be discussed for selected spin.
Results for the DE spacetime are compared to the limiting
Kerr spacetime occurring at k = 0.

As the Kiselev metric structure constitutes a multi-
parametric scenario, the effective generalization on our
parameter choice for the numerical analysis, is ensured by
the considerations on the parameter ranges in the study of the
horizons structures in Table 5 and Eq. (A10) and ergoregions
in Tables 3 and 4, that is close to the Kerr (BH) spacetime
case, presenting DE effects which can be possibly detected.
(The extreme situations, for the other ranges of the k param-
eter, emerging from this analysis has been considered in
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Table 3 Dark energy (DE) Kiselev model with parameter with α =
−2/3. Ergosurfaces radii classification according to the DE parameter
k. All quantities are dimensionless. Quantity a is the dimensionless spin.

Spin functions a±
κ , defined in Eq. (A6), are shown in Fig. 24. Limiting

planes σ±
E are in Eqs. (A7). (There is σ ≡ sin2 ϑ ∈ [0, 1].) Quantities

{ ¯̄r}n are the n zeros of quantity ¯̄r of Eqs. (A5)

k < 0 : a2 = 0 : (σ ∈ [0, 1], { ¯̄r}1);
a2 ∈]0, (a+

κ )2[: (σ ∈ [0, 1[, { ¯̄r}2), (σ = 1, { ¯̄r}1);
a2 = (a+

κ )2 : (σ ∈ {0, 1}, { ¯̄r}1), (σ ∈]0, 1[, { ¯̄r}2);
a2 > (a+

κ )2 : (σ ∈]σ−
E , 1[, { ¯̄r}2), (σ ∈ {1, σ−

E }, { ¯̄r}1);

k ∈]0, 1
8 [: a2 = 0 : (σ ∈ [0, 1], { ¯̄r}2);

a2 ∈]0, (a+
κ )2[: (σ ∈ [0, 1[, { ¯̄r}3), (σ = 1, { ¯̄r}2);

a2 = (a+
κ )2 : (σ ∈]0, 1[, { ¯̄r}3), (σ ∈ {1, 0}, { ¯̄r}2);

a2 > (a+
κ )2 : (σ ∈ [0, σ−

E [, { ¯̄r}1), (σ ∈]σ−
E , 1[, { ¯̄r}3), (σ ∈ {1, σ−

E }, { ¯̄r}2);

k ∈] 1
8 , 1

6 [: a2 ∈]0, (a−
κ )2[: (σ ∈ [0, 1[, { ¯̄r}1);

a2 = (a−
κ )2 : (σ = 0, { ¯̄r}2), (σ ∈]0, 1[, { ¯̄r}1);

a2 ∈](a−
κ )2, (a+

κ )2] : (σ ∈ [0, σ+
E [, { ¯̄r}3), (σ = σ+

E , { ¯̄r}2), (σ ∈]σ+
E , 1[, { ¯̄r}1);

a2 > (a+
κ )2 : (σ ∈ [0, σ−

E [), (σ ∈]σ+
E , 1[, { ¯̄r}1), (σ = σ−

E , { ¯̄r}2), (σ ∈]σ−
E , σ+

E [, { ¯̄r}3);

k ≥ 1
6 : a2 > 0 : (σ ∈ [0, 1[, { ¯̄r}1)

Table 4 Dark energy (DE) Kiselev model with parameter with α =
−2/3. Ergosurfaces classification according to the spin a. All quanti-
ties are dimensionless. Quantity k is the DE parameter. Functions k±

E

and limiting planes σ±
E are in Eq. (A7). (There is σ ≡ sin2 ϑ ∈ [0, 1].)

Quantities { ¯̄r}n is the n zeros of quantity ¯̄r of Eqs (A5)

a2 = 0 k < 0 : (σ ∈ [0, 1], { ¯̄r}1);
k ∈]0, 1

8 [: (σ ∈ [0, 1], { ¯̄r}2);
k = 1

8 : (σ ∈ [0, 1], { ¯̄r}1);

a ∈]0, 1[ k ≤ k−
E : (σ = σ−

E , 1, { ¯̄r}1), (σ ∈]σ−
E , 1[, { ¯̄r}2);

k ∈]k−
E , 0[: (σ ∈ [0, 1[, { ¯̄r}2), (σ = 1, { ¯̄r}1);

k ∈]0, 1
8 ] : (σ ∈ [0, 1[, { ¯̄r}3), (σ = 1, { ¯̄r}2);

k ∈] 1
8 , k+

E [: (σ ∈ [0, σ+
E [, { ¯̄r}3), (σ = σ+

E , { ¯̄r}2), (σ ∈]σ+
E , 1[, { ¯̄r}1);

a2 ∈]1, 32
27 [ k < 0 : (σ = σ−

E , 1, { ¯̄r}1), (σ ∈]σ−
E , 1[, { ¯̄r}2);

k ∈]0, k−
E [: (σ ∈ [0, σ−

E [, { ¯̄r}1), (σ ∈ {σ−
E , 1}, { ¯̄r}2), (σ ∈]σ−

E , 1[, { ¯̄r}3);
k ∈]k−

E , 1
8 [: (σ ∈ [0, 1[, { ¯̄r}3), (σ = 1, { ¯̄r}2);

k ∈] 1
8 , k+

E [: (σ ∈ [0, σ+
E [, { ¯̄r}3), (σ = σ+

E , { ¯̄r}2), (σ ∈]σ+
E , 1[, { ¯̄r}1);

k > k+
E : (σ ∈ [0, 1[, { ¯̄r}1);

a2 ∈] 32
27 , 4

3 [ k < 0 : (σ ∈ {σ−
E , 1}, { ¯̄r}1), (σ ∈]σ−

E , 1[, { ¯̄r}2);
k ∈]0, 1

8 [: (σ ∈ [0, σ−
E [, { ¯̄r}1), (σ ∈ {σ−

E , 1}, { ¯̄r}2), (σ ∈]σ−
E , 1[, { ¯̄r}3);

k ∈] 1
8 , k−

E [: (σ ∈ [0, σ−
E [∪]σ+

E , 1[, { ¯̄r}1), (σ ∈ {σ−
E .σ+

E }, { ¯̄r}2), (σ ∈]σ−
E , σ+

E [, { ¯̄r}3);
k ∈]k−

E , k+
E [: (σ ∈ [0, σ+

E [, { ¯̄r}3), (σ = σ+
E , { ¯̄r}2), (σ ∈]σ+

E , 1[, { ¯̄r}1);
a2 ≥ 4

3 k < 0 : (σ = σ−
E , 1, { ¯̄r}1), (σ ∈]σ−

E , 1[, { ¯̄r}2);
k ∈]0, 1

8 [: (σ ∈ [0, σ−
E [, { ¯̄r}1), (σ = σ−

E , 1, { ¯̄r}2), (σ ∈]σ−
E , 1[, { ¯̄r}3);

k ∈] 1
8 , 1

6 [: (σ ∈ [0, σ−
E [∪]σ+

E , 1[, { ¯̄r}1), (σ = {σ−
E , σ+

E }, { ¯̄r}2), (σ ∈]σ−
E , σ+

E [, { ¯̄r}3);
k ≥ 1

6 : (σ ∈ [0, 1[, { ¯̄r}1)

Sect. 3.1, while a deeper analysis of the geodesics structures
in these cases goes far from the goals of our analysis.).

In Fig. 27, right panel we show the horizons for k =
0.0025 and k = −0.05. (In the specific case, in details, for
k = −0.05, there is one horizon at r = 1.832, for a = 0
(the static BH), and two horizons for a ∈]0, 0.977193[ – see
Fig. 27, right panel. There is only one horizon for BH spin

a = 0.977193 at r = 0.934503. For k = 0.0025 the situation
is more complex: for a = 0 there are horizons at the radii
r = {2.0101, 397.99}. For a ∈]0, 1.00126[ there are three
horizons. For a > 1.000126 there is one horizon of cosmic
character (located very far from the central attractor) – see
Eqs. (A10) and Table 5.
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Table 5 Dark energy (DE) Kiselev spacetime with α = −2/3. Hori-
zons analysis according to the spin a. All quantities are dimensionless.
k is the DE parameter. Spin functions âi , are i-zero of â (see Eq. (A6)),

shown in Fig. 24 and coincident with spin functions a±
κ of Eqs (A6).

Quantity {r̆}n is the n zero of quantity r̆ of Eqs (A9), coincident with
radii {rκ1 , rκ2 , rκ3 } of Fig. 26

a > 1 : k ∈]0, 1
8 [: (a ∈]1, â1[, {r̆}3); (a ≥ â1, {r̆}1);

k ∈ [ 1
8 , 4

27 ] : (a ∈]1, â1[, {r̆}3); (a = â1, {r̆}2); (a > â1 : r = {r̆}1);
k ∈] 4

27 , 1
6 [: (a ∈]1, â1[∪]â2,∞[, r = {r̆}1); (a = {â1, â2}, {r̆}2); (a ∈]â1, â2[, {r̆}3);

k ≥ 1
6 : (a > 1, r = {r̆}1);

a ∈ [0, 1]:
k < 0 : (a = 0, r = {r̆}3); (a ∈]0, â1[, {r̆}2); (a = â1, r = {r̆}1);
k ∈]0, 1

8 [: (a = 0, {r̆}2); (a ∈]0, 1], {r̆}3);
k = 1

8 : (a = 0, r = 4); (a ∈]0, 1], {r̆}3);

k ∈] 1
8 , 4

27 ] : (a ∈]0, â1[, r = {r̆}1); (a = â1, {r̆}2); (a ∈]â1, 1], {r̆}3);
k > 4

27 : (a ∈]0, 1], r = {r̆}1)

We focus our selection of the k parameter for these two
cases on a region of the parameter range close to the limit-
ing value for Kerr spacetimes, i.e. k ≈ 0 (which numerous
observation today tends to confirm), but showing nonethe-
less clear divergences from the standard GR case either in
the horizons structures or in the effects of frame dragging
(ergosurfaces) and, as detailed in Sects. 3.2.1 and 3.2.2, in
the geodetic structures and therefore in the set of constraints
governing the tori morphology and instabilities. (This sit-
uation could be seen also through the horizons analysis of
Fig. 26 and Table 5, and in Fig. 27 showing also the role
of k in the extreme BH cases. The study of the spacetimes
ergosurfaces according to the DE parameter k in Fig. 24 and
in Table 3 shows that for sufficiently small values of k > 0
the situation depends strongly on the BH spin.)

Spacetime horizons structures as in Fig. 25 and Eq. (A10)
show that for negative k the situation is regulated by the
limiting spin function a+

κ . The positive range of k features
the presence of three horizon radii and the situations for the
limiting spins is more complex. (In the case of k > 0 an
important limiting case of the positive k parameter range is
the value k = 1/8 ≈ 0.125).

Physical difference between thick accretion disks in a
Kiselev spacetime and in a Kerr spacetime

We discuss here in broad terms the emerging divergences
in tori orbiting Kiselev BHs compared to tori of the Kerr BH
spacetimes. We close this discussion then with a more spe-
cific example illustrating some of these aspects. While next
sections detail in deep the physical difference between thick
accretion disks in a Kiselev spacetime and in a Kerr space-
time examining, in Sect. 3.2.1 and in Sect. 3.2.2, the specific
cases illustrative of the general properties of the accreiting
toroids in the Kiselev DE rotating solutions.

Proto-jets, tori and boundary conditions The toroidal
structures are essentially differentiated in the Kiselev

case from the Kerr spacetime case by the boundary con-
ditions at infinity of the DE Universe, distinguishing the
limit from cusped tori and proto-jets. This effect can be
seen in the modification of the geodesic structure which
constrains the accretion tori, and in particular for radius
r±
mbo. This implies that, in particular, there can be, for

instance, an abundance of proto-jets in orbital regions
where accretion disks are expected orbiting the central
Kerr BH.

BHs versus NSs In a situation where value of the spin
a ∈ [0, 1] parameter, defining a Kerr BH, defines a Kise-
levNS, differences in the accretion physics in presence of
DE are obviously many, due to the absence of BHs hori-
zons. This is the case carefully analyzed in Appendix A,
where the Kiselev spacetime horizons structures have
been studied and compared to the limiting case of Kerr
BH spacetimes.

Cosmological induced excretion The presence of a cosmo-
logical horizon, introduced by theDE parameter, induces
two main resulting effects. First, there may be excretion
tori i.e. orbiting toroids with emission of materials out-
wardly, due to cosmological repulsive effects. Excretion
disks are also effects of the repulsive forces induced, in
some cases, by the presence of NSs. However, in our
analysis we consider Kiselev BHs only. Excretion is an
extreme case when a topological instability, realized with
presence of an excretion cusp, is index of a broken gravi-
tational and hydromechanical equilibrium condition due
to the combined effects of the cosmological repulsion.
Nevertheless, the repulsive effects, associated to the cos-
mological horizons, can be seen also by a different mor-
phological structure, as presence of double orbiting tori
and the existence of an outer limit to the tori formation,
which are extraneous to the Kerr BH spacetime.

Distinguishing tori rotation orientation Significantly, DE
may affect differently the orbiting matter according to
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Fig. 6 Kiselev spacetime withα = −2/3 and spina = 0.9,DEparam-
eter k = 0.0025 (left column) and the Kerr spacetime, case k = 0 (right
column). Black region is the centralBH, blue and gray region is the outer
ergoregion. There is r = √

z2 + y2 and σ = (sin ϑ)2 = y2/(z2 + y2),
and �∓ are the fluid specific angular momentum for co-rotating (upper
row) and counter-rotating (bottom row) fluids respectively. We adopt the

notation q• ≡ q(r•) for any quantity q evaluated on a radius r•, where
mso is for marginally stable orbit. Dashed and dotted curves are the equi-
pressure surfaces (toroids) at � = �±

mso signed on the panels and different
K parameter. Solid curves are solutions with �±(x, y, a) =constant of
equation ∂yVef f (a; y, z, �) = 0, connecting toroids centers, surfaces
cusps and toroids geometrical extremes. All quantities are dimension-
less

their rotation orientation with respect to the central spin-
ning BH attractors. These differences will emerge as a
significant divergence between the co-rotating and the
counter-rotating tori strongly distinguishing this case
from that of Kerr BH spacetime. These divergences exist
at morphological and topological level, differently affect-
ing also the tori stability and the consequent BH energet-
ics – see for example Fig. 6 and brief discussion below.
In this analysis we show that the presence of DE is rec-
ognizable, as introduced by the Kiselev model, by the
induced change of the accretion physics of the counter-
rotating tori with respect to the co-rotating structures with
the respect to the central Kerr BH.

Double accretion toroids Two co-rotating or counter-
rotating accretion disks can orbit one Kiselev spinning
BH attractor due to the existence of a double limiting
radii r+

mso and r+
mbo, a situation commonly seen in space-

times with geometrized repulsive forces (we address this
point also in Fig. 6 discussed below).

Accretion physics and tori energetics in DE universe
There may be deviations in the topology and morphol-

ogy between disks orbiting a Kiselev BH and a Kerr BH.
However, as discussed in Sect. 2.2.2, while the topolog-
ical deviations of disks at constant pressure are linked to
differences in the instability processes associated to the
cusped toroidal surfaces, the variations in morphology
(such as geometric thickness of the disk or its extension
on the equatorial plane) manifest in the tori and BH ener-
getics as the accretion rates. Consequently the energetics
associated to the unstable phases of the accretion disks
result modified in the Kiselev spacetime, with respect
to the case of Kerr spacetime, which can lead in some
cases, to an increase of accretion rates and luminosities.
The relation between morphology, topology and energet-
ics of the BH and accretion disks, has been discussed for
the Kerr BH case in Sect. 2.2.2.

False estimation of the BH spin-mass ratio Distortion of
the tori morphology induced by the DE presence in the
Kiselev Universe can lead to underestimation or over-
estimation of the BH accretion rate as well as the BH
spin mass ratio. Several methods of evaluation of the BH
spin-mass ratio are based on details of accretion physics.
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A particular relevant approach consists in the evaluation
of the accretion rate (that, as discussed above will be mod-
ified by the DE effects) and the location of the accretion
disk inner edge. Being located in ]r±

mbo, r
±
mso], which is

dependent exclusively on the background property, there-
fore in the case of Kerr spacetime from the BH spin, this
radius is able to provide an estimate of the spin. In the
case of DE, the additional metric parameter modifies the
geodesic structure, and therefore also the inner edge loca-
tion, lead hence to a distorted spin evaluation.

These aspects can be clarified focusing on one particular
example. Figure 6 concentrate on the Kiselev BH spacetime
(α = −2/3) with spin a = 0.9, DE parameter k = 0.0025
(left column), which will be detailed in Sect. 3.2.2, com-
pared to the case of Kerr spacetime for k = 0 (right column).
(Fig. 6 can be compared also to the Kerr BH case analysed in
Fig. 3.) Dotted and dashed curves are the equipressure sur-
faces (toroids) for fixed � = �±

mso and different values of the
K parameter. Solid curves are �±(x, y, a) =constant, where
�±(x, y, a) are solutions of the equation ∂yVef f (a; y, z, �) =
0, connecting toroids centers, surfaces cusps and toroids geo-
metrical extremes.

We can observe the different morphologies characteriz-
ing the toroids orbiting in DE Universe (left column), com-
pared to the toroids of the Kerr spacetimes (right column). As
anticipated, substantial differences appear for the co-rotating
(upper row) and counter-rotating (bottom row) tori, emerging
with the introduction of the DE parameter.

Upper left panel clearly shows the morphology of the
equipressure lines evidencing the repulsive excretion effects,
associated to the presence of the outer co-rotating marginally
stable orbit r−

mso. The bottom left panel shows the presence of
two limiting marginally stable orbits, r+

mso, for the counter-
rotating case. In particular we observe the differences emerg-
ing in the distributions of pressure points of fluids the disks,
and the excretion effects from the form of the equipressure
lines far from the central BH attractor. The possibility of a
co-rotating or counter-rotating doubled toroid is a direct con-
sequence of the existence of two marginally stable orbits r−

mso
and r+

mso, respectively, which has no counterpart in the BH
Kerr spacetime. This is particularly clear from the upper left
panel of Fig. 6, showing a doubled structure of the co-rotating
equidensity lines, even for the limiting case of momentum
� = �−

mso. In this case it is expected that the outer orbiting
structures will be bounded and modified by the geometry
repulsive effects. In the counter-rotating case, nevertheless,
the repulsive effects, due to the presence of DE, are more
subtle, for both (inner and outer) configurations the toroidal
structures are very different from those in the absence of DE.
However, in this case the distribution of the pressure points in
the counter-rotating toroids is largely different from the Kerr

Fig. 7 Dark energy model. Kiselev spacetime with α = −2/3. Circu-
lar equatorial geodesic structure of the Kiselev spacetime as function
of the spin a, for the DE parameter k = −0.05 (cyan and blue curves).
Gray curves are the Kerr case (k = 0) see Fig. 1. Blue (cyan) curves
show the counter-rotating (co-rotating) (+) ((−)) case. Radii r± (black
curves) are the horizons, r+

ε is the outer ergoregion on the equatorial
plane, mso is for marginally stable orbit, mco is for marginally circu-
lar orbit, mbo is the solution of Vef f = 1 (Vef f is the fluid effective
potential). All quantities are dimensionless

BH spacetime, differentiating therefore also these toroids
from the tori rotation orientation.

3.2.1 DE parameter k ≤ 0

In this section we study the case of negative k metric param-
eter.

Considerations on tori constraints
The counter-rotating and co-rotating equatorial geodesic

structure of the Kiselev spacetime with k = −0.05 is showed
in Fig. 7, compared with the Kerr spacetime case (k = 0) of
Fig. 1. Differences between the faster and the slower spin-
ning BHs are clear, particularly with the presence of a dou-
bled co-rotating marginally bound orbit for faster spinning
attractors. Remarkably this situation, characterizing only the
co-rotating fluids, distinguishes the fluids rotation orienta-
tion with respect to the central BH. We can note, from the
location of the marginally stable and bound orbits, tori and
proto-jets cusps could also be closer to the central attractor
in the spacetime with dark energy. This case is addressed
also in Fig. 8, with the analysis of the fluid specific angular
momentum �± (right panel), the energy parameter K± (left
panel), and the (test particles) Keplerian angular momen-
tum L± (center panel), as functions of r , for co-rotating and
counter-rotating fluids, in the spacetimes of faster spinning
and slower spinning attractors, and compared with the sit-
uation for the Kerr spacetime. Divergences with respect to
the Kerr case appear in both the near-horizon and far-horizon
regions, at each BHs spin.
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Fig. 8 Dark energy model. Kiselev spacetime with α = −2/3 and DE
parameter k = −0.05 (green and blue curves). Parameter k = 0 (gray
and black curves) corresponds to the Kerr spacetime. Fluid specific
angular momentum �± (right panel), energy parameter K± (left panel),

and (test particles) Keplerian angular momentum L± (center panel),
as function of r for co-rotating ((−)-plain curves) and counter-rotating
((+)-dashed curves) fluids, different spins a according to the notation
in the left panel. All quantities are dimensionless

Fig. 9 Kiselev spacetime with α = −2/3, and DE parameter k =
−0.05. All quantities are dimensionless. Gray curves correspond to the
case of Kerr BH spacetime (for k = 0). Cyan (blue) curves show the
situation for the co-rotating (counter-rotating) fluids with specific angu-
lar momentum � = �− (� = �+). Left panel shows the quantities ∓�±
evaluated on marginally stable orbits (mso), on the marginally circular

orbits (mco), on the marginally bounded orbits (mbo) as functions of
the BH spin a, as described on the panel. Follows the discussion of
Sect. 3.2.1. Right panel is a close up view of the left panel, and shows
�−
mbo evaluated on the upper/lower ((+)/(−)) marginal bound radius,

see Fig. 7

An analysis focused on the different tori structures is in
Fig. 9, reflecting the analysis of the geodesic structure. Left
panel shows the functions ∓�±(r) evaluated on marginally
stable orbits, on the marginally circular orbits and on the
marginally bound orbits, as functions of the BH spin a,
with respect to the Kerr BH spacetime. Right panel is a
close up view of the left panel, with �−

mbo evaluated on the
upper/lower ((+)/(−)) marginal bound radius of Fig. 7. Par-
ticularly for faster spinningBH attractors,DE could manifest
in the different accretion physics distinguishing co-rotating
and counter-rotating tori. The co-rotating and counter rotat-
ing specific angular momentum, at almost any spin, is gener-
ally lower in magnitude then in the Kerr spacetime. The most
evident distinction with respect to the Kerr spacetime rests
in the absence of a marginally bounded orbit for slower spin-
ning attractors, and the presence a doubled marginally bound
orbit for faster spinning attractors, a (quantitative) deviation
from the standard Kerr situation appears also in the location
of the radii (r±

mso, r
±
mco) and especially with respect to the

location of the marginally stable orbit. DE effect could man-
ifest in the analysis of the mechanics of accreting fluids as
false estimate of the BH dimensionlesss spin10 (as an under-
estimation or overestimation of the spin-mass ratio of the
black hole). In general, radii (r±

mso, r
±
mco) are smaller then in

the absence of the DE. This could lead to an underestimation
of the BH spin, from the analysis of the counter-rotating flu-
ids, or an overestimation, from the co-rotating fluids analysis.
An analogue situation occurs for the momenta (�±

mso, �
±
mco),

lower in magnitude with the respect to the Kerr case, having
influence also in an eventual attractor spin shift following

10 The determination of the spin and spin-mass ratio of a spin-
ning attractor is addressed by different observational and theoreti-
cal approaches which are continuously confronted – see for exam-
ple [105–107]. One of the main approaches is connected to the BH
accretion disk system features, as the BH accretion rate and the loca-
tion of the inner edge of the accretion disk (a quantity per se difficult
to define [100,104,108–112]) constrained by the equatorial geodesic
structure of the spacetime dependent, as discussed in Sect. 2.2.1 by the
geometric properties of the background.
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Fig. 10 Dark energy model. Kiselev spacetime with α = −2/3, DE
parameter k = −0.05 and spin a = 0.9. Black region is the cen-
tral BH, blue region is the outer ergoregion. There is r = √

z2 + y2

and σ = (sin ϑ)2 = y2/(z2 + y2), and � is the fluid specific angu-
lar momentum. Upper (bottom) row shows the situation for counter-
rotating (co-rotating) fluids with momentum � = �+ (� = �−). Left
column panels show surfaces �± =constant where the particular case

�±
mso =constant (for marginally stable orbits) is signed on the curves.

Right column: solutions of equation �± : ∂yVef f (a; y, z, �) = 0, coin-
cident, respectively, with �±(x, y, a) =constant are shown for different
� signed on the curves, where mco is for marginally circular orbits,mbo
for marginally bounded orbits. We adopt the notation q• ≡ q(r•) for
any quantity q evaluated on a radius r•. All quantities are dimensionless

accretion. To investigate this situation we consider a Kiselev
BH spacetime with spin a = 0.9.

Tori morphology and critical points
In Fig. 10 we focus on the surfaces �± =constant, and

in the particular case �±
mso =constant, compared with the

solutions �± : ∂yVef f (a; y, z, �) = 0, coincident, respec-
tively, with �±(x, y, a) =constant, at different � signed on
the curves. The two functions �−

mbo are compared with Fig. 4,
for the case of Kerr spacetime. The situation for the last sta-
ble orbit is similar to the case of Kerr spacetime, and the
DE affects mostly the torus inner region and its morphol-
ogy. (It should be noted that, as discussed in Sect. 2.2.2, �±

mso
provides a constraint to the tori energetics.)

A detailed analysis is in Fig. 11 for the co-rotating case,
showing the solutions of �− : ∂yVef f (a; y, z, �) = 0 coin-
cident with �−(x, y, a) =constant, connecting tori centers
to the tori geometrical maxima, and surfaces cusps to the
extremes of the accretion throats (see Fig. 4 for the Kerr
case). It is clear that the tori structure is affected particu-
larly by the presence of two marginally bound orbits. The
larger angular momentum is associated to configurations

closer to the central attractor. The main differences with the
Kerr case are manifest for larger tori, having inner edge close
to the marginal bound orbit, and in the region between the
marginally bound and marginally stable orbits. In Fig. 12 we
repeat the analysis for the counter-rotating case. The situation
appears qualitatively similar to the Kerr case.

Tori energetics
Following the analysis of Sect. 2.2.2 for the Kerr case,

Fig. 13 explores the tori energetics, compared with the case
of Kerr BH spacetime (black and gray curves), for the co-
rotating (bottom panels) and counter-rotating (upper panels)
fluids, at different specific momenta � = �− and � = �+.
Left column panels show the quantity φ̄ ≡ −φ ≡ ln Vef f ,
related to the φ-quantities. Right column panels show the
quantity χ̄ ≡ −χ = r φ̄/�, related to the χ -quantities. DE
effects appear more predominant in the counter rotating case,
manifesting differently, however, for the φ quantities and χ

quantities. In general, DE increases the (φ̄, χ̄ ) quantities for
the co-rotating fluids, with respect to the Kerr case. For the
counter-rotating fluids a similar behaviour is clear for the φ̄

quantities. A different situation appears for the χ̄ quantities,
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Fig. 11 Dark energy model. Kiselev spacetime with α = −2/3, DE
parameter k = −0.05 and spin a = 0.9. Black region is the central
BH, blue region is the outer ergoregion. There is r = √

z2 + y2 and
σ = (sin ϑ)2 = y2/(z2 + y2), and �− is the fluid specific angular
momentum for co-rotating fluids. We adopt the notation q• ≡ q(r•) for
any quantity q evaluated on a radius r•, where mso is for marginally
stable orbit, mco is for marginally circular orbits, mbo for marginally

bounded orbits. Curves are equipotential and equipressure surfaces
at different � =constant signed on the panels. Solutions of equation
∂yVef f (a; y, z, �) = 0 (Vef f is the fluids effective potential), coinci-
dent, with �−(x, y, a) =constant are shown, connecting tori centers
and tori geometrical maximum, and surfaces cusps and extremes of the
accretion throat. All quantities are dimensionless

Fig. 12 Dark energy model. Kiselev spacetime with α = −2/3, DE
parameter k = −0.05 and spin a = 0.9. Black region is the cen-
tral BH, blue region is the outer ergoregion. There is r = √

z2 + y2

and σ = (sin ϑ)2 = y2/(z2 + y2), and �+ is the fluid specific
angular momentum for counter-rotating fluids. We adopt the notation
q• ≡ q(r•) for any quantity q evaluated on a radius r•, where mso is for
marginally stable orbit, mco is for marginally circular orbits, mbo for

marginally bound orbits. Curves are equipotential and equipressure sur-
faces at different � =constant signed on the panels. Solutions of equa-
tion ∂yVef f (a; y, z, �) = 0, coincident, with �+(x, y, a) =constant
are shown, connecting tori centers and tori geometrical maximum, and
surfaces cusps and extremes of the accretion throat. All quantities are
dimensionless

decreased by the DE effects. There is a different behaviour
with cusp moving away from the attractor and the quantities
variation with the magnitude of the fluid specific momentum
is more evident for cusps close to the attractors.

3.2.2 DE parameter k ≥ 0

The analysis of Sect. 3.2.1 is repeated for the case of positive
Kiselev spacetime with DE parameter k = 0.0025.

Considerations on tori constraints
In Fig. 14 is the spacetime geodetic structure on the equa-

torial plane, compared with the Kerr case (k = 0) – see
Fig. 1 – for counter-rotating and co-rotating fluids. The DE
presence induces a robust modification of the co-rotating and
counter marginal stable orbits with respect to the Kerr BH
spacetime, strongly distinguishing the fluids different rota-
tion orientation with respect to the central spinning attractor.
In the counter-rotating case there is no marginal stable orbit
in the spacetimes of very fast spinning BH attractors. The
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Fig. 13 Kiselev spacetime with α = −2/3, DE parameter k = −0.05
and spin a = 0.9. All quantities are dimensionless. Black and gray
curves correspond to the case of Kerr BH spacetime (for k = 0),
coloured curves are for k = −0.05. Bottom (Upper) panels show the
situation for the co-rotating (counter-rotating) fluids with specific angu-
lar momentum � = �− (� = �+). Left column panels show the quantity
φ̄ ≡ −φ ≡ ln Vef f related the φ-quantities (Vef f is the fluid effective
potential here evaluated at the torus cusp r ). Right column panels show
the quantity χ̄ ≡ −χ = r φ̄/� related the χ-quantities (r is the torus
cusp radius, � is the fluid relativistic angular momentum evaluate at the

torus cusp), at different fluid momenta � signed close to the curves. We
adopt the notation q• ≡ q(r•) for any quantity q evaluated on a radius
r•, where mso is for marginally stable orbits, mco is for marginally cir-
cular orbits, mbo for marginally bound orbits. Follows the discussion
of Sect. 3.2.1. (While each radius represents a possible cusp, the curves
are extended to a larger radial range for graphical convenience.)The φ-
quantities regulate the mass-flux, the enthalpy-flux (related to the tem-
perature parameter), and the flux thickness. χ-quantities regulate the
cusp luminosity, the disk accretion rate, and the mass flow rate through
the cusp i.e., mass loss accretion rate

different influence of the spin with respect to the Kerr case is
clear also from the analysis of Fig. 15, where the fluid spe-
cific angular momentum �± (right panel), the energy param-
eter K± (left panel), and (test particles) Keplerian angular
momentum L± (center panel), are shown as function of r for
co-rotating and counter-rotating motion, for different spins
a.

In Fig. 16 we consider the quantities ∓�± evaluated on
the marginally stable orbits, the marginally circular orbits
and on the marginally bound orbits, as functions of the BH
spin a, according to the co-rotating and counter-rotating
geodesic structures considered in Fig. 14, and compared with
the case of Kerr BH spacetimes. Right panel is a close up
view of the left panel, showing functions ∓�±

mso evaluated
on the upper/lower ((+)/(−)) marginally stable radius for
co-rotating and counter-rotating fluids. The existence and
location of the marginally stable orbit is crucial for the anal-
ysis of numerous accretion disks properties. The main differ-
entiation with respect to the Kerr case appears, for both co-

rotating and counter-rotating fluids, for the larger radius r±
mso,

associated to larger values of the specific angular momen-
tum �±

mso in magnitude. Considering the smaller values of
r±
mso, the (quantitative) divergences of the marginally sta-

ble orbits location with respect to the Kerr spacetime, could
imply an underestimation of theBH spin, especially for faster
spinning attractors in the case of co-rotating fluids, leading
on the other hand to a possible overestimation of the BH
spin for counter-rotating fluids.11 Conversely, considering
the marginally bound orbit, limiting from below the inner
edge location of the largest accretion disks (and from above
the proto-jets cusps formation), this trend would be reversed,
especially for faster spinning attractors implying possibly an
overestimation of the BH spin, especially for faster spinning

11 In the counter-rotating case the larger radius decreases with the BH
spin, which could have consequences in the dynamics related to a BH
spin-shift. However the analysis of the equidensity surfaces for the
relative moment is tantamount to the comprehension of the accretion
physics related to these configurations orbiting the BH.
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Fig. 14 Dark energy model. Kiselev spacetime with α = −2/3. Cir-
cular equatorial geodesic structure of the Kiselev spacetime as function
of the spin a, for DE parameter k = 0.0025 (blue and cyan curves).
Gray curves are the Kerr case (k = 0) see Fig. 1. Blue (cyan) curves
show the counter-rotating (co-rotating) (+) ((−)) case. Radii r± (black
curves) are the horizons, r+

ε is the outer ergoregion on the equatorial
plane, mso is for marginally stable orbit, mco is for marginally circu-
lar orbit, mbo is the solution of Vef f = 1 (Vef f is the fluid effective
potential). All quantities are dimensionless

attractors, from the analysis of the co-rotating fluids, and
an underestimation of the BH spin from the motion of the
counter-rotating fluids. Considering the fluids specific angu-
lar momentum, the main quantitative dissimilarities with the
Kerr spacetime appear in the counter-rotating case, and in
the co-rotating case for the marginally bound orbit values
and slow spinning attractors. In general, the strongest DE
effects appear for the marginally bound orbit values, inde-
pendently by the rotation orientation. For momenta �±

mbo and
�±
mco, the analysis of counter-rotating fluids may reveal in an

overestimation of the BH spin, and the co-rotating fluids a
BH spin underestimation. In the case �±

mso, especially for the
counter-rotating case, there may be an underestimation of the
BH spin, particular for faster spinning spinning attractors.

This situation reflects in the tori formation and morphol-
ogy.

To compare with the case k = −0.05, we focus our anal-
ysis on the BH attractor with spin a = 0.9 In Fig. 17,
surfaces �± =constant, and in particular the surfaces with
�± = �±

mso =constant, are shown. Left panel shows the
situation for counter-rotating fluids and right panel the co-
rotating case. Comparing with the situation in Fig. 4 for the
Kerr spacetime and with Fig. 10 for Kiselev spacetime with
k = −0.05, we note the different roles of the two marginally
stable circular orbits appearing in the Kiselev spacetime with
k = 0.0025. In the counter-rotating case, values of the spe-
cific angular momentum �+

mso are very close, corresponding
however to very different surfaces. The situation differs for
the co-rotating fluids, with different values of fluids specific
angular momenta �−

mso. In general the larger specific angular

momentum confirms the similarity with the Kerr case. In the
counter-rotating case the configuration are bound from the
outer regions remaining confined in a bound region of the
BH spacetime.

To better characterize this different situation we proceed
by considering first the co-rotating case, completing with the
analysis with the counter-rotating case.

Tori morphology and critical points
In Fig. 18 solutions of the equation �− : ∂yVef f (a; y,

z, �) = 0, coincident with �−(x, y, a) =constant, are shown
for different constant �, signed on the curves, where left panel
is a close-up view of the right panel. (Curves connect tori
centers to tori geometrical maxima, and surfaces cusps to
the extremes of the accretion throats.). Tori orbits in a bound
region, limiting the location of the tori inner and the outer
edge, from the inner and outer marginally stable orbit. The
curves of the pressure extremes in the disks, � =constant,
are closed, with the exception of the curves correspondent to
the momenta � = �−

mso (evaluated at the outer radius r−
mso).

The curve of the extremes bends however towards the central
attractor. In this case the presence of DE clearly limits the
outer regions for the tori formation and the location of their
inner edges, as well as the thick tori vertical structure. In
Fig. 19 are the curves of density extremes in the tori. The main
differences with respect to the case of Kerr spacetime appear
for the larger angular momentum � = �−

mso = 3.734. There
is no accretion towards BHs.12 The existence of two limiting
specific angular momenta for �−

mso and �−
mco respectively, has

consequences in the mass accretion of the faster spinning
BHs following accretion.

In Fig. 20, there is the counter-rotating case. In this case the
two values for the angular momentum �+

mso are very close,
corresponding however to different configurations. Analo-
gously to the co-rotating case, the larger value in magnitude
is associated to the open curve bending towards the attractor.
For different specific angular momentum the curves are open,
and there is one only marginally circular orbit. We can see the
consequences of this different situation in tori construction
and morphology in Fig. 21.

There are no closed configurations at �+
mco. The lowest

value of |�+
mso| is associated to a special morphology of the

equidensity lines.
Tori energetics
For the analysis of the tori energetics it is convenient

to consider separately the co-rotating case and the counter-
rotating cases. In Fig. 22 there is the analysis for the counter-
rotating fluids. Black and gray curves correspond to the
case of tori orbiting Kerr BHs, evaluated at �+

mso and at a
larger momentum in magnitude. Left panel shows the quan-
tity φ̄ ≡ −φ ≡ ln Vef f related the φ-quantities, while right

12 TheDE presence alters the conditions in on the fluids specific angular
momentum Table 1.
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Fig. 15 Dark energy model. Kiselev spacetime with α = −2/3 and
DE parameter k = 0.0025 (green and blue curves). Parameter k = 0
(gray and black curves) corresponds to the Kerr spacetime. Fluid spe-
cific angular momentum �± (right panel), energy parameter K± (left

panel), and (test particles) Keplerian angular momentum L± (center
panel), as function of r for co-rotating ((−)-plain curves) and counter-
rotating ((+)-dashed curves) fluids, different spins a according to the
notation in the left panel. All quantities are dimensionless

Fig. 16 Kiselev spacetime with α = −2/3, and DE parameter k =
0.0025. All quantities are dimensionless. Gray curves correspond to
the case of Kerr BH spacetime (for k = 0). Cyan (blue) curves show
the situation for the co-rotating (counter-rotating) fluids with specific
angular momentum � = �− (� = �+). Left panel shows the quantities
∓�± evaluated on marginally stable orbits (mso), on the marginally cir-

cular orbits (mco), on the marginally bound orbits (mbo) as functions
of the BH spin a, as described on the panel. Follows the discussion of
Sect. 3.2.2. Right panel is a close up view of the left panel, and shows
∓�±

mso evaluated on the upper/lower ((+)/(−)) marginally stable radius,
see Fig. 14

Fig. 17 Dark energy model. Kiselev spacetime with α = −2/3, DE
parameter k = 0.0025 and BH spin a = 0.9. Black region is the cen-
tral BH, blue region is the outer ergoregion. There is r = √

z2 + y2

and σ = (sin ϑ)2 = y2/(z2 + y2), and � is the fluid specific angular
momentum. Left (right)panel shows the situation for counter-rotating

(co-rotating) fluids with momentum � = �+ (� = �−). Curves are the
surfaces �± =constant where the particular cases �±

mso =constant (for
marginally stable orbits) is signed on the curves. We adopt the notation
q• ≡ q(r•) for any quantity q evaluated on a radius r•. All quantities
are dimensionless
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Fig. 18 Dark energy model. Kiselev spacetime with α = −2/3, DE
parameter k = 0.0025, and BH spin a = 0.9. Black region is the central
BH, blue region is the outer ergoregion. There is r = √

z2 + y2 and
σ = (sin ϑ)2 = y2/(z2 + y2), and �− is the specific angular momen-
tum for co-rotating fluids. We adopt the notation q• ≡ q(r•) for any
quantity q evaluated on a radius r•, where mso is for marginally stable

orbits, mco is for marginally circular orbits, mbo for marginally bound
orbits. Solutions of equation �− : ∂yVef f (a; y, z, �) = 0, coincident
with �−(x, y, a) =constant are shown for different � signed on the
curves. Left panel is a close-up view of the right panel. All quantities
are dimensionless

Fig. 19 Dark energy model. Kiselev spacetime with α = −2/3, DE
parameter k = 0.0025 and spin a = 0.9. Black region is the central
BH, blue region is the outer ergoregion. There is r = √

z2 + y2 and
σ = (sin ϑ)2 = y2/(z2 + y2), and �− is the fluid specific angular
momentum for co-rotating fluids. We adopt the notation q• ≡ q(r•) for
any quantity q evaluated on a radius r•, where mso is for marginally
stable orbit, mco is for marginally circular orbits, mbo for marginally

bound orbits. Curves are equipotential and equipressure surfaces at
different � =constant signed on the panels. Solutions of equation
∂yVef f (a; y, z, �) = 0, coincident, with �−(x, y, a) =constant are
shown, connecting tori centers and tori geometrical maximum, and
surfaces cusps and extremes of the accretion throat. All quantities are
dimensionless

panel shows the quantity χ̄ ≡ −χ = r φ̄/�, related the χ -
quantities at different fluid momenta � signed close to the
curves. The effect of the DE appears to the minimal for the
φ̄ quantities, the values are smaller with respect to the Kerr
case. An opposite situation occurs for the χ̄ quantities, where
the DE presence appears to increase the χ̄ quantities. The
conditions at infinity reflect the boundary conditions of the
metric. The co-rotating case is in Fig. 23. Upper left panel

shows the co-rotating fluid specific angular momentum as
function of r . Dashed curve is the function �−(r) in the Kerr
geometry. Upper right panel shows the quantity φ̄, compared
to the Kerr BH spacetime. Bottom panels show the quan-
tity χ̄ , compared to the case k = 0. Quantity χ̄ is smaller
then in the Kerr case and the situation for the two momenta
�−
mso is strongly distinct. However, it is clear that the small-

est momentum presents similarities with the case in absence
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Fig. 20 Dark energy model. Kiselev spacetime with α = −2/3, DE
parameter k = 0.0025, and BH spin a = 0.9. Black region is the central
BH, blue region is the outer ergoregion. There is r = √

z2 + y2 and
σ = (sin ϑ)2 = y2/(z2 + y2), and �+ is the specific angular momen-
tum for counter-rotating fluids. We adopt the notation q• ≡ q(r•) for
any quantity q evaluated on a radius r•, where mso is for marginally

stable orbits, mco is for marginally circular orbits, mbo for marginally
bound orbits. Solutions of equation �+ : ∂yVef f (a; y, z, �) = 0, coin-
cident, respectively, with �+(x, y, a) =constant are shown for different
� signed on the curves. Left panel is a close-up view of the right panel.
All quantities are dimensionless

Fig. 21 Dark energy model. Kiselev spacetime with α = −2/3, DE
parameter k = 0.0025 and spin a = 0.9. Black region is the cen-
tral BH, blue region is the outer ergoregion. There is r = √

z2 + y2

and σ = (sin ϑ)2 = y2/(z2 + y2), and �+ is the fluid specific
angular momentum for counter-rotating fluids. We adopt the notation
q• ≡ q(r•) for any quantity q evaluated on a radius r•, where mso is for
marginally stable orbit, mco is for marginally circular orbits, mbo for

marginally bound orbits. Curves are equipotential and equipressure sur-
faces at different � =constant signed on the panels. Solutions of equa-
tion ∂yVef f (a; y, z, �) = 0, coincident, with �+(x, y, a) =constant
are shown, connecting tori centers and tori geometrical maximum, and
surfaces cusps and extremes of the accretion throat. All quantities are
dimensionless
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Fig. 22 Kiselev spacetime with α = −2/3, DE parameter k = 0.0025
and spin a = 0.9 (colored curves). Black and gray curves correspond
to the case of Kerr BH spacetime (for k = 0). All quantities are dimen-
sionless. Panels show the situation for the counter-rotating fluids with
specific angular momentum � = �+. We adopt the notation q• ≡ q(r•)
for any quantity q evaluated on a radius r•, where mso is for marginally
stable orbits, mco is for marginally circular orbits, mbo for marginally
bound orbits. Relevant radii of the geodesic structure are also showed as
vertical lines. Left panel shows the quantity φ̄ ≡ −φ ≡ ln Vef f related
the φ-quantities (Vef f is the fluid effective potential here evaluated at

the torus cusp r ), and right panel shows the quantity χ̄ ≡ −χ = r φ̄/�

related the χ-quantities (r is the torus cusp radius, � is the fluid rel-
ativistic angular momentum evaluate at the torus cusp), at different
fluid momenta � signed close to the curves. Follows the discussion of
Sect. 3.2.2. (While each radius represents a possible cusp, the curves
are extended to a larger radial range for graphical convenience.) The
φ-quantities regulate the mass-flux, the enthalpy-flux (related to the
temperature parameter), and the flux thickness. χ-quantities regulate
the cusp luminosity, the disk accretion rate, and the mass flow rate
through the cusp i.e., mass loss accretion rate

of dark energy. For cusps close to the central attractor, φ̄ is
greater in magnitude then in the Kerr spacetime and closer
to the marginally bound orbit case in the absence of DE.13

4 Conclusions

In this work we explored the DE effects on the geometri-
cal thick GRHD barotropic accretion disks orbiting around a
central Kiselev spinningBHwith state parameter α = −2/3.
DE is treated, in the metric model considered here, as a back-
ground deformation, affecting also the BH horizons.

Constraints are imposed on the accretion discs, restricting
further the parameter ranges, by pointing to the possible DE
marks in some significant accretion features. We have taken
as a selection criterion in the space of the DE parameter k,
the observation that there are two main expected regimes,
for k positive or negative respectively, where k = 0 is the
GR limit of a Kerr BH. Performing a comparative analysis
of the accretion tori structure and physics in the Kiselev DE
spacetime with respect to the GR case, we addressed the two
DE parameters ranges, drawing qualitative and comparative
considerations, with the expectations in GR. In the cases
analyzed here, there are strongly different horizons structures
compared to the reference Kerr solution. (Furthermore, in this
work we focused on the analysis of BH spacetimes for the
Kiselev solutions with spin a ∈ [0, M], however it could

13 Note, for φ̄, with the cusp at r = 25 the curve diverges significantly
from the Kerr case.

be possible, for different values of the DE parameter the
presence of super-spinning BHs (see Fig. 25).

Significant qualitative detectable variations with respect
to the standard Kerr case emerged.14 The two regimes of
the k DE-parameter show appreciable quantitative deforma-
tion of the orbiting structures, with qualitatively significant
changes of the background geometry defined by the spinning
BH. Therefore, results point out possible observational evi-
dences of distinctiveDE effects on the accretion disks, which
can be traces for the DE presence. Our analysis shows that
the DE presence in the Kiselev model, for positive or nega-
tive DE parameter, relates to the energetics, therefore to the
phenomenology, of BH accretion, but also to the BH evolu-
tion following accretion, affecting these aspects with respect
to the Kerr predictions. In this context, therefore, DE mani-
fests in both quantitative and qualitative divergences from the
Kerr accretion systems, which could lead, in particular, to a
false estimation of the BH spin. Remarkably, we found that
the DE effects would distinguish, affecting differently, the
disks rotation orientation with respect to the central spinning
BH attractor. This fact could mean a substantial paradigm

14 However, we explored the dark energy parameter k, fixing the Kise-
lev model to the parameter α = 2/3. In Appendix C there are some
comments on tori in the Kiselev spacetime with α = −1/3. Within this
choice of parameter, the horizons structure and the geodesic structure,
constraining the tori accretion, are significantly different from the dark
energy model. The selection α = −1/3 is often used to explore some
effects of dark matter on the spacetime and orbiting configurations. The
interesting aspects is the Kiselev metric has been considered to provide
a unified frame (depending on the α model parameter) to account for
the effects on the dark matter and dark energy content in the Universe.
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Fig. 23 Kiselev spacetime with α = −2/3, DE parameter k = 0.0025
and spin a = 0.9. All quantities are dimensionless. Panels show the
situation for the co-rotating fluids with specific angular momentum
� = �−. We adopt the notation q• ≡ q(r•) for any quantity q eval-
uated on a radius r•, where mso is for marginally stable orbits, mco is
for marginally circular orbits, mbo for marginally bound orbits. Rel-
evant radii of the geodesic structure are also showed as vertical lines.
Upper left panel shows the co-rotating fluid specific angular momentum
as function of r . Radius r = 25 is an extreme, with respect to the radius
r of the effective potential with � = �−

mso = 2.5 with r−
mso = 2.238

(correspondent to the φ̄ blue curve). Dashed curve is the function �−(r)
in the Kerr geometry (k = 0). Upper right panel shows the quantity
φ̄ ≡ −φ ≡ ln Vef f related the φ-quantities (Vef f is the fluid effective
potential here evaluated at the torus cusp r ). Black and gray curves cor-
respond to the case of Kerr BH spacetime (for k = 0), colored curves are

for k = 0.0025. Bottom panels shows the quantity χ̄ ≡ −χ = r φ̄/�

related the χ-quantities (r is the torus cusp radius, � is the fluid rela-
tivistic angular momentum evaluate at the torus cusp), at different fluid
momenta � signed close to the curves. Black and gray curves corre-
spond to the case of Kerr BH spacetime (for k = 0), colored curves are
for k = 0.0025. Bottom right panel is an wide view of the bottom left
panel. Green curve is a χ̄ quantity evaluated for r = 25 (correspondent
φ̄-quantity is the blue curves of the upper right panel). Follows the dis-
cussion of Sect. 3.2.2. ((While each radius represents a possible cusp, the
curves are extended to a larger radial range for graphical convenience.)
The φ-quantities regulate the mass-flux, the enthalpy-flux (related to
the temperature parameter), and the flux thickness. χ-quantities regu-
late the cusp luminosity, the disk accretion rate, and the mass flow rate
through the cusp i.e., mass loss accretion rate

shift in the interpretation of the observational data seen up to
now, with respect to the evaluation of the BH spin, mass and
accretion rates.

The change of the geodesic structure, reflected in the
accretion physics, could be interpreted as the DE mimick-
ing an attractor with altered spin, also changing the range for
the disk inner edge location, which is a known tracer of the
BH spin-mass ratio.15

DE influence on the tori dimension and the marginally
stable and bound orbits in these models can be searched in
a variation of the central BH energetics, as cusp luminosity,

15 The current methods of measuring and identifying BHs are based
also on the physics of accretion. This is related to the accretion disk
inner edge location, which we proved in this analysis to be distorted by
the DE presence.

and the accretion rates. (On the other hand, in this scenario,
DE can affect also jets emission: The orbital range locating
the proto-jets (the open cusped solutions constraining also
the jet emission) cusps can be also very close to the central
attractor.)

In some contexts in this analysis it was necessary to focus
the investigation on the DE influence on HD pressure gradi-
ents in thick discs, and particularly the location of maximum
and minimum pressure in the disk, also related to the maxi-
mum of accretion throat, a governing feature of the BH ener-
getic characteristics related to accretion. From this analysis
(see Figs. 10, 18, 20, significant distortions have emerged
compared with the case of Kerr (Fig. 5), as the distinction
between fluids with different rotation orientations. In some
cases the disks are externally bounded (with respect to the
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central BH). In other cases accretion is prevented in the close
proximity of the BH, with eventually the isolated central BH
obscured to the distant observer by the orbiting mass, as an
inert attractor by the DE effects.

Below is a brief summary of the steps taken in this analysis.
Overview
The literature on the Kiselev solution as DE mimicker

and particularly for the case of α = −2/3 considered in
this analysis is extensive. To our knowledge our analysis is
the first investigation of the effects of DE on orbiting tori
in the Kiselev background. More in details in Sect. 3.1 we
investigated the horizon structures and ergoregions for all
values of Kiselev metric parameters k and α. We then focused
on the case of DE Universe, considering the case α = −2/3
(some further considerations are also is in Appendix C for a
different choice of the parameter α).

The horizons structure and the ergoregions are detailed in
this case for all values of the metric parameter k and spin
a (including a > M), discussing the results in two alter-
ative analysis – (Figs. 25, 26 – Table 5 and Eq. (A10)). The
case of extreme Kiselev BHs was also discussed. This anal-
ysis constituted the basis for the investigation on the orbit-
ing toroids in Sect. 3.2 where we investigated the equato-
rial circular geodesic structures for the fluid effective poten-
tial, the specific fluid angular momentum distribution, the
tori structure and accretion disks energetics for co-rotating
and counter-rotating tori for any spin a and constant k. The
geodesic structure and the fluids specific angular momentum,
�(a, k; r), regulating the behavior (stability and morphology
of the tori) has been given analytically for all values of (a, k).

Then, splitting constant k range in positive and nega-
tive values, to fix the ideas we proceeded with the numer-
ical integration, selecting two exemplificative numerical val-
ues, deepening the case of DE parameter k = −0.05 in
Sect. 3.2.1, and DE parameter k = 0.0025 in Sect. 3.2.2.

Results for the DE spacetime are compared to the limiting
Kerr spacetime occurring at k = 0. The geodesic structure
and the fluid specific angular momentum and tori effective
potential were examined for all values of the spin a ∈ [0, M].
We then studied numerically some disks properties, as tori
thickness, the extreme points of pressure in the disks, and tori
energetics for selected spin and all values of tori parameters
(�, K ).

Comparing with the Kerr BH case for both the co-rotating
and counter-rotating toroids, we discussed first spacetime
geodesic equatorial structures for all a ∈ [0, 1]. We then ana-
lyzed the fluid specific angular momentum �±, the tori param-
eter K± and the test particle (Keplerian) angular momen-
tum L± as functions of r , for a ∈ [0, 1] and the limiting
fluids angular momentum with respect of the spacetimes
geodesics structures. We traced the main properties of the
orbiting toroids and proceeded with the analysis of the tori
and their energetics also selecting some case for the numer-

ical analysis. Following procedure outlined in Sect. 2.2, we
explored the distribution of the pressure critical points in the
toroids and the configurations geometrical thickness, includ-
ing toroids in theBH ergoregions. We concluded the analysis
by exploring the tori energetics.

Results of this analysis are detailed in 3.2.2 for negative
and Sect. 3.2.1 for positive k. For convenience we sum-up
some considerations discussed in these sections below.

DE parameter k ≤ 0 Divergences with respect to the Kerr
case appear in both the near-horizon and far-horizon
regions, for eachBHs spin – Fig. 8. Notably however,DE
could manifest differently for co-rotation or and counter-
rotation particularly for faster spinning BH attractors
(see Fig. 9). Nevertheless at almost any spin, the spe-
cific angular momentum, is generally lower in magni-
tude then in the Kerr spacetime. A quantitative devia-
tion from the Kerr spacetime emerges in the location of
the photon orbit r±

mco and especially with respect to the
marginally stable orbit r±

mso. ((r±
mso, r

±
mco) are generally

smaller then in the Kerr spacetims). This fact could cause
an underestimation of the BH spin, from the analysis of
the counter-rotating fluids, or an overestimation, from the
co-rotating fluids analysis. Similar situation appears for
the fluid momenta (�±

mso, �
±
mco), which are lower in mag-

nitude with the respect to the Kerr case (having influence
also in an eventual attractor spin shift following accre-
tion).
A remarkable deviation from the GR onset, represented
by the Kerr BH spacetime, appears for slower spinning
attractors in the absence of a marginally bounded orbit,
and for faster spinning attractors in the existence of a
doubled marginally bound orbit.
To investigate further these aspects we focused on the fast
spinning Kiselev BHs. Figure 10 showed that the situa-
tion for rmso is similar to the Kerr spacetime case in Fig. 4,
and more generally we can conclude that the DE affects
mostly the torus inner region and its morphology and for
larger tori. (In fact in this case inner edge approaches
the radius rmbo.). The situation for the counter-rotating
case is in Fig. 12 and appears qualitatively similar to
the Kerr case. A detailed analysis is in Fig. 11 for the
co-rotating case: tori structure is affected particularly by
the existence of two marginally bound orbits. (The larger
angular momentum is associated to configurations closer
to the central attractor.). DE incidence in the tori ener-
getics appears more predominant in the counter-rotating
case, and differently for the φ quantities and χ quantities
(see Fig. 13). In general, the presence of DE increases
the (φ̄, χ̄) quantities, with respect to the Kerr case for the
co-rotating fluids. Viceversa, for the counter-rotating flu-
ids if a similar behaviour characterizes the φ̄ quantities,
an opposite situation appears for the χ̄ quantities, which
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are decreased by theDE presence. (A different behaviour
emerges with cusp moving away from the attractor and
then the quantities variation with the magnitude of the
fluid specific momentum is more evident for cusps close
to the attractors.)

DE parameter k ≥ 0 In the case of positive DE parameter
the situation for the horizons and ergoregion diverges sig-
nificantly from the Kerr case – see Sect. (3.1 ). The pres-
ence of DE affects strongly the marginal stable orbits,
distinguishing the fluids different rotation orientation
with respect to the spinning BH. For example, in the
spacetimes of very fast spinning BH attractors there is
no counter-rotating marginal stable orbit – see Fig. 14.
The main divergences from the GR universe, are for the
larger radius r±

mso, which are associated to larger values
of the specific angular momentum �±

mso in magnitude –
see also Fig. 16.
Influence of the spin on the fluid specific angular momen-
tum �±, the energy parameter K±, and (test particles)
Keplerian angular momentum L± differs from the Kerr
case in the way showed in Fig. 15.
On the other hand, the quantitative divergences of r±

mso
location with respect to the Kerr BH spacetime, could
lead to an underestimation/overestimation of the BH
spin, for particularly the attractors with large spin in the
case of co-rotating/counter-rotating fluids. Focusing on
radii r±

mbo this trend would be reversed (particularly for
faster spinning attractors) originating a possible overesti-
mation/underestimation of the BH spin from the analysis
of the co-rotating/counter-rotating fluids.
In general, the strongest DE effects appear for the
marginally bound orbit values, independently by the rota-
tion orientation. Considering the fluids specific angular
momentum, DE appears to affect mostly the counter-
rotating fluids and in the co-rotating case for the marginally
bound orbit values and slow spinning attractors. In the
case of �±

mso, there may be an underestimation of the
BH spin, particular for faster spinning spinning attrac-
tors and the counter-rotating fluids. From (�±

mbo, �±
mco),

in the counter-rotating/co-rotating case DE may reveal
in an overestimation/underestimation of the BH spin.
Focusing on the fast spinning BHs we stressed the dif-
ferent roles of the two marginally stable circular orbits
– see also Fig. 17. In general the larger specific angular
momentum is similar to the Kerr case. In the counter-
rotating case the configuration are bound from the outer
regions remaining confined in a bound region of the BH
spacetime. Values of the specific angular momenta �+

mso
are very narrow, corresponding however to very different
surfaces. The main differences with respect to the case
of Kerr spacetime appear for the larger angular momen-
tum � = �−

mso = 3.734 – Fig. 19. There is no accretion
towards BHs.

In co-rotating case the presence of DE clearly limits
the outer regions for the tori formation, the location of
their inner edges and the thick tori vertical structure. The
curves of the pressure extremes in the disks are closed
(a part for � evaluated at the outer radius r−

mso) and bend
towards the central attractor. Co-rotating tori can orbit a
bound region, limiting the location of the tori inner and
the outer edges, from the inner and outer marginally sta-
ble orbit – Fig. 18
Similarly in counter-rotating case shown in Fig. 20, the
two close values for the angular momentum �+

mso corre-
spond to different configurations. For different specific
angular momentum the curves are open, and there is one
only marginally circular orbit. The larger value in mag-
nitude is associated to the open curve bending towards
the attractor-see also Fig. 21.
The lowest value of |�+

mso| is associated to a special mor-
phology of the equidensity lines, while there are no closed
configurations at �+

mco.
For the energetics of the counter-rotating tori we can say
that the effect of the DE appears to the minimal for the φ̄

quantities (with values smaller than in the Kerr case), con-
versely DE presence appears to increase the χ̄ quantities.
The conditions at infinity reflect the boundary conditions
of the metric – Fig. 22.
For the co-rotating case, the smallest momentum presents
similarities with the case in absence of dark energy, but
χ̄ quantities are smaller then in the Kerr case and the
situation for the two momenta �−

mso is strongly distinct
– Fig. 23 – also for cusps close to the central attractor,
φ̄ quantities are greater in magnitude and closer to the
marginally bound orbit case than in the GR case.

These findings therefore prove accretion to be a good indi-
cator of the divergences induced by the DE presence with the
accretion disks in DE spacetime as valid DEmodels discrim-
inant. The differentiation by rotation orientation stands as a
remarkable and intriguing key aspect. The underestimation
(overestimation) of theBH spin, depends on positive or nega-
tive DE parameter as well as the tori rotation orientation with
respect to the spinning BH. A comparative evaluation of tori
morphology, and particularly the accretion throat and inner
edge orbital range, the fluid angular specific momentum, and
the tori energetics quantities, can lead to different and con-
trasting false esteems of the BH dimensionless spin. These
puzzling aspects could be a distinctive general mark of the
DE affecting BHs and we believe, requiring further investi-
gation, should be considered more generally in the context
where DE presence is considered.
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Appendix A: Kiselev spacetime characteristics

We can define the horizons, for a general solutions of 
K =
0, in terms of the spin-function:

ah ≡
√
r (2 − r) + kr1−3α, (A1)

analogously to the Kerr case in Eq. (A3), or equivalently in
terms of the k parameter as the functions kh(r; a) ≡ 
r3α−1

Similarly the ergosurfaces, from the solution of gtt = 0, in
terms of the functions

aε ≡ ah√
1 − σ

, (A2)

analogously to the Kerr case16 in Eq. (4), or equivalently
in terms of the k parameter17 as the function k±

ε ≡
r3α−1 (	 − 2r), where, for σ = 1 (the equatorial plane),
there is k±

ε = (r − 2)r3α . Note, the solutions gtt = 0, in
the spherical symmetric case (a = 0), determines (for some
value of the DE parameter k) the horizons of the metric.

The ergosurfaces

16 The condition α → +∞ leads to the Kerr geometry as well. Good
energy conditions (as positive energy density) leads to the constrain
αk ≤ 0 – see for example [113].
17 Eq. (3) for the Kerr BH horizons defines also the spin functions
ah : r = r±(a):

ah ≡ √
r(2M − r), where ah ∈ [0, M], and r ∈]0, 2M]. (A3)

The ergosurfaces (4) define the spin-functions aε : r±
ε (a) = r defined

as

aε ≡ ah√
1 − σ

> 0 (σ ∈ [0, 1[). (A4)

Definition in Eq. (A2) can be express in terms of ergo-
surfaces radii, analogously to the Kerr case in Eq. (4), as the
functions r±

ε ≡ {¯̄r}n , which are the n zeros of the quantity ¯̄r
¯̄r : r3k − r2 + 2r + a2(σ − 1) = 0 (A5)

shown in Fig. 24. Conditions for the ergosurfaces existence
are classified in Table 3, according to the spin a, for different
ranges values of theDE parameter k and in Table 4, according
to the DE parameter k. for different ranges of the spin a,
introducing the following spin functions:

(a±
κ )2 ≡ ±

2

[
k

(
k
√

− (6k−1)3

k4 ± 9

)
∓ 1

]

27k2 , (A6)

giving zeros of the polynomial â ≡ 27k2a4 +4(1−9k)a2 +
32k − 4, shown in Fig. 24, and the function k±

E (a) : a2 =
(a±

κ )2, where

k∓
E ≡ ∓

2

[
a2

(
a2

√
− (3a2−4)3

a8 ∓ 9

)
± 8

]

27a4 , (A7)

with the poloidal angle ϑ constrained by the functions
σ±
E (a, k) ∈ [0, 1], defined as

σ∓
E ≡ 1

27

⎡
⎣27 ∓ 2

√
− (6k − 1)3

a4k4 + 2(1 − 9k)

a2k2

⎤
⎦ . (A8)

From the analysis in Tables 4 and 3, and from Fig. 24, the
existence of limiting values of the DE parameter and the BH
spin is evidenced. In particular, we shall consider separately
in this analysis the case k < 0 and k > 0 (Fig. 25).

The horizons The horizons, defined in Eqs (A1), can be
expressed, for in the Kiselev spacetimes18 with α = −2/3,
analogously to the Kerr spacetime in Eq. (3) in terms of radii
r± = {rκ1, rκ2 , rκ3}, where explicitly:

rκ1 ≡
2ν cos

(
ξ
3

)
+ 1

3k
, rκ2 ≡

1 − 2ν sin
(

2ξ+π
6

)
3k

,

rκ3 ≡
1 − 2ν cos

(
ξ+π

3

)
3k

, with

ξ ≡ cos−1
[
ν[9k(3ak−2) + 2]

2(1 − 6k)2

]
, and ν ≡k

√
1 − 6k

k2

(A9)

zeros of the polynomial r̆ ≡ kr3 −r2 +2r−a2 – see Fig. 26.
The horizons exist under the following conditions (see also

18 We should note that for DE model there is α ∈] − 1,−1/3[ – [22,
23]. Kiselev solution has been considered for α = −1/3, to describe
the dark matter effects, and radiation for α = 1/3, or dust for α =
0. However in [15], the (cosmological) quintessence interpretation of
Kiselev spacetime has been contested as for the case of perfect fluid
dark matter (but rather it would consist of some kind of anisotropic
fluid). Some notes on the case α = −1/3 are in Appendix C.
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Fig. 24 Dark energy (DE) model. Kiselev spacetime with α = −2/3.
Left panel: Spin functions a±

κ of Eq. (A6) as function of theDE parame-
ter k. Limiting values are also shown as vertical or horizonthal lines-see
also Tables 3 and 4. Center panel: the spin âi , i-zero of â in Eqs. (A6),

as functions of the DE parameter, coincident with spin functions a±
κ .

Right panel: ergosurfaces r±
ε as functions of k for different spins a and

plane σ ≡ sin2 ϑ ∈ [0, 1] as signed on the panel. All quantities are
dimensionless

Fig. 25 Dark energy (DE) model. Kiselev spacetime with α = −2/3.
Horizons r± as function of the DE parameter k for different spins as
signed on the panel (left panel) and spins a for different k as signed on

the panel (right panel). There is σ = sin2 ϑ , where the equatorial plane
is for σ = 1. The case k = 0 corresponds to the Kerr spacetime. All
quantities are dimensionless

Table 5)
k < 0 : (a=0, rκ1 ), (a ∈]0, a+

κ [, {rκ1 , rκ3 }), (a=a+
κ , rκ3 ),

k ∈] 0,
1

8

[: (a=0, {rκ1 , rκ3 }), (a ∈]0, a+
κ [, {rκ1 , rκ2 , rκ3 }), (a ≥ a+

κ , rκ1 ),

k = 1

8
: (a = 0, r = 4), (a ∈] 0,

32

27

[
, {rκ1 , rκ2 , rκ3 }

)
,

(
a = 32

27
,

(
r =

{
4

3
,

16

3

}))
,

(
a >

32

27
, rκ1

)
,

k ∈]
1

8
,

1

6

[: (a ∈]0, a−
κ ], rκ2 ), (a ∈]a−

κ , a+
κ [, {rκ1 , rκ2 , rκ3 }), (a ≥ a+

κ , rκ1 ),

k ≥ 1

6
: (a > 0, rκ3 ). (A10)

In Table 5 conditions in Eq. (A10) are expressed alterna-
tively for faster and slower spinning BH attractors, where it
has been convenient to consider functions a±

κ of Eq. (A6) as
the i-zero, âi , of the polynomial â, shown in Fig. 24, and
radii {rκ1, rκ2 , rκ3} of Eq. (A9) as the n zeros, {r̆}n , of the
polynomial r̆ – see Fig. 26. Note, there is r̆ = ¯̄r ∣∣

σ=0, simi-
larly to the case of Kerr geometry, where, for k = 0, there is
r̆ = −
.

The extreme solutions
The DE Kiselev rotating BH spacetime has some extreme

BH solutions, for special values of the spin a and the DE

parameter k, corresponding, for k = 0, to the extreme Kerr
BH spacetime with a = 1.

For a general (k, a), we evaluate the extremes of the spin
function ah(r; a, k), as function of the radius r , having the
two radii

r±
max(k) ≡ 1 ± √

1 − 6k

3k
(A11)

showed in Fig. 27, left panel, where k ≤ 1/6 (and k �= 0),
with the limiting value r±

max = 2 for k = 1/6.
Then, there is

a∓
max(k) ≡ ah(r

∓
max) = a±

κ (k). (A12)

Using function a±
max(k), and solving for k : a±

max(k) = a, we
obtain the radii r±

max(a) : a±
max(k) = a

with : a ∈]
0,

2√
3

[:

r±
max(a) ≡ 6a2

3a2 ∓
√(

3a2 − 4
) (

3a2 ± 4
√

4 − 3a2 − 8
) (A13)
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Fig. 26 Dark energy (DE) Kiselev model with parameter with α =
−2/3. Horizons radii as functions of the DE parameter k. All quanti-
ties are dimensionless. Right panel show functions {r̆}n , which are n
zeros of quantity r̆ of Eqs (A9), for different spins signed on the curves.

Dashed vertical lines are limiting values of the k parameter – see also
Table 5. Inside panel shows an enlarged view. Left panel shows hori-
zons radii {rκ1 , rκ2 , rκ3 }, coincident with radii {r̆}n , for different values
of the spin a as signed on the panel

Fig. 27 Dark energy model. Kiselev spacetime with α = −2/3. Hori-
zontal lines are r = 1 and r = 2. All quantities are dimensionless. Left
panel: Radii r±

max (k) : ∂r ah = 0 in Eq. (A11), as function of the DE
parameter k, where ah are the BH horizons spin functions Eqs (A1).
The limiting case k = 1/6, where r±

max = 2, is shown as a vertical
orange curve. Center panel: radius r±

max(a) : a±
max = a, of Eq. (A13) as

function of the spin a, the limiting spin a = 2/
√

3, where r±
max = 2,

is also signed. Right panel: horizons r±(a) as functions of the spin, for
k = 0.0025 (blue curve), k = −0.05 (cyan curve) and k = 0 (black-
dashed curve) correspondent to the Kerr spacetime. Gray curve is the
radius r−

max

shown in Fig. 27, center panel. Radius r−
max(a) provides the

horizons r±(a) of the extreme BH cases with respect to the
spin parameter a – see Fig. 27-right panel. (Note, for a = 1,
there is r+

max = 3, while r−
max = 1.)

From condition (A13) it is clear that such radius exists
for a < 2/

√
3 and for k < 1/6 (with the limiting condition

(k = 0, a = 0, r = 2) – see Fig. 27, left panel and Eqs (A10).
The axis-symmetric and stationaryDEmodels considered

here describe BHs and NSs spacetimes and, focusing on the
BHs DE solutions, we define similarly to the Kerr spacetime
case the notion of co-rotating and counter-rotating motions
as defined by the relations La ≷ 0 and �a ≷ 0 (with a > 0)
respectively.19

19 The metric asymptotic condition (r → +∞) depends generally
on the metric parameters. For the asymptotically de Sitter space-
times, the notion of co-rotating or counter-rotating motion cannot be
related to the observers at infinity but only to the locally non-rotating
observers/frames (LNRF) – see for example [23].

Appendix B: Tori construction

The fluid effective potential is

V 2
e f f = g2

tϕ − gϕϕgtt

gϕϕ + 2gtϕ� + gtt�2 . (B1)

and the angular momentum function is

� ≡
�5 ±

√
�2

1�2 − �3

�4
where

�1 ≡ g2
tϕ − gϕϕgtt ; �2 ≡ g′2

tϕ − g′
ϕϕg

′
t t ;

�3 ≡ gtϕ
(
gtt g

′
ϕϕ + gϕϕg

′
t t

) ;
�4 ≡ g2

t t g
′
ϕϕ − 2gtϕgtt g

′
tϕ + g2

tϕg
′
t t ;

�5 ≡ gϕϕgtt g
′
tϕ + g2

tϕg
′
tϕ (B2)
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(for ϑ = π/2, where (′) is for the derivative with respect to
r ). For the Kerr spacetime, Eq. (B2) is

�∓(r) = a[r(4 − 3r) − a2] ±
√
r3

(
a2 + (r − 2)r

)2

(r − 2)2r − a2 . (B3)

Appendix B1: The geodesics structure and tori
construction for α= −2/3

Let us start by first considering a spacetime with general
(a, k) parameters, and then, by taking into account also the
spacetimes properties outlined in Sect. 3.1, to fix our argu-
ments, we will concentrate on some fixed values of the param-
eter k, studying co-rotating and counter-rotating tori for all
values of tori parameters (�, K ) and attractor spin a > 0.

We introduce below the fluids specific angular momentum
�±(a, k; r):

�∓ ≡ ν1 ± √
2
√
r3

(
2 − kr2

) (
a2 + r [r(1 − kr) − 2]

)2

a2
(
kr2 − 2

) + 2r [r(kr − 1) + 2]2
,

where ν1 ≡ a3
(
kr2 − 2

)
+ ar [r(kr [r(2kr − 1) + 8] − 6) + 8]

(B4)

for co-rotating and counter-rotating fluids respectively, coin-
cident with the functions Eq. (B3) for the Kerr spacetimes at
k = 0.

More precisely, we focus on the radii constraining the
orbiting configurations in accordance with the analysis of
Sect. 2.2.1, therefore we do not study the geodesic structure
as such, but define the radii governing the pressure gradi-
ents in the disk according to the effective potential and the
distributions of constant angular momentum (It is also clear
that these radii define the structures also in the limit of very
thin rings of matter orbiting at the “disk” centers, with very
small radial extension on the equatorial plane). However, for
the sake of brevity, in the following we refer to these radii
defined by the spacetime geodesic structure and we use the
similar notation conventions adopted for the Kerr case.

Therefore, we identify the “marginally circular orbit”,
r±
mco, as the radius r±

mco ≡ r±
γ : K±(r) = ∞, the “marginally

bound orbit” defined by r±
mbo : K±(r) = 1 (asymptot-

ically flat spacetimes) and the “marginally stable orbits”
r±
mso : ∂r�

± = 0. We proceed by discussing first the space-
times “geodesic” structure on the equatorial plane, then we
analyze the quantities (L , K , �) determining the fluids and
particles dynamics (see also [114]). Analogously to the Kerr
case discussed in Fig. 2, we analyze the fluid specific angular
momentum �± of Eq. (B4) on the geodesic orbits, constrain-
ing different topologies of the orbiting structures.

Appendix C: Kiselev spacetime with α = −1/3

For α = −1/3 the horizons are

r± = 1

1 − k
±

√
a2(k − 1) + 1

(k − 1)2 , (C1)

and the ergosurfaces can be written as20

r±
ε = ±

√
a2(k − 1)(1 − σ) + 1 ∓ 1

k − 1
, (C2)

where, on the equatorial plane, there is

r±
ε = rk0 ≡ 2

1 − k
, (σ = 1), (C3)

see Fig. 28.
Then the horizons of the static geometry, a = 0, exist for

a = 0 : (
k ∈ [0, 1[, r ∈ {0, rk0}

)
, (k ≥ 1, r = 0) ,(

k < 0, r = {0, rk0}
)

(C4)

– Fig. 28. For a > 1 the horizons are for

k ∈ [0, 1[: (a ∈ [1, ak[, r = r±), (a = ak, r = r−);
k = 1 : (a ≥ 1, r = r�);
k > 1 : (a ≥ 1, r = r+), (C5)

where r� ≡ a2/2, and the spin function ak is

ak ≡
√

1

1 − k
. (C6)

For a ∈]0, 1] the horizons are for

k ≤ 0 : (a ∈ [0, ak[, r = r±), (a = ak, r = r−);
k ∈]0, 1[: (a ∈ [0, 1], r = r±);
k = 1 : (a ∈ [0, 1], r = r�); k > 1 : (a ∈ [0, 1], r = r+).

The BH metric horizon is generally located of a larger radius
to the Kerr metric horizon in the a − r plane, although for
some values of k this condition changes – Fig. 28. We con-
sider k = ±0.81. The geodesic structure regulating the fluid
dynamics is plotted in Fig. 29. The Kiselev metric, seen as
deformation of the Kerr spacetime, regulated by the (α, k)
parameters, appears to affect quantitatively the orbiting tori
structure. with respect to the reference Kerr metric, allow-
ing accretion tori located considerably far from the central
attractor, with the shift of the location of the BH horizons
and the geodesic structure radii outwardly.

20 There is limr→+∞{gtφ, gφφ} = {−akσ, k − 1}, limr→+∞ V 2
e f f =

1 − k.
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Fig. 28 Kiselev spacetime with α = −1/3. Horizons r± and ergosur-
faces r±

ε of the Kiselev metric, for different parameter k and spins a.
In left panel black surface is the Kerr case. Gray curves of the right

panel show the relative quantities for the Kerr geometry k = 0. There
is σ = sin2 θ , where the equatorial plane is for σ = 1. All quantities
are dimensionless

Fig. 29 Kiselev spacetime with α = −1/3. Equatorial circular
geodesic structure for different k and spins a. Gray curves are for the
Kerr geometry (k = 0). Radii r± (dotted-dashed curves) is the hori-
zons, r+

ε is the outer ergoregion on the equatorial plane, r±
mso is for

marginally stable orbit, r±
mco is for marginally circular orbit, r±

mbo is

the solution of Vef f = 1 (solution Vef f = √
1 − k is also shown in

long-dashed curves). �± is the fluid specific angular momentum. ± is
for counter-rotating and co-rotating fluids respectively. All quantities
are dimensionless
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